

IPv6 Security Myths, Filtering and Tips

Webinar

April 2025 RIPE NCC Learning & Development

This webinar is being recorded

IPv6 Security Myths

Filtering IPv6 Traffic

IPv6 Security Tips

Legend

Tell us about you!

Please answer the polls

IPv6 Security Myths

Section 1

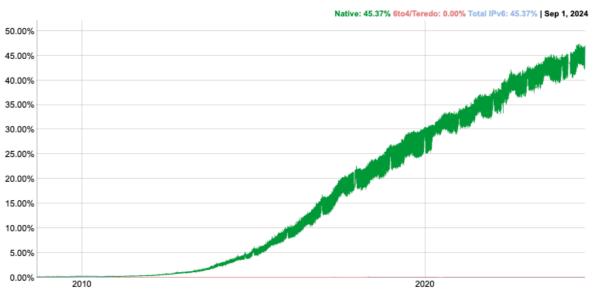
IPv6 is Happening...

✓ RANK	IPV6%	COUNTRY / REGION
1	100%	Christmas Island
2	100%	Western Sahara
3	80%	Pitcairn
4	70.6%	India
5	67.2%	Montserrat
6	66.5%	Tokelau
7	62.1%	Malaysia
8	60.3%	Germany
9	59.8%	France
10	59.4%	Uruguay
11	54.8%	Saudi Arabia
12	54.2%	Belgium
13	52.5%	Nepal
14	52.5%	Japan
15	52.2%	United States
16	50.8%	Viet Nam
17	48.5%	Greece
18	47.5%	Thailand
19	47.4%	United Arab Emirates

20

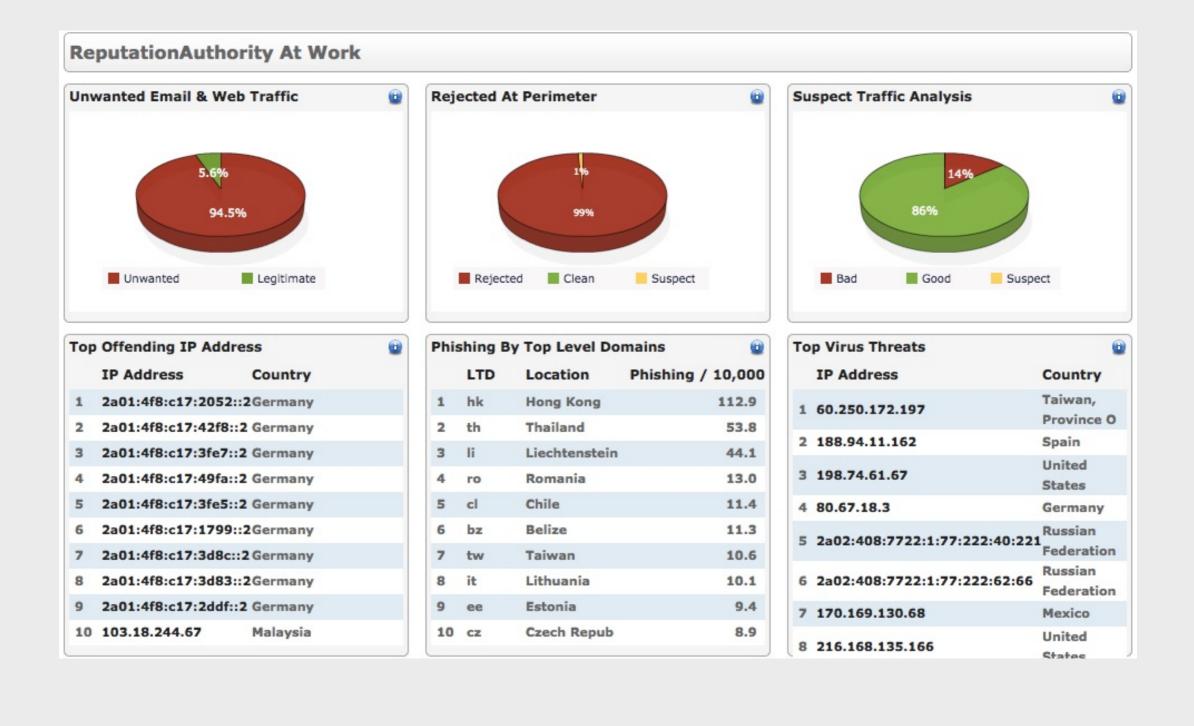
46.5%

Brazil


IPv6 Adoption By Networks

*Networks data is limited to the top 200 networks ranked by total IPv6 hits to platform.

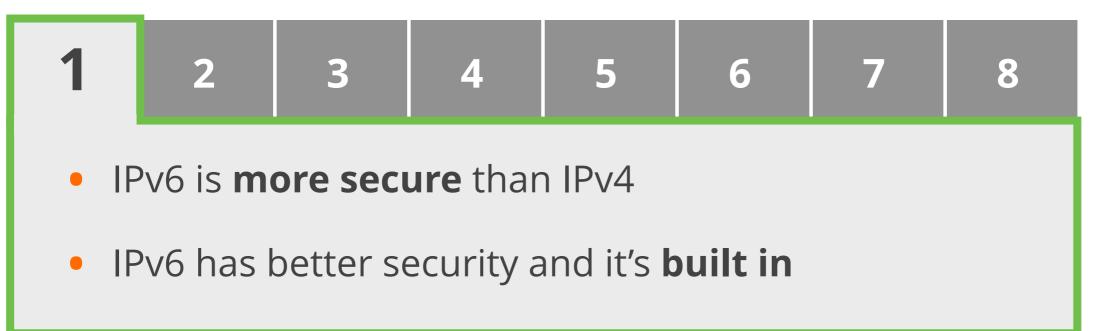
✓ RANK	IPV6%	NETWORK
1	71.5%	Comcast Cable
2	73.5%	AT&T Communications Americas
3	91.3%	Reliance Jio Infocomm Limited
4	60.1%	Verizon Business
5	92.5%	T-Mobile
6	60.1%	Charter Communications Inc - TWC
7	79.7%	Bharti Airtel Enterprise Ltd.
8	74%	Deutsche Telekom Germany
9	51.1%	Charter Communications Inc.


IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

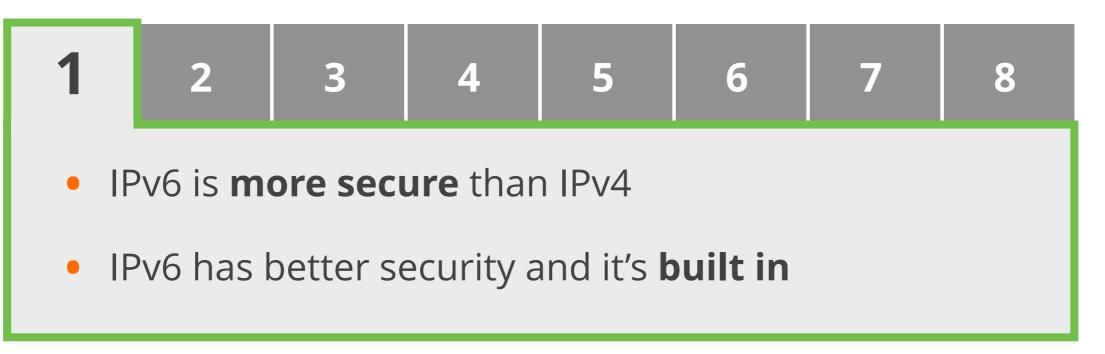
Source: Akamai, Google

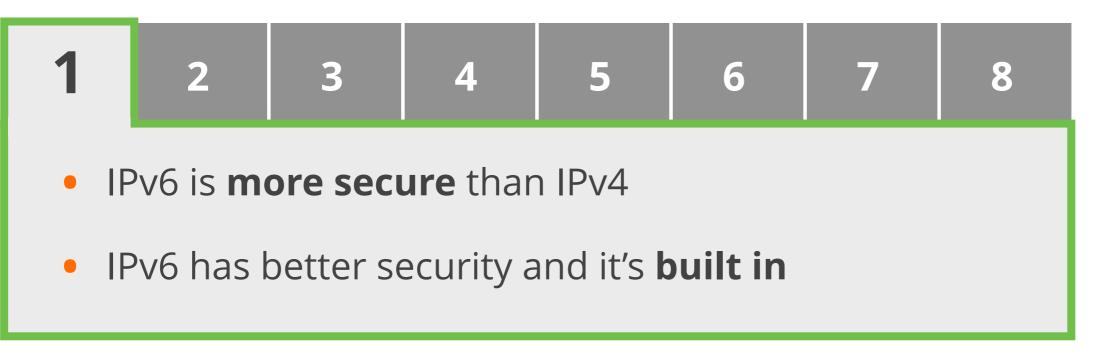
... and So Are IPv6 Security Threats! 😥



We need you to participate!

Please answer the questions on the chat





Reason:

• RFC 4294 - IPv6 Node Requirements: IPsec MUST

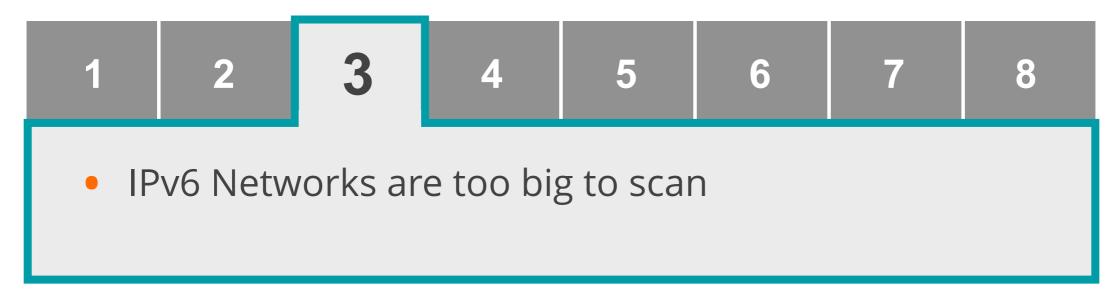
Reason:

• RFC 4294 - IPv6 Node Requirements: IPsec MUST

- RFC 6434 IPv6 Node Requirements: IPsec **SHOULD**
- IPsec available. Used for security in IPv6 protocols

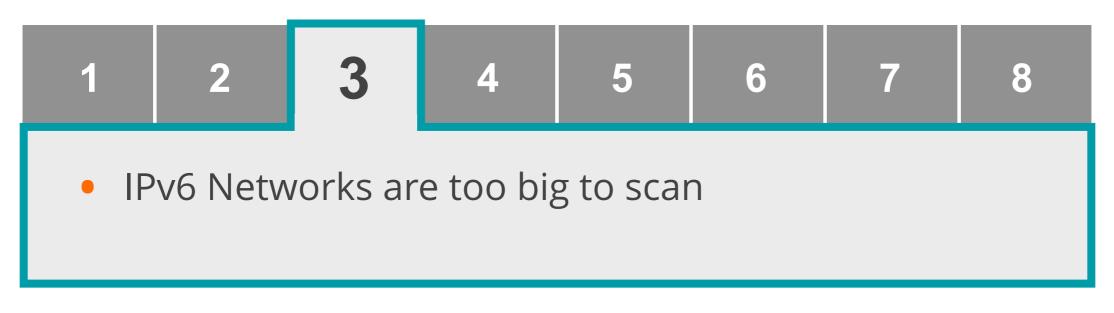
Reason:

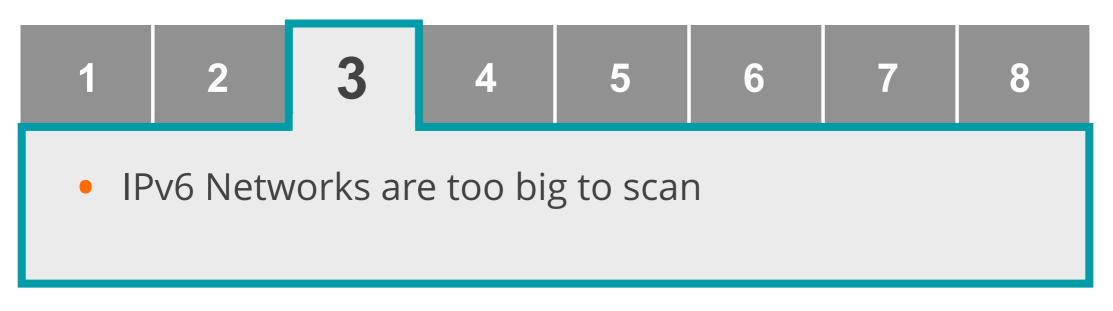
• End-2-End paradigm. Global addresses. No NAT



Reason:

• End-2-End paradigm. Global addresses. No NAT


- Global addressing does not imply global reachability
- You are responsible for reachability (filtering)



Reason:

- Common LAN/VLAN use /64 network prefix
- 18,446,744,073,709,551,616 hosts



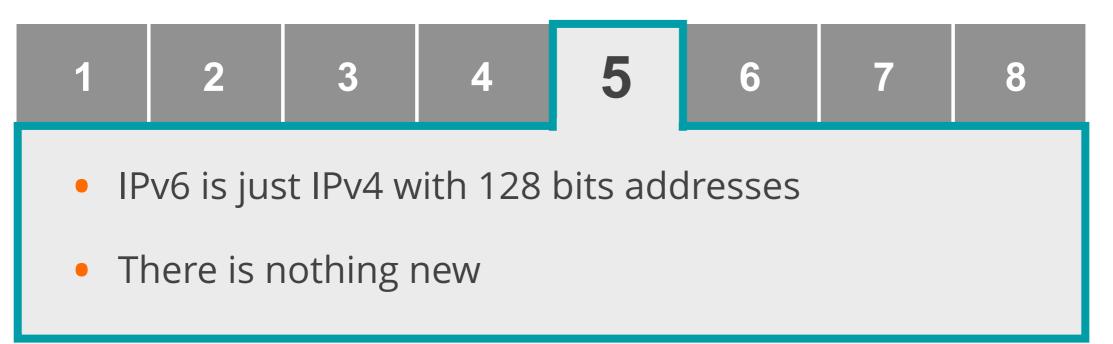
Reason:

