

BGP Best Practices

Philip Smith <pfs@cisco.com> RIPE NCC Regional Meeting Manama, Bahrain 14-15 November 2006

RIPE NCC Bahrain

Presentation Slides

• Are available on

ftp://ftp-eng.cisco.com

/pfs/seminars/RIPENCC-Bahrain-BGP-BCP.pdf

And on the RIPE NCC Bahrain meeting website

BGP Best Practices

How to use BGP on the Internet

RIPE NCC Bahrain

BGP versus OSPF/ISIS

- Separation of IGP and BGP
- Internal Routing Protocols (IGPs)

Examples are ISIS and OSPF

Used for carrying infrastructure addresses — infrastructure reachability

NOT used for carrying Internet prefixes or customer prefixes

Design goal is to minimise number of prefixes in IGP to aid scalability and speed convergence

eBGP & iBGP

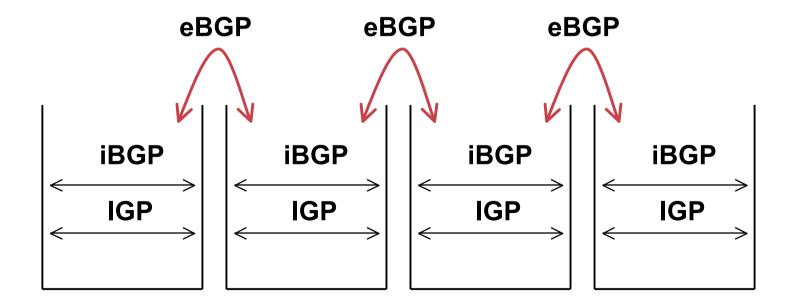
- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry

some/all Internet prefixes across ISP backbone

ISP's customer prefixes

BGP session is run between router loopback interfaces

eBGP used to


exchange prefixes with other ASes

implement routing policy

BGP session is run on inter-AS point to point links

BGP/IGP model used in ISP networks

Model representation

BGP Scaling Techniques

Route Refresh

To implement BGP policy changes without hard resetting the BGP peering session

Route Reflectors

Scaling the iBGP mesh

A few iBGP speakers can be fully meshed

Large networks have redundant per-PoP route-reflectors

Route Flap Damping

Is NOT a scaling technique and is now considered HARMFUL

www.ripe.net/ripe/docs/ripe-378.html

BGP Communities

- Another ISP "scaling technique"
- Prefixes are grouped into different "classes" or communities within the ISP network
- Each community can represent a different policy, has a different result in the ISP network
- ISP defined communities can be made available to customers

Allows them to manipulate BGP policies as applied to their originated prefixes

Aggregation

 Aggregation means announcing the address block received from the Regional Internet Registry to the other ASes connected to your network

Aggregate should be generated internally, not on network borders

• Subprefixes of this aggregate *may* be:

Used internally in the ISP network

Announced to other ASes to aid with multihoming

 Unfortunately too many people are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- The RIRs publish their minimum allocation size Anything from a /20 to a /22 depending on RIR
- No real reason to see anything longer than a /22 prefix in the Internet

BUT there are currently >108000 /24s!

The Internet Today (November 2006)

Current Internet Routing Table Statistics
From my Routing Report: http://thyme.apnic.net

BGP Routing Table Entries	202457
Prefixes after maximum aggregation	109985
Unique prefixes in Internet	98204
Prefixes smaller than registry alloc	102061
/24s announced	108212
only 5754 /24s are from 192.0.0.0/8	
ASes in use	23532

BGP Report (bgp.potaroo.net)

- 199336 total announcements in October 2006
- 129795 prefixes

After aggregating including full AS PATH info

i.e. including each ASN's traffic engineering

35% saving possible

109034 prefixes

After aggregating by Origin AS

i.e. ignoring each ASN's traffic engineering

10% saving possible

Efforts to improve aggregation

The CIDR Report

Initiated and operated for many years by Tony Bates

Now combined with Geoff Huston's routing analysis

http://www.cidr-report.org

Results e-mailed on a weekly basis to most operations lists around the world

Lists the top 30 service providers who could do better at aggregating

Website allows searches and computations of aggregation to be made on a per AS basis

