
May 19, 04 RIPE 48 1

Experiences with a
Multi-Protocol network

monitor

Andrew Moore
Intel Research Fellow
Computer Laboratory

University of Cambridge

In collaboration with:
Ian Pratt, Jon Crowcroft, James Hall, Tim Granger,
Derek McAuley, Dina Papagiannaki, among others.

May 19, 04 RIPE 48 2

Contents

λ one-slider on Projects @ Cambridge

λ Nprobe/GRIDprobe Monitor

λ Experiences with...
λ Behaviour example

λ Content example

λ Visualizer example

λ Where next...

May 19, 04 RIPE 48 3

Projects at Cambridge on
Monitoring

λ Nprobe/GRIDprobe/Xenoprobe
Computer Laboratory

(Collectively known as *probe or (star)probe)

λ CoMo
Intel Research Cambridge + friends

Planning for convergence, also taking in Hyperion
(U.Mass)

May 19, 04 RIPE 48 4

GRIDprobe Objective

λ (Nprobe prototyped/grew-into GRIDprobe)
λ Scalable Monitoring Architecture (tool building)

λ 1 & 10Gbps and viable strategy for 40Gbps

λ Multi-protocol monitoring
λ Understand network and application behaviour

At the same time.

λ Originally University of Cambridge & Marconi (RIP)
λ Now Cambridge with association from Intel

λ Duration Oct. 2002 – Sep. 2005

May 19, 04 RIPE 48 5

Status

λ Several working test deployments (1Gbps)

λ Prototype for 10 Gbps

λ Code base is planned for a public release

λ Experience with the
dataset/database/dataware-house issues

λ Adding new protocol modules

λ Using Experience to drive next architecture

May 19, 04 RIPE 48 6

Where does this tool fit in?
“When you have a hammer, every problem looks like a nail.”

λ We want current network data
λ High-resolution timer

λ High-speed (current deployment: 1 Gbps)

λ We want to collect enough information to see
the interaction between layers

λ We want to use commodity (no custom)
hardware to maximize deployment and
minimize cost

May 19, 04 RIPE 48 7

Nprobe: our current
implementation

λ Current Nprobe system performs full line-rate
capture on commodity hardware

λ Nprobe is a multi-protocol monitor: collecting
network, transport & application data

λ Nprobe processes network, transport &
application layers to provide compression as
well as extracting useful information (e.g.,
application features)

May 19, 04 RIPE 48 8

What we are NOT

λ We are not just some IDS – they do a few things
that superficially look the same – ultimately these
things are not the same.

λ We want to collect as much as possible – they want
to collect the minimum and to compare as quick as
possible.

λ we want to interpret the full application – they want
to string-match then move on.

May 19, 04 RIPE 48 9

What is the problem?

In a perfect world:
Cheaply (using commodity PCs)
Record 1, 10, (MAXINT) Gbps
Full duplex
Onto disk
With minimal loss

Ouch!
Not as bad as all that: its not a

perfect world

May 19, 04 RIPE 48 10

How do we do it?
“Discard is the most effective compression.”

Be selective (for an http example)

1. Remove redundant header information

2. Temporally compress header information

3. Extract http transactions from data stream

4. Remove (or summarise) uninteresting
information (consider the use)

May 19, 04 RIPE 48 11

How else?
”A problem shared is a problem halved.”

Split the workload

λ among CPUs

λ among machines

Problems?

λ Complex filter
design made
easier using
ongoing
measurements

Limitations?

May 19, 04 RIPE 48 12

Limitations Abilities

λ Host-host data must be less than or equal to the
capacity of a single monitor (CPU)

λ No monitoring DataTAG 10 Gbps host-host
experiments

λ For ISP and dial-up or cable modem last-miles, as
well as with (UK) academics with 100 Mbps to the
desktop, this approach works

λ Target deployment has nx10,000 of flows and the
monitor is close to the server or close to the client
(on access/choke-points).