- Common LAN/VLAN use /64 network prefix
- 18,446,744,073,709,551,616 hosts

- Brute force scanning is not possible [RFC5157]
- New scanning techniques

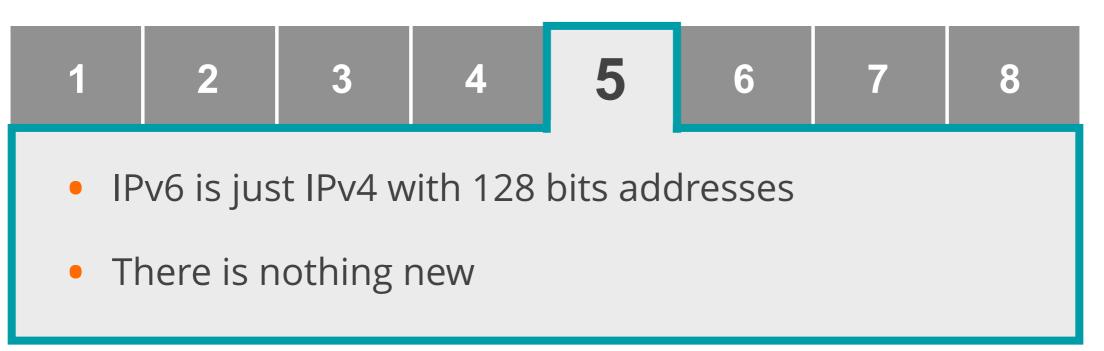
Reason:

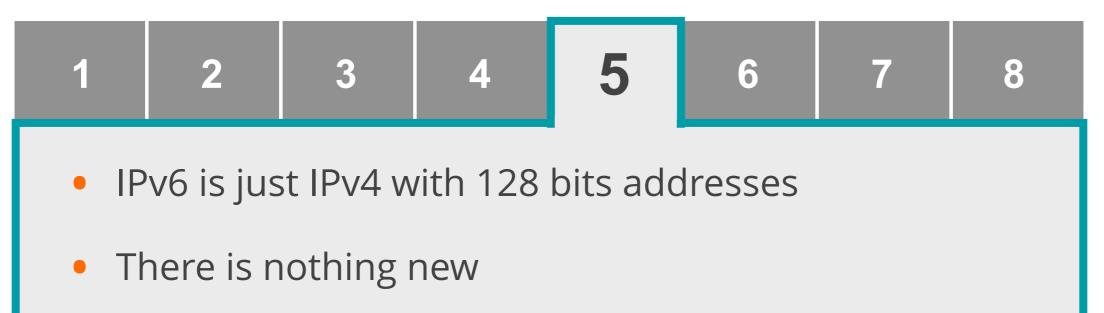
Lack of knowledge about IPv6 (*it's happening!*)



Reason:

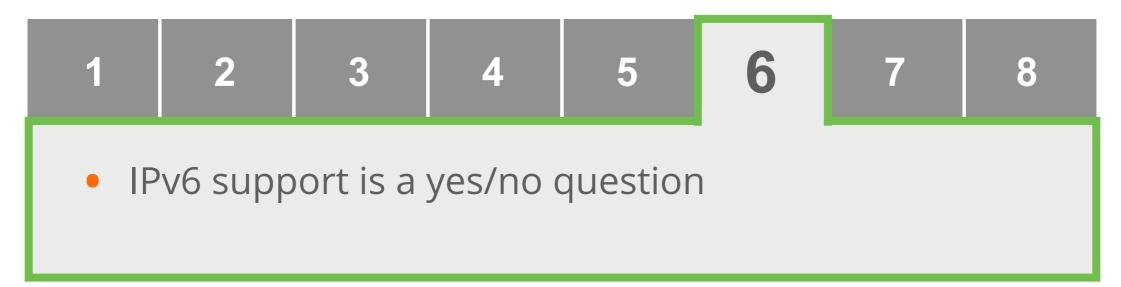
Lack of knowledge about IPv6 (*it's happening!*)


- There are tools, threats, attacks, security patches, etc.
- You have to be prepared for IPv6 attacks



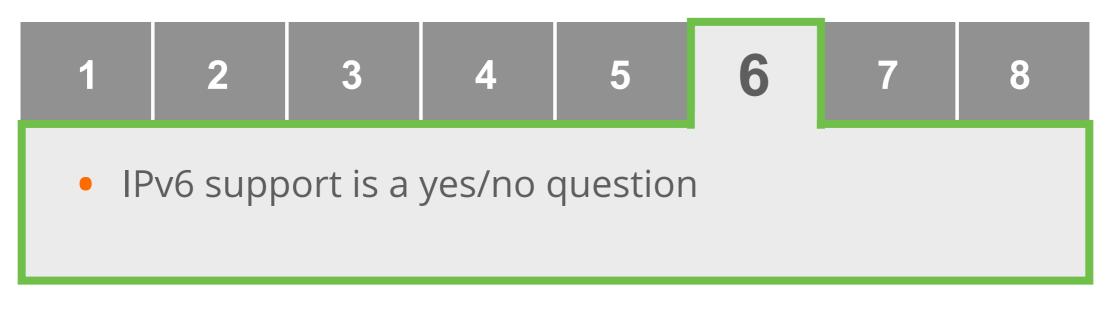
Reason:

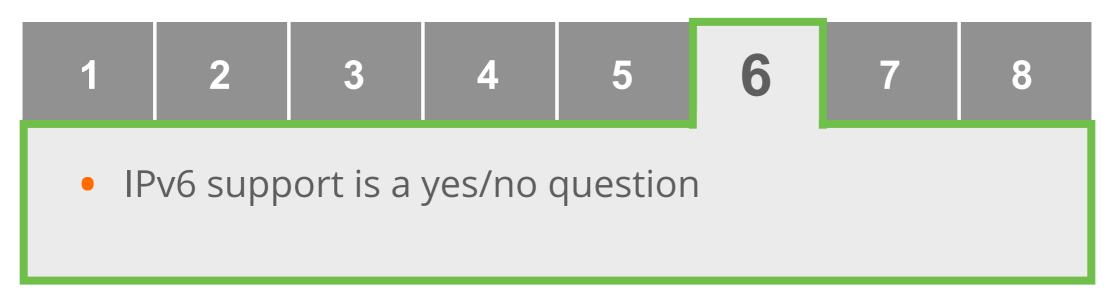
• Routing and switching work the same way



Reason:

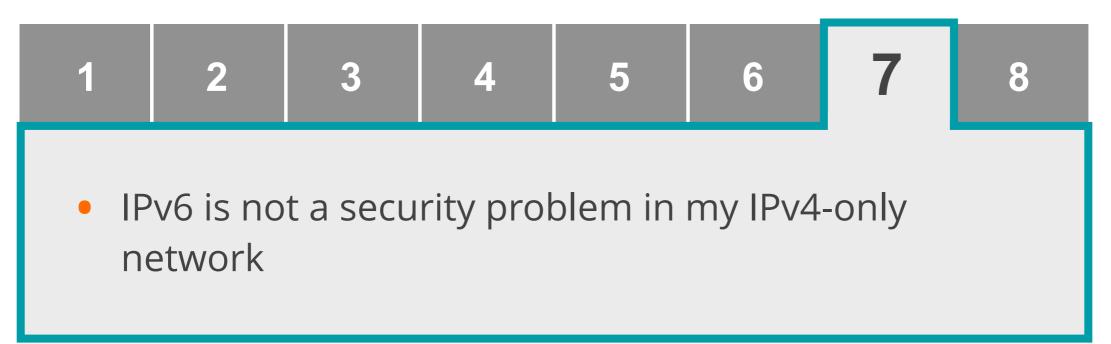
• Routing and switching work the same way


- Whole new addressing architecture
- Many associated new protocols



Reason:

- Question: "Does it support IPv6?"
- Answer: "Yes, it supports IPv6"



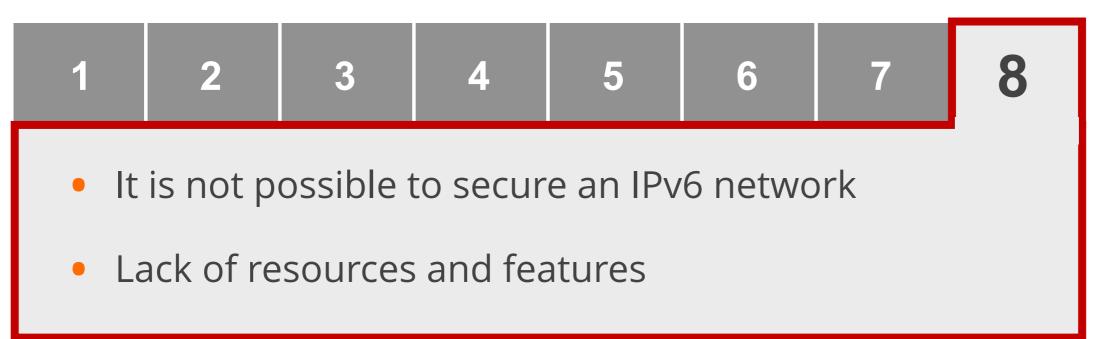
Reason:

- Question: "Does it support IPv6?"
- Answer: "Yes, it supports IPv6"

- IPv6 support is not a yes/no question
- Features missing, immature implementations, interoperability issues

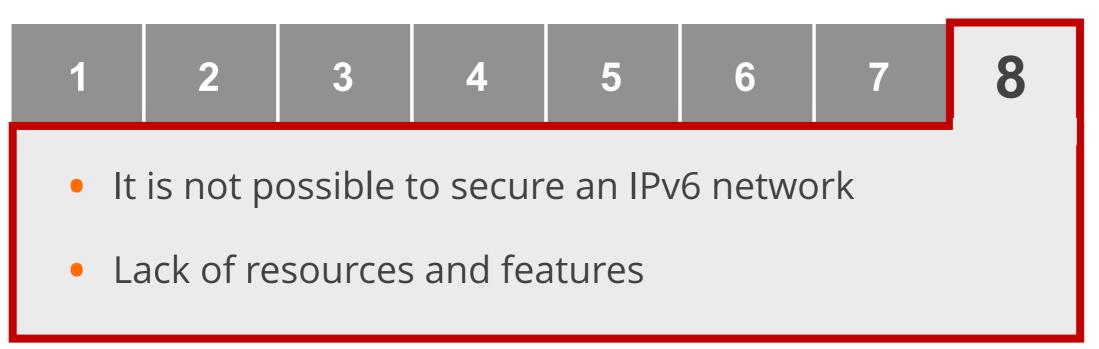
Reason:

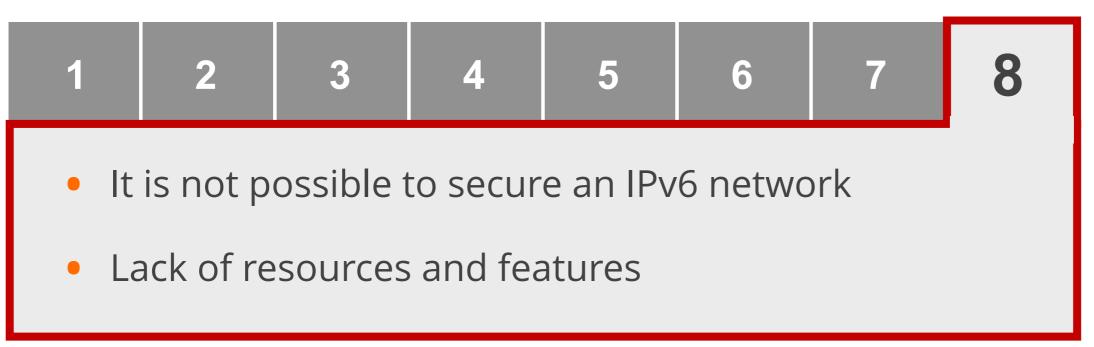
• Networks only designed and configured for IPv4



Reason:

• Networks only designed and configured for IPv4


- IPv6 available in many hosts, servers, and devices
- Unwanted IPv6 traffic. Protect your network



Reason:

- Considering IPv6 completely different than IPv4
- Think there are no BCPs, resources or features

Reason:

- Considering IPv6 completely different than IPv4
- Think there are no BCPs, resources or features

- Use IP independent security policies
- There are BCPs, resources and features

Conclusions

A change of mindset is necessary

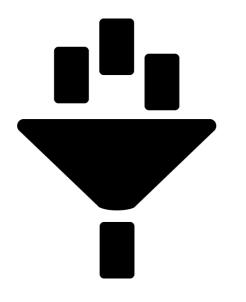
- IPv6 is not more or less secure than IPv4
- Knowledge of the protocol is the best security measure

Questions

Filtering IPv6 Traffic

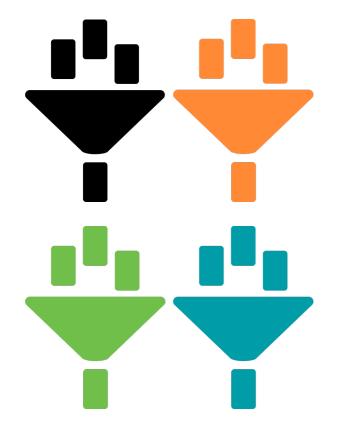
Section 2

Filtering in IPv6 is very Important!



Global Unicast Addresses

• A good addressing plan



Easier filtering!

