
Keeping up with the IETF
DNSOP WG

Benno Overeinder

RIPE DNS WG, March 24, 2021

The DNS Universe @ IETF

DNSOP 1999

DNSEXT 1999

DANE 2010

DOH 2017

ADD 2020

DPRIVE 2014

DNSSD 2013

DANISH BoF 2021

Finished Work in DNSOP @ IETF110

• Message digest for DNS zones (RFC 8976)

• integrity of zone file and origin authenticity

• use-cases: root zone, response policy zones,
centralised zone data service (CDZS), …

• DNS Server Cookies (RFC Editor Queue)

• lightweight DNS transaction security mechanism

• protect against amplification attack, forgery, off-
path cache poisoning

Almost Finished Work in DNSOP
Working Group Last Call

• Service binding and parameter specification via the DNS (DNS SVCB and HTTPS RRs)

• SVCB records allow a service to be provided from multiple alternative endpoints, each
with associated parameters

• enable aliasing of apex domains

Close to WGLC

• DNS Transport over TCP - Operational Requirements

• for DNS over unencrypted TCP, as well as over an encrypted TLS session

• Revised IANA Considerations for DNSSEC

• updates RFC 5155 and RFC 6014, which have requirements for DNSSEC algorithms

• motivation: relieving the need to make every national crypto algorithm an IETF
standard just for DS records

Existing DNSOP Drafts that Need Work

• DNS catalog zones

• sync configuration from primary to secondary

• generate zone file + XFR

• questions to operators for use-cases

• DNS avoid fragmentation, max size interval?
Source IPv4 IPv6

RFC 4035 (MUST/SHOULD) 1220/4000 1220/4000

DNS Flag Day 2020 1232
1232

(1280-40-8)

Measuring DFD 2020 1472
(1500-20-8)

1452
(1500-40-8)

New Work in DNSOP
• NSEC3 Iteration Considerations

• NSEC3 proof of non-existence, discorage zone enumeration

• uses N iterations of a cryptographic hash, allows for the (optional)
use of a salt

• max limits set in RFC 5155

• complex for authoritative engines, complex for validators:
everyone suffers

• DNSSEC Automation

• RFC 8901 Multi Signer DNSSEC Models

• elegant insight using RFC 8901 for generic use-case changing NS
operator for signed domains (without going insecure)

key size old iterations new
iterations

1024 150 100

2048 500 100

4096 2500 100

Updates from DPRIVE @ IETF110

Existing Work
• DNS-over-QUIC

• ≠ DoH with HTTP/3, QUIC is a transport layer

• DoQ stub-resolver, resolver-authoritative discovery similar to DoT

• DoQ implementation status (table copied from presentation by Sara Dickinson)

implementation language notes
CoreDNS Go AdGuard uses as DoQ server

AdGuard DNS proxy Go Simply proxy server supporting DoQ

dnslookup Go Command line utility wrapper for Adguard DNS proxy

AdGuard C++ DNS libs C++ AdGuard use in mobile app

Quicdoc C Simple DoQ impl based on Picoquic

aioquic Python QUIC impl. includes example DoQ client/server

Flamethrower C++ DNS performance utility with experimental DoQ

Existing Work (Cont’d)
• Oblivious DoH (ODoH)

• Draft co-authored by Apple, Cloudflare and Fastly

• ODoH service launched in December 2020 by Cloudflare with partners: PCCW, SURF,
Equinix (https://blog.cloudflare.com/oblivious-dns/)

Picture from https://blog.cloudflare.com/oblivious-dns/

https://blog.cloudflare.com/oblivious-dns/
https://blog.cloudflare.com/oblivious-dns/

Existing Work (Cont’d)
• Recursive to Authoritative DNS with Encryption

• discovery: resolver send TSLA queries to
authoritative name server

• encryption: unauthorised (was opportunistic)
vs. fully authorised

• fully authorised encryption: TLSA record must
be DNSSEC signed

• to do: SVCB can be used for full authorised
encryption

Confidential DNS

Using Confidential Computing to protect
DNS resolution

• DNS privacy is a popular topic!

• Domain name meta-data visible on the wire (even with
encryption)

• Resolvers have the potential too see user’s entire browsing
history

• Large resolver services are an attractive target (public,
operator, ...)

• Protect user’s data in flight, at rest, or in use – we wanted to
experiment with tech that could reduce leaks on the last two

• TEE: environment that enforces that any code within that
environment cannot be tampered with, and that any data used by
such code cannot be read or tampered with by any code outside
that environment [ietf-teep-architecture]

• upsides/down sides discussion

Thank YOU
&

Questions?