May 19, 04 RIPE 48 13

Example 1: Modelling TCP
Connections

λ Dynamic model of TCP connection activity
λ Input from probe-collected data

λ Packet timings
λ Packet header data
λ Higher level protocol activity

λ Output — identified, differentiated and quantified
λ Network times
λ TCP Artefacts
λ Application delays

May 19, 04 RIPE 48 14

Causative Associations

λ Probe sees TCP packets traveling to host
and those returning
λ Arriving packets

λ Modify host TCP state
λ Cause work to be done
λ Trigger transmissions — causative associations
λ Drive model

λ Departing packets
λ Verify/modify model
λ Are arrivals at peer

May 19, 04 RIPE 48 15

Example 1:

λ ACK packet arrives during slow start
 sender’s congestion window expands

 releases flight of data segment packet(s)

λ Data segment N arrives {N mod 2 = 0}
 ACK released

λ Data segment N transmitted
 data segment N+1 released

λ HTTP request arrives
 First packet of response released (after delay)

May 19, 04 RIPE 48 16

Partial Round Trip Times

λ Probe can be anywhere
λ Hence deal in pRTTs)

λ Can glue them together

Probe

Server

Client

Server pRTT

Client pRTT

May 19, 04 RIPE 48 17

Lags, Delays and pRTTs

λ For causative
associations
λ lag = pRTT + delay
λ If no delay:

λ pRTT = lag
λ If delay:

λ interpolate pRTT
λ Calculate delay

λ Model informs

 Host

Probe
Lag

Delay

pRtt1 pRtt2

May 19, 04 RIPE 48 18

pRTT Drawbacks/Restrictions

λ Only works in slow-start, thus relies on longer
data flows

λ relies on implementation “inside knowledge”
fortunately only a few implementations (BSD
derivative, Linux derivative, Microsoft
derivative)

May 19, 04 RIPE 48 19

Results — Live Traffic

λ All HTTP traffic to BBC news server from
University site
λ 24 Hour trace

λ Results for period 1130 – 1350
λ Expect load increase as users browse during lunch

break

λ Independent of local load

λ Look at SYN re-transmissions

May 19, 04 RIPE 48 20

Local Load — Live Traffic

May 19, 04 RIPE 48 21

Server Delays and pRTTs

May 19, 04 RIPE 48 22

Server pRTTs — Live Traffic

May 19, 04 RIPE 48 23

Probabiliy-of-Retransmission

May 19, 04 RIPE 48 24

 Server Delay and p-SYN
Retransmission

May 19, 04 RIPE 48 25

Behaviour Summary

λ By observing a combination of TCP and
HTTP protocols simultaneously, we:
λ determine the type of load-shedding this website

uses.
λ understand diminished performance in the face of

no local network effects.
λ Draw conclusions on the impact this approach (to

load-shedding) has on persistent vs. non-
persistent (compared with a nominal 25%, this
site had less than 5% persistent)

May 19, 04 RIPE 48 26

GRIDprobe Visualization Tools

λ Reads the stored format – the stored format
is already partially processed

λ Extracts features of interest (timing, packet
headers,...)

λ Constructs relationship trees for (web) pages
λ provides:

λ interactive data plotter (ala gnuplot++)
λ tcp connection plotter
λ web transaction plotter

May 19, 04 RIPE 48 27

Why?

λ Aids understanding
λ of observed behaviour,

λ and trends

λ Teaching tool

λ Debugging tool

λ Maintains relationship between layers
λ tcp/ip ... http/html ... coarse statistics

May 19, 04 RIPE 48 28

May 19, 04 RIPE 48 29

May 19, 04 RIPE 48 30

May 19, 04 RIPE 48 31

May 19, 04 RIPE 48 32

May 19, 04 RIPE 48 33

May 19, 04 RIPE 48 34

May 19, 04 RIPE 48 35

May 19, 04 RIPE 48 36

May 19, 04 RIPE 48 37

May 19, 04 RIPE 48 38

May 19, 04 RIPE 48 39

May 19, 04 RIPE 48 40

May 19, 04 RIPE 48 41

Example 2: Experiences at a
GRID Access Point

λ Research community of 1,000 on their own
campus

λ Significant (unique) data provided by this site
to the world community

λ One of three sites where data is continuously
updated – so data is continuously transferred