New Filters to Take Into Account

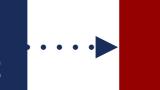
- ICMPv6
- IPv6 Extension Headers
- Fragments Filtering
- Transition mechanisms (TMs) / Dual-Stack

Filtering ICMPv6

Type - Code	Description	Action		
Type 1 - all	Destination Unreachable	ALLOW		
Туре 2	Packet Too Big	ALLOW		
Type 3 - Code 0	Time Exceeded	ALLOW		
Type 4 - Code 0, 1 & 2	Parameter Problem	ALLOW		
Туре 128	Echo Reply	ALLOW for troubleshoot and services. Rate limit		
Туре 129	Echo Request	ALLOW for troubleshoot and services. Rate limit		
Types 131,132,133, 143 MLD		ALLOW if Multicast or MLD goes through FW		
Туре 133	Router Solicitation	ALLOW if NDP goes through FW		
Туре 134	Router Advertisement	ALLOW if NDP goes through FW		
Type 135 Neighbour Solicitation		ALLOW if NDP goes through FW		
Туре 136	Neighbour Advertisement	ALLOW if NDP goes through FW		
Type 137 Redirect		NOT ALLOW by default		
Туре 138	Router Renumbering	NOT ALLOW		

More on RFC 4890 - https://tools.ietf.org/html/rfc4890

Filtering Extension Headers



- Firewalls should be able to:
 - 1. Recognise and filter some EHs (example: RHO)
 - 2. Follow the **chain of headers**
 - 3. Not allow **forbidden combinations** of headers

Filtering Fragments

Upper layer info not in 1st fragment

Creates many tiny fragments to go through filtering / detection

Fragments inside fragments

Several fragment headers

Fragmentation inside a tunnel

External header hides fragmentation

Filtering Fragments

Upper layer info not in 1st Fragment

All header chain should be in the 1st fragment [RFC7112]

Fragments inside fragments

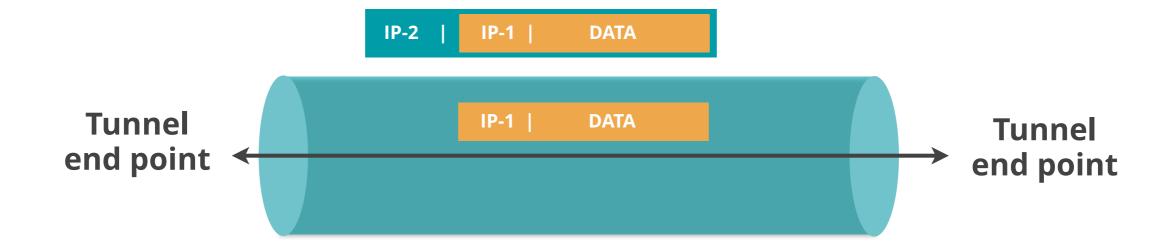
Should not happen in IPv6. **Filter them**

Fragmentation inside a tunnel

FW / IPS / IDS should support inspection of encapsulated traffic

Take the poll!

Is it recommended to configure filtering in an IPv6 host to drop all NS and NA messages?


Transition Mechanisms (TMs)

Temporary solution...

With security risks!

Tunnelling

Filtering TMs / Dual-stack

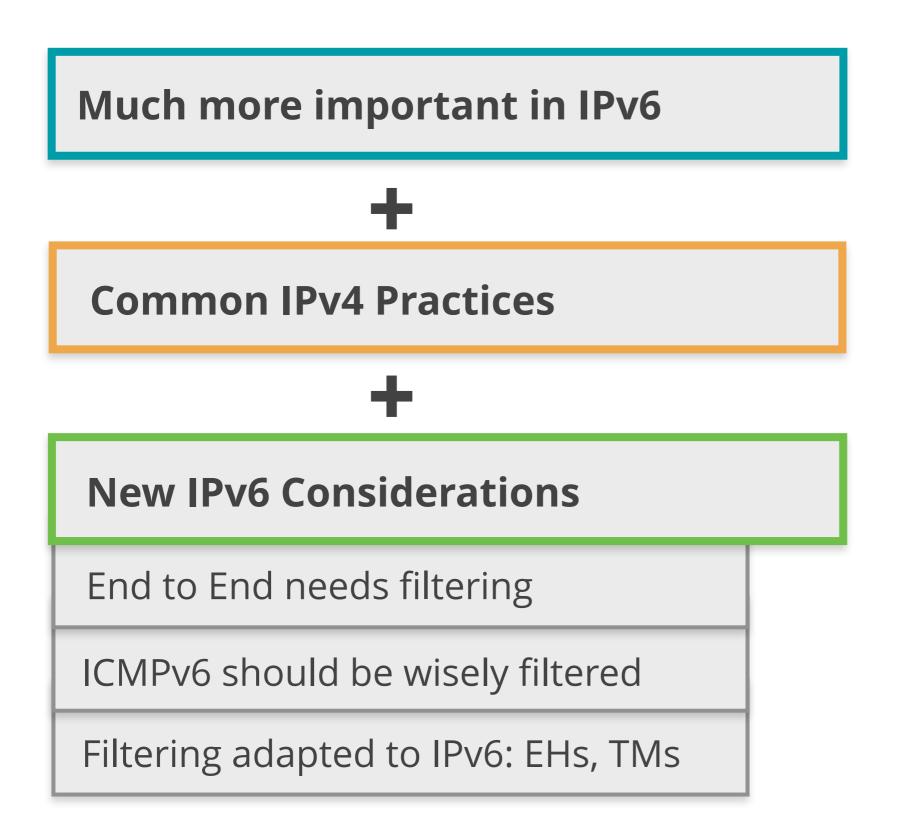
Technology	Filtering Rules		
Native IPv6	EtherType 0x86DD		
6in4	IP proto 41		
6in4 (GRE)	IP proto 47		
6in4 (6-UDP-4)	IP proto 17 + IPv6		
6to4	IP proto 41		
6RD	IP proto 41		
ISATAP	IP proto 41		
Teredo	UDP Dest Port 3544		
Tunnel Broker with TSP	(IP proto 41) (UDP dst port 3653 TCP dst port 3653)		
AYIYA	UDP dest port 5072 TCP dest port 5072		

More on RFC 7123 - https://tools.ietf.org/html/rfc7123

IANA Protocol Numbers -

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Take the poll!


Are you using **Transition Mechanisms** in your network?

IPv6 Packet Filtering

Questions

Let's take a 5 minutes break!

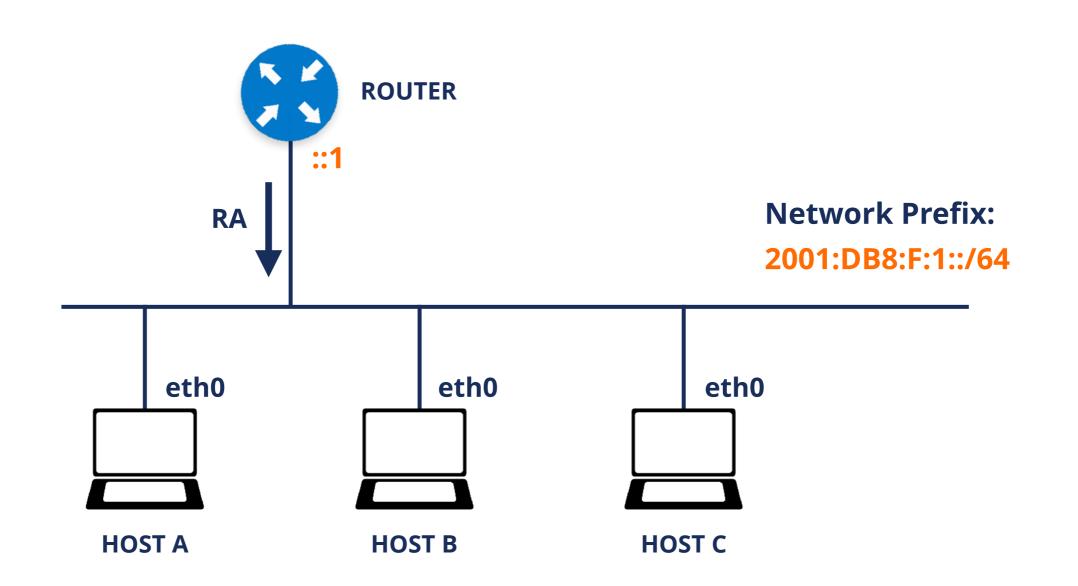
How can you protect your IPv6
 Host if the attack comes from the same link?