Receiving Prefixes

- There are three scenarios for receiving prefixes from other ASNs
 - Customer talking BGP
 - Peer talking BGP
 - **Upstream/Transit talking BGP**
- Each has different filtering requirements and need to be considered separately

Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP
- If the ISP has NOT assigned address space to its customer, then:

Check in the five RIR databases to see if this address space really has been assigned to the customer

The tool: whois –h whois.apnic.net x.x.x.0/24

Receiving Prefixes: From Peers

- A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table
 - Prefixes you accept from a peer are only those they have indicated they will announce
 - Prefixes you announce to your peer are only those you have indicated you will announce
- Agreeing what each will announce to the other:
 - Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

OR

Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

www.isc.org/sw/IRRToolSet/

Receiving Prefixes: From Upstream/Transit Provider

- Upstream/Transit Provider is an ISP who you pay to give you transit to the WHOLE Internet
- Receiving prefixes from them is not desirable unless required for multihoming/traffic engineering
- Ask upstream/transit provider to either:

originate a default-route

OR

announce one prefix you can use as default

Receiving Prefixes: From Upstream/Transit Provider

 If necessary to receive prefixes from any provider, care is required

don't accept RFC1918 etc prefixes

ftp://ftp.rfc-editor.org/in-notes/rfc3330.txt

don't accept your own prefixes

don't accept default (unless you need it)

Check Rob Thomas' list of "bogons"

http://www.cymru.com/Documents/bogon-list.html

Or get a BGP feed from the Bogon Route Server

http://www.cymru.com/BGP/bogon-rs.html

Configuration Tips

Of templates, passwords, tricks, and more templates

RIPE NCC Bahrain

iBGP and IGPs Reminder!

- Make sure loopback is configured on router iBGP between loopbacks, NOT real interfaces
- Make sure IGP carries loopback /32 address
- Keep IGP routing table small
- Consider the DMZ nets:
 - Use unnumbered interfaces?
 - Use next-hop-self on iBGP neighbours
 - Or carry the DMZ /30s in the iBGP
 - Basically keep the DMZ nets out of the IGP!

Next-hop-self

- Used by many ISPs on edge routers
 - Preferable to carrying DMZ /30 addresses in the IGP
 - **Reduces size of IGP to just core infrastructure**
 - Alternative to using unnumbered interfaces
 - Helps scale network
 - BGP speaker announces external network using local address (loopback) as next-hop

Templates

Good practice to configure templates for everything

Vendor defaults tend not to be optimal or even very useful for ISPs

ISPs create their own defaults by using configuration templates

eBGP and iBGP examples follow

Also see Project Cymru's BGP templates

http://www.cymru.com/Documents

iBGP Template Example

- iBGP between loopbacks!
- Next-hop-self

Keep DMZ and external point-to-point out of IGP

Always send communities in iBGP

Otherwise accidents will happen

Hardwire BGP to version 4

Yes, this is being paranoid!

Use passwords on iBGP session

Not being paranoid, VERY necessary

eBGP Template Example

BGP damping

Do NOT use it unless you understand the impact Do NOT use the vendor defaults without thinking

Remove private ASes from announcements

Common omission today

Use extensive filters, with "backup"

Use as-path filters to backup prefix filters

Keep policy language for implementing policy, rather than basic filtering

(cont...)

eBGP Template Example continued

- Use password agreed between you and your peer on eBGP session
- Use intelligent maximum-prefix tracking

Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired

Log changes of neighbour state

...and monitor those logs!

 Make BGP admin distance higher than that of any IGP

Otherwise prefixes heard from outside your network could override your IGP!!

