
Dynamic Registry Updates

John Dickinson
Senior Researcher
Nominet UK

Dynamic Registry Updates

Background

• Complete zone builds took a very long time to do and
propagate. (3.5m DNs, 10m RRs, 300MB biggest zone
file, 2.5 hr build/propagation). Increasing the frequency
would have just increased the problem.

• BIND goes silent while reload zone after AXFR.

• Wanted to reduce the support load by people who make
a mistake and cannot wait until next full build to have it
corrected.

• Have seven NSs running BIND9 and service from
UltraDNS for four anycasted servers (UltraDaemon).

• Can receive up to 300,000 updates per day.

• Consulted with registrars and only one objected -
thought it would reduce the stability of our NSs.

Dynamic Registry Updates

System requirements

• Runs as a separate process from the main registry
system, so that it can be started and stopped
independently.

• Written very defensively. Uses DNS lookups to hidden
primary to double-check it has worked.

• Certain errors ‘can be lived with’ even if they are not
exactly correct, until operator intervention is possible.

• Must be very secure, no spoofing possible.

• Link in our existing monitoring system, which can detect
error failures.

Dynamic Registry Updates

Process overview

• Registration system writes out a table of changes.

• Separate process, running as daemon, examines this
table for new items, packages the updates and sends
them off to hidden primary NS using DDNS.

• This process then checks hidden primary NS by doing
DNS lookups to double check it has worked.

• Hidden primary notifies public primary, which then picks
up the changes using IXFR.

• Public primary then notifies the secondaries and they
pick up changes using IXFR.

Dynamic Registry Updates

System technology

• Written in Perl using Net::DNS. Sends changes by
DDNS. Performance is very good.

• Uses TSIG to secure DDNS updates to the hidden
primary.

• A single DDNS update set can contain 500 updates (uses
TCP).

• DDNS has no concept of modification, so have to remove
then add in the same update set.

• Sets the serial number in the SOA for each update set,
otherwise NS would do it. We are using Unix time taken
when the update packet is sent.

Dynamic Registry Updates

Changes to registry system

• Registry system now writes out table of changes as part
of the single transaction that updates the registry.

• Need to store data on what to remove as well as what to
add. (for example if NS records change then need to
record which to remove and which to add).

• Negligible impact on performance

• Additional program to force details of DN into this table,
in case manual processing is required.

Dynamic Registry Updates

Testing

• Used four months of data, which was 1.1 million
changes. Takes about 4 hours to process.

• Built a subset of a our live network, with just three NSs,
using identical hardware and software.

• Basic methodology was to replay registry updates into
test system and apply changes to static zone file and
compare product to second static zone file.

• Awkward corner cases discovered and then corrected.

• Finally tested failure modes: pulled out cables, switched
off machines, etc.

Dynamic Registry Updates

Pre-implementation tasks

• Some months previously implemented TSIG on all NSs.

• Serial number rollover one week before as the new serial
number would be lower than the first.

• Set primary to send NOTIFY and prepare secondaries to
respond. (Previously only used scheduled AXFR).

• Warn external DNS provider.

Dynamic Registry Updates

BIND specifics

• Journal file set to 50MB. This holds changes as they
come in. Can grow beyond 50MB quite happily.

• Every 15mins text zone files are updated from journal
file. If journal file exceeds 50MB then it is truncated
back to this size or smaller. Same thing happens on
reload or shutdown.

• BIND never goes deaf in this process.

• Network propagation is normally less than one second
across all BIND NSs for most update sets.

Dynamic Registry Updates

Ongoing support

• Scheduled tidy up of database table as update process
does not delete anything, just marks it as processed.

• If a NS is down for repair then it may need to use AXFR
when it comes back if change record has been
overwritten on primary.

• If it all goes wrong then we can always switch back to
full builds and AXFR.

• System administrators have to remember to turn update
process off before restarting hidden primary.

• Review notify/IXFR structure.

• Review the size of the journal.

Dynamic Registry Updates

Some statistics

After the first 10 weeks

• Average time it takes for a change to get from the
database to the nameserver constellation is:
– 35.52 seconds

• As the process sleeps for 1 minute this is actually 5.52
seconds to do the work.

• In 10 weeks the system has processed:
– 294k additions
– 506k changes
– 223k removals

• Average propagation time across NS constellation is:
– below 1s (too quick to bother measuring)

Dynamic Registry Updates

More statistics

For the last month

• Average time it takes for a change to get from the
database to the nameserver constellation is:
– 32.48 seconds (was 35.52)

• As the process sleeps for 1 minute this is actually 2.48
seconds to do the work.

• In last month the system has processed:
– 145k additions (was 294k for first 10 weeks)

– 140k changes (was 506k for first 10 weeks)

– 125k removals (was 223k for first 10 weeks)

• Average propagation time across NS constellation is still
below 1s (too quick to bother measuring)

Dynamic Registry Updates

Performance

Dynamic Registry Updates

Conclusion

Very successful

• Proper development process with good testing.

• Technology was actually quite simple.

• Surprised by how fast it propagates.

	Dynamic Registry Updates
	Background
	System requirements
	Process overview
	System technology
	Changes to registry system
	Testing
	Pre-implementation tasks
	BIND specifics
	Ongoing support
	Some statistics
	More statistics
	Performance
	Conclusion