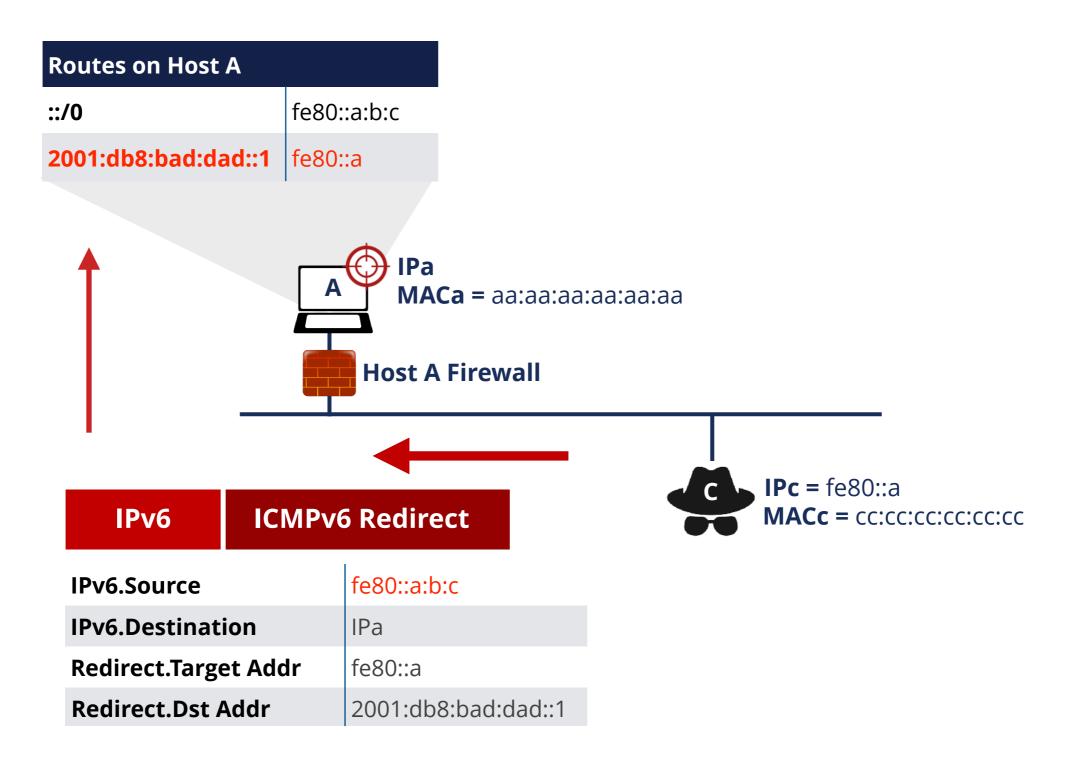
Demo 1

IPv6 Packet Filtering

Demo time!

We will demo the activity on the screen. Watch what we do.




- **Description**: Configure a packet filter for NDP Redirect messages
- Goals:
 - Understand how easy it is to filter unwanted messages
- **Time**: 15 minutes
- Demo:
 - Generate Redirect packets that change other host's routes (using a toolkit)
 - Filter out Redirect messages in a host (using ip6tables)

Demo 1: Lab Network

[root@host-a] ip -6 route show unreachable ::/96 dev lo metric 1024 error -113 unreachable ::ffff:0.0.0.0/96 dev lo metric 1024 error -113 2001:db8:f:1::/64 dev eth0 proto kernel metric 256 expires 86392sec unreachable 2002:a00::/24 dev lo metric 1024 error -113 unreachable 2002:7f00::/24 dev lo metric 1024 error -113 unreachable 2002:a9fe::/32 dev lo metric 1024 error -113 unreachable 2002:ac10::/28 dev lo metric 1024 error -113 unreachable 2002:c0a8::/32 dev lo metric 1024 error -113 unreachable 2002:e000::/19 dev lo metric 1024 error -113 unreachable 3ffe:ffff::/32 dev lo metric 1024 error -113 fe80::/64 dev eth0 proto kernel metric 256 default via fe80::5054:ff:fe50:472e dev eth0 proto ra metric 1024 expires 52sec hoplimit 64

[root@host-a] ip -6 route get 2001:db8:BAD:DAD::1
2001:db8:BAD:DAD::1 via fe80::AB:a:F:12 dev eth0 proto ra src 2001:db8:F:29:5054:ff:feeb:5ada
metric 1024 hoplimit 255

• The IPv6 Toolkit

rd6 -i eth0 -s <c.1> -d <c.2> -t <c.3> -r <c.4> -n -v

• THC-IPV6:

redir6 eth0 <c.2> <c.4> <c.1> <c.3>

[root@host-c]# redir6 eth0 2001:db8:f:1:5054:ff:feca:96d2
2001:db8:BAD:DAD::1 fe80::5054:ff:fe7e:ac53 fe80::cccc:cccc:cccc:cccc
Sent ICMPv6 redirect for 2001:db8:BAD:DAD::1

• Before:

[root@host-a] ip -6 route get 2001:db8:BAD:DAD::1
2001:db8:BAD:DAD::1 via fe80::5054:ff:fe7e:ac53 dev eth0 proto ra src
2001:db8:F:1:5054:ff:feeb:5ada metric 1024 hoplimit 255

[root@host-a] ip -6 route get 2001:db8:BAD:DAD::1

2001:db8:bad:dad::1 via fe80::cccc:cccc:cccc.dev eth0 src 2001:db8:bad:cafe:5054:ff:feca:96d2

metric 0

cache hoplimit 64


```
[root@host-a ]# ip6tables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
. . .
[root@host-a ]# ip6tables -A INPUT -p icmpv6 --icmpv6-type 137 -j DROP
[root@host-a ]# ip6tables -L -n
Chain INPUT (policy ACCEPT)
                               destination
target prot opt source
                                             ipv6-icmptype
DROP
          icmpv6
                    ::/0
                                  ::/0
                                                            137
```


• The IPv6 Toolkit

rd6 -i eth0 -s <c.1> -d <c.2> -t <c.3> -r <c.4> -n -v

• THC-IPV6:

redir6 eth0 <c.2> <c.4> <c.1> <c.3>

[root@host-c]# redir6 eth0 2001:db8:f:1:5054:ff:feca:96d2
2001:db8:BAD:DAD::1 fe80::5054:ff:fe7e:ac53 fe80::cccc:cccc:cccc:cccc
Sent ICMPv6 redirect for 2001:db8:BAD:DAD::1

[root@host-a] ip -6 route get 2001:db8:BAD:DAD::1
2001:db8:BAD:DAD::1 via fe80::5054:ff:fe7e:ac53 dev eth0 proto ra src
2001:db8:F:1:5054:ff:feeb:5ada metric 1024 hoplimit 255

Take the poll!