Limiting AS Path Length

 Some BGP implementations have problems with long AS_PATHS

Memory corruption

Memory fragmentation

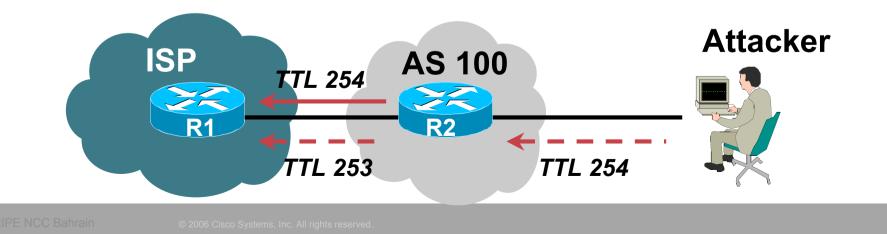
 Even using AS_PATH prepends, it is not normal to see more than 20 ASes in a typical AS_PATH in the Internet today

The Internet is around 5 ASes deep on average

Largest AS_PATH is usually 16-20 ASNs

 If your implementation supports it, consider limiting the maximum AS-path length you will accept

BGP TTL "hack"

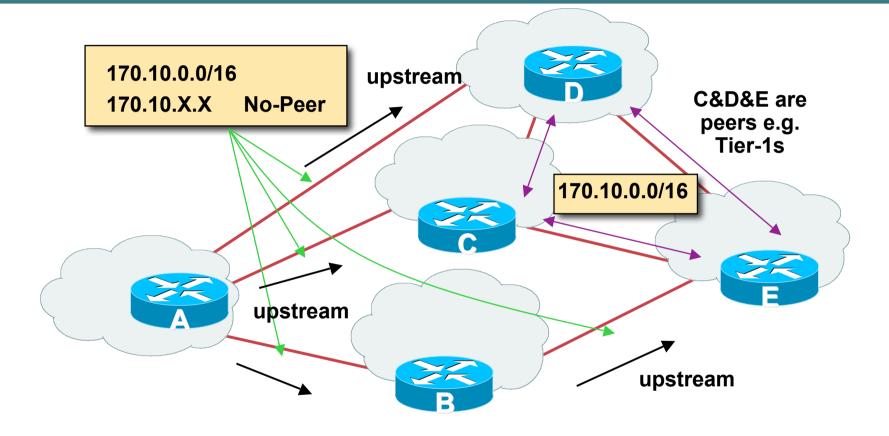

Implement RFC3682 on BGP peerings

Neighbour sets TTL to 255

Local router expects TTL of incoming BGP packets to be 254

No one apart from directly attached devices can send BGP packets which arrive with TTL of 254, so any possible attack by a remote miscreant is dropped due to TTL mismatch

See http://www.nanog.org/mtg-0302/hack.html for more details



BGP Futures

What is around the corner...?

RIPE NCC Bahrain

No-Peer Community

 Sub-prefixes marked with no-peer community are not sent to bilateral peers

They are only sent to upstream providers

32-bit Autonomous System Number (ASN)

- 32 bit ASNs are coming soon
 - 16 bit ASN space is running out will be exhausted by October 2010
 - Represented as "65.4321" i.e. two 16-bit integers
 - With AS 23456 reserved for the transition
 - www.ietf.org/internet-drafts/draft-ietf-idr-as4bytes-12.txt
 - www.ietf.org/internet-drafts/draft-michaelson-4byte-asrepresentation-02.txt
 - www.ietf.org/internet-drafts/draft-rekhter-as4octet-ext-community-01.txt
 - www.apnic.net/docs/policy/proposals/prop-032-v002.html

Concern 1: De-aggregation

RIR space shows creeping deaggregation

It seems that an RIR /8 block averages around 6000 prefixes once fully allocated

So their existing 74 /8s will eventually cause 444000 prefix announcements

• Food for thought:

Remaining 59 unallocated /8s and the 74 RIR /8s combined will cause:

798000 prefixes with 6000 prefixes per /8 density

Plus 12% due to "non RIR space deaggregation"

→ Routing Table size of 893760 prefixes

Concern 2: BGP Updates

- BGP Flapping was the "bad guy" of the mid-90s
- BGP Updates is the "bad guy" of today & tomorrow Work by Geoff Huston: bgpupdates.potaroo.net
- 10 providers cause 10% of all the BGP updates on the Internet today

All causing more than 2600 updates per day

(Connexion by Boeing produces 1450 updates per day)

Seeing total of 700k updates per day

In 5 years time this will be 2.8M updates per day

• What will this mean for the routers??

BGP Best Practices

Philip Smith <pfs@cisco.com> RIPE NCC Regional Meeting Manama, Bahrain 14-15 November 2006

RIPE NCC Bahrain