between partners and downloaded by
collaborators

May 19, 04 RIPE 48 42

Traffic to/from access point

Total Link traffic Each Direction

May 19, 04 RIPE 48 43

Contrasting port and content
based classification

3.113.20--OTHER

--30.4428.36UNKNOWN

27.6026.5020.4019.98WWW

0.280.290.020.07SERVICES

3.623.373.623.37MAIL

0.390.750.431.19INTERACTIVE

0.000.000.070.03GRID

0.960.840.030.03DATABASE

64.9465.0645.0049.97BULK

BytesPacketsBytesPackets

Content-basedPort-based

May 19, 04 RIPE 48 44

Overheads vs. Accuracy

81%19%1KB Protocol Parse

100%0%Full Assemble/Parse

98%1%Important flow

Assembly/Parse

74%24%1KB Signature

71%29%Port

Correctly IdentifiedUNKNOWNMethod

(measures in packets)

From Moore, Papagiannaki submission to IMC

May 19, 04 RIPE 48 45

Classification Surprises

λ Significant asymmetry to/from site

λ Port-based classification was so wrong

λ Considered the most important node for it’s
work yet,

λ No GRID-application traffic!

It was all GRID web services or FTP traffic

(For the GRID community this was surprising,
for the rest of us – less so.)

May 19, 04 RIPE 48 46

Conclusions

λ Our approach is sound: the implementation works
and has been perfectly satisfactory for the
environments into which we have deployed

λ Clear avenues of development are available to us

λ Further work with deployments will provide input to
this work and provide data for other projects too

May 19, 04 RIPE 48 47

What have we learnt?

λ Always things to improve:
λ hardware

λ optimization

λ Important to remember:
λ compression of between 1:12 and 1:50 is

achieved

λ output data is all ready for off-line processing

May 19, 04 RIPE 48 48

Next...

λ Continue work to identify and quantify GRID
and Internet applications:
e.g., Access GRID

λ Evaluating 10 Gbps scheme
λ using test environments

λ considering deployment (10Gbps surprisingly
uncommon)

May 19, 04 RIPE 48 49

Enabling...

λ Using of 10Gbps for the new UKLIGHT
testbed – following the growth from
implementation to deployment into full use.

λ Current work enables us to assess suitability
of Peer-2-peer algorithms for distributing data
currently shared using FTP...

May 19, 04 RIPE 48 50

Backup slides

May 19, 04 RIPE 48 51

Architecture

λData driven model

λSingle-thread model to
maximize efficiency

λAvoid memory copy
when practical

May 19, 04 RIPE 48 52

Monitor / Hardware

Objective: use commodity hardware even the NIC

λ modify the firmware rather than building hardware

λ add/use time-stamping – currently 1_s
λ perform filtering on card with minimal overhead

λ Current 1Gbps cards supported:
λ Alteon / 3Com 3c985B

λ SysKonnect sk98xx

May 19, 04 RIPE 48 53

Monitor / Hardware Filtering

λ Using hash of XOR of SRC/DEST as a selection
criterion:
λ our approach works best when both directions of traffic are

kept together.
λ Work in progress

λ how often do we need to update filters?
λ what can we optimize filters for:

λ filter size?
λ packet distribution?
λ equalizing flows? packets? bytes?
λ This problem is common to the load-sharing

community

May 19, 04 RIPE 48 54

Receive FIFO Implementation

Receive Buffer is not a FIFO

•This means that data-
processing mechanisms can
return data buffers when they
are finished

•Out-of-order return allows
easier handling of packet loss
and packet reordering

•Discards packets when memory
runs low

•Implemented to hang on to packets
in case of potential use or reuse

May 19, 04 RIPE 48 55

Monitor / Processing

Compress/discard where we can:

λ network, TCP and application layers can each have
considerable temporal redundancy

λ application-specific reductions such as removing the
data object from http transactions – we keep a
fingerprint of the object so as we can recognise the
same object even with different URLs

λ loss-less compression (lz, gzip, etc.)

May 19, 04 RIPE 48 56

Nprobe modules

λ Current
λ TCP and UDP on IP

λ HTTP and HTML

λ DNS

λ FTP

λ Past (deprecated)
λ NFS (v2)