Think of the use of **IPv6 packet filtering in the host** as a protection tool.

Which of the following statements are **true**?

Questions

IPv6 Security Tips

Section 3

Take the poll!

Which **IPv6 security tips** can you already **share** with others in this webinar?

1	Best security tool is knowledge
2	IPv6 security is a moving target
3	IPv6 is happening: need to know about IPv6 security
4	Cybersecurity challenge: Scalability IPv6 is also responsible for Internet growth

- IPv6 quite similar to IPv4, many reusable practices
- IPv6 security compared with IPv4:

No changes with IPv6

Changes with IPv6

New IPv6 issues

Up to date information

Information category	Standardisation Bodies	Vulnerabilities Databases	Security Tools	Cybersecurity Organisations	Vendors	Public Forums
Sub-categories	IETF, 3GPP, Broadband Forum		Vulnerability Scanners	CSIRTs / CERTs Gov. / LEAs		Mailing Lists Groups of Interest Security Events
Information in this category	Security considerations Protocol updates Security recommendations	 Vulnerability ID (CVE-ID, other) Severity (CVSS, other) Description Affected systems Solutions and workarounds 	 Vulnerability ID (CVE-ID, other) Severity (CVSS, other) Description Affected systems Solutions and workarounds Affected devices in your network 	Vulnerability ID (CVE-ID, other)Severity (CVSS, other)DescriptionAffected systemsSolutions and workarounds"0 Day" vulnerabilities	 Vulnerability ID (CVE-ID, other) Severity (CVSS, other) Description Affected systems Solutions and workarounds "0 Day" vulnerabilities 	"0 Day" vulnerabilities News Trends Lessons learned
Examples	RFCs, I-Ds	NVD, CVE	OpenVAS	CERT-EU ENISA EUROPOL/EC3	Cisco, Juniper, MS, Kaspersky, etc.	NOGs, IETF, IPv6 Hackers, Reddit, Troopers, etc.

Manual

CVEcve.mitre.org/cve/search_cve_list.htmlSearch for: ICMPv6 windows

NVDhttps://nvd.nist.gov/vuln/searchSearch for: CVE-2020-16899Go to vendor's link

Automated

Name V		Status	Reports	Last Report	Severity
Windows Workgroup Test	69	Stopped at 2 %	1		
Windows Domain Test	69	Stopped at 2 %	1		
DMZ Mail Scan	69	Container			
EulerOS Scan	69	Stopped at 22 %	74	Thu, Dec 26, 2019 6:00 AM UTC	10.0 (High)
TLS Map Scan	6	Done	1	Fri, Dec 27, 2019 1:38 PM UTC	0.0 (Log)
Metasploitable Test - GSM Master	69	Done	1	Fri, Jan 3, 2020 11:29 AM UTC	10.0 (High)
DMZ Mail Scan 2	69	New			
system discovery	69	Done	1	Fri, Dec 20, 2019 10:29 AM UTC	0.0 (Log)

Homework

Go to: cert.europa.eu

Select Publications

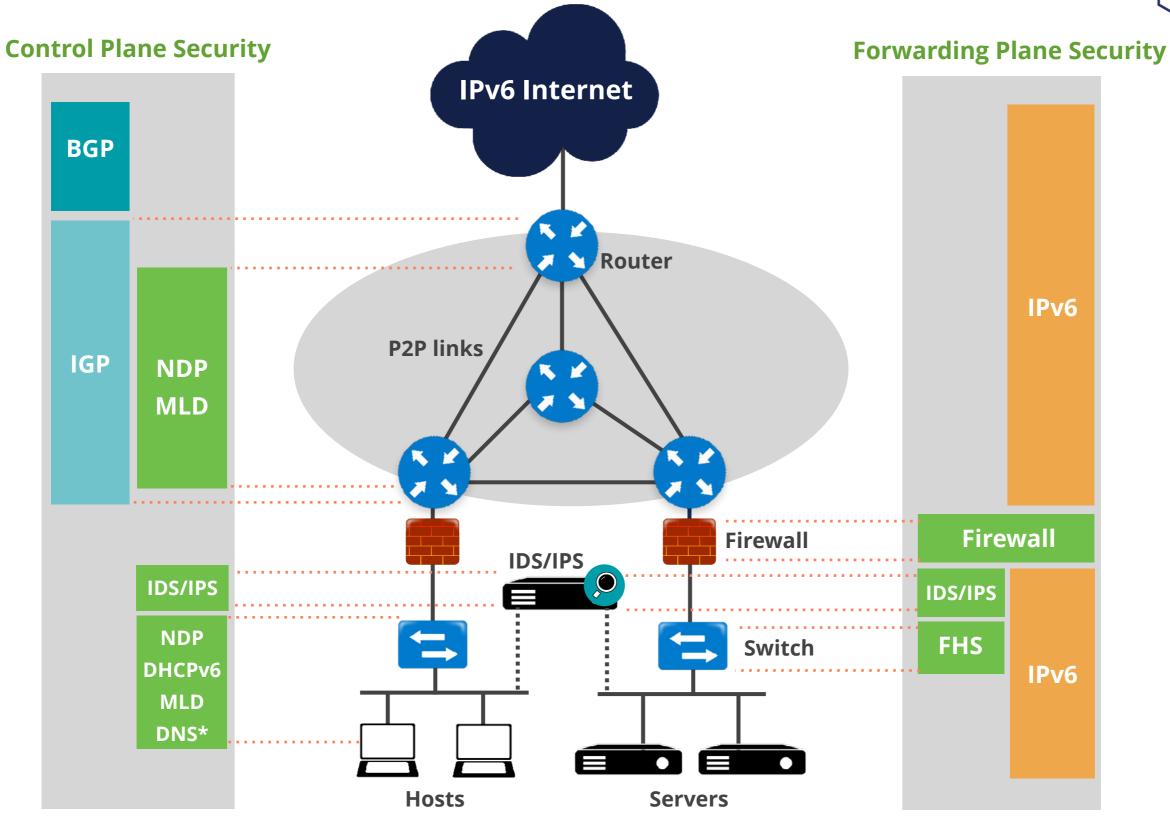
Select Security Advisories

Search for IPv6 related ones

Go to NVD: https://nvd.nist.gov/vuln/search

Search for IPv6 + your vendor

Security Tools


Туре	Can be used for	Examples		
Packet Generators	Assessing IPv6 security	Scapy, nmap, Ostinato, TRex		
	Testing implementations			
	Learning about protocols			
	Proof of concept of attacks/protocols			
Packet Sniffers/ Analyzers	Understanding attacks and security measures	tcpdump, Scapy, Wireshark, termshark		
	Learning about protocols and implementations			
	Troubleshooting			
Specialised Toolkits	Assessing IPv6 security	THC-IPV6, The IPv6 Toolkit, Ettercap		
	Learning about protocols and implementations			
	Proof of concept of attacks/protocols			
	Learn about new attacks			
Scanners	Finding devices and information	nmap, OpenVAS		
	Proactively protect against vulnerabilities			
IDS/IPS	Understanding attacks and security measures			
	Learning about protocols and implementations	Crearth Churchester Zarah		
	Assessing IPv6 security	Snort, Suricata, Zeek		
	Learn about new attacks			

Devices Categories (RIPE-772)

Host	Switch	Router	Security Equipment	СРЕ
IPSec (if needed)	HOST +	HOST +	HOST +	Router
RH0 [RFC5095]	IPv6 ACLs	Ingress Filtering and RPF	Header chain	Security Equipment
Overlapping Frags	FHS	DHCPv6 Relay	[RFC7112]	Equipment
[RFC5722]	RA-Guard	[RFC8213]	Support EHs Inspection	DHCPv6 Server Privacy Issues
Atomic Fragments [RFC6946]	[RFC6105]	OSPFv3		
	DHCPv6 guard	Auth. [RFC4552]	ICMPv6 fine grained filtering	
NDP Fragmentation	IPv6 snooping	or / and [RFC7166]	Encapsulated	
[RFC6980]	IPv6 source / prefix guard	IS-IS	Traffic Inspection	
Header chain [RFC7112]	IPv6	[RFC5310]	IPv6 Traffic	
Stable IIDs RFC8064][RFC7217]	destination guard MLD snooping	or, less preferred, [RFC5304]	Filtering	
[RFC7136]	[RFC4541]	MBGP		
Temp. Address Extensions	DHCPv6-Shield [RFC7610]	TCP-AO [RFC5925]		
[RFC8981]		MD5 Signature Option		
Disable if not used: LLMNR, mDNS,		[RFC2385] Obsoleted		
DNS-SD, transition mechanisms		MBGP Bogon prefix filtering		7

* All Name resolution related protocols

IPv6 security myths

Change your mindset

IPv6 no more/less secure than IPv4

Filtering IPv6 Traffic

Very important because of Global Addresses

Features per device

Features by context

Questions

Take the poll!

Think of everything you've learned in this webinar.

What things can you apply or use in **your own network**?

What's Next in IPv6

Ê↔Ĵ

б Webinars

Attend another webinar live wherever you are.

- Introduction to IPv6 (2 hrs) *
- IPv6 Addressing Plan (1 hr) •
- Basic IPv6 Protocol Security (2 hrs) •
- IPv6 Associated Protocols (2 hrs) •
- IPv6 Security Myths, Filtering and Tips • (2 hrs)

Meet us at a location near you for a training session delivered in person.

Face-to-face

- IPv6 Fundamentals (8.5 hrs) *
- Advanced IPv6 (17 hrs) *
- IPv6 Security (8.5 hrs) *

E-learning

Learn at your own pace at our online Academy.

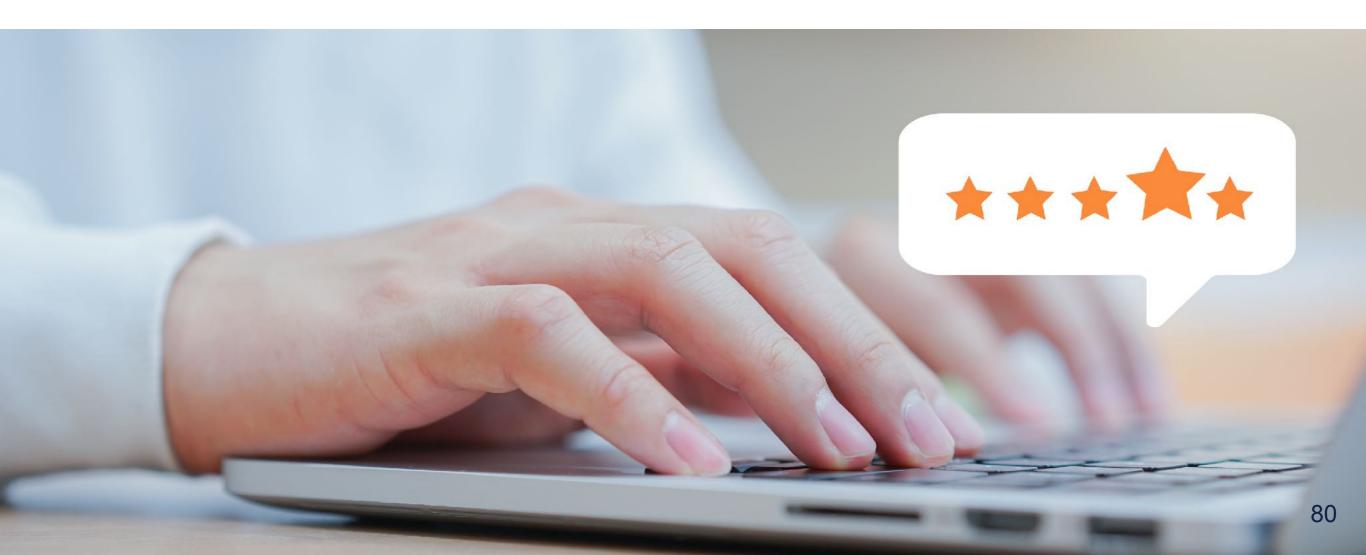
- IPv6 Fundamentals (15 hrs) *
- IPv6 Security (24 hrs) *

Examinations

Learnt everything you needed? Get certified!

- IPv6 Fundamentals Analyst *
- IPv6 Security Expert *

getcertified.ripe.net


We want your feedback!

What did you think about this webinar?

Take our survey at:

https://www.ripe.net/feedback/ipv6s3/

Learn something new today! academy.ripe.net

RIPE NCC Certified Professionals

https://getcertified.ripe.net/

Ënn	Соңы	An Críoch	يايان	Y Diwe	dd
Vége	Endir	Finvezh	վերջ	Ende	Koniec
Son	დასასრული	הסוף	Tmiem	Кінець	Finis
Lõpp	Amaia Sfârșit	Loppu	Slutt	Liðugt	Крај
Kraj	النهاية	Конец			Ind
Fine	Fin Fir	Fí	Край	Konec	Τέλος
	Slut			P	abaiga
Fim			D	Bei	gas
			1 2		

Carton Car

Copyright Statement

[...]

The RIPE NCC Materials may be used for **private purposes**, **for public non-commercial purpose**, **for research**, **for educational or demonstration purposes**, or if the materials in question specifically state that use of the material is permissible, and provided the RIPE NCC Materials are not modified and are properly identified as RIPE NCC documents. Unless authorised by the RIPE NCC in writing, any use of the RIPE NCC Materials for advertising or marketing purposes is strictly forbidden and may be prosecuted. The RIPE NCC should be notified of any such activities or suspicions thereof.

[...]

Link to the copyright statement:

https://www.ripe.net/about-us/legal/copyright-statement

Have more questions? Ask us! academy@ripe.net

