

# BGP Hijackers That Evade Public Route Collectors

**RIPE SEE 11 Meeting: Split, Croatia** 

Alexandros Milolidakis miloli@kth.se



# **BGP Prefix Hijacking**

### **Documented Suspicious BGP Hijacks:**

- Targets 2022: Governmental infrastructure [1], Cryptocurrency services [2], etc.
- Incidents 2021: 775 suspicious BGP hijacks [3].
- Incidents 2020: 2255 suspicious BGP hijacks [4].
- Incidents 2019: 1727 suspicious BGP hijacks [4].

[1] Luconi V. Et al. "Impact of the first months of war on routing and latency in Ukraine", Computer Networks Journal

- [2] <u>https://www.kentik.com/blog/bgp-hijacks-targeting-cryptocurrency-services/</u>
- [3] <u>https://www.manrs.org/2022/02/bgp-security-in-2021/</u>
- [4] <u>https://www.manrs.org/2021/03/a-regional-look-into-bgp-incidents-in-2020/</u>









Not Sufficient for all forms of hijacks







# **Current Hijack Solutions**

★ Current Commercial solutions rely on *Route collectors* & *Looking Glasses*.

### Route Collectors (RC):

BGP speaking devices that collect & report routes received from their neighbors.

### Public Route Collector Infrastructure:

- Namely: RIPE-RIS and Routeviews.
- Collection of multiple route collectors distributed around the world.





















**BGP Feeder Device** 





## **Presentation Topic**

### This Presentation:

How capable are hijackers to design stealthy hijacks not visible by RCs?



## **Presentation Topic**

### This Presentation:

How capable are hijackers to design stealthy hijacks not visible by RCs?

### Our Experiments:

- BGP hijack Simulations.
- Real-world experiments using the PEERING Testbed.



## What we Learned

### For a Hijacker to hide from Public RCs:

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.



- Knowledge about feeders matters.
- → Unaffected region feeders:
  Do not observe the hijack.
- → Affected region feeders:
  Will observe the hijack.



*Fig:* Vodafone (AS55410) leaking Comcast (AS7015) prefixes (16-04-21) (Source: Cisco BGPstream monitoring service)



### To design not observable hijacks by public RCs:

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.



### To design not observable hijacks by public RCs:

- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
  - > Baseline hijacker: Traditional hijacker does not deliberately avoid RCs.
  - > *Realistic hijacker:* Limited knowledge inferred from routes public RCs disclose.
  - > Omniscient hijacker: Knows routing policies of every AS in the topology.







Less Visible Hijacks







#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

*Higher* Type: *Longer* forged paths





#### Baseline Hijackers (forged path shape):

*Higher* Type:

Longer forged

paths

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

Median Visibility

- Type-1: 101 monitors
- Type-2: 40 monitors
- Type-3: 19 monitors
- Type-4: 10 monitors





#### Baseline Hijackers (forged path shape):

*Higher* Type:

Longer forged

paths

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

Median Visibility

- Type-1: 101 monitors
- Type-2: 40 monitors
- Type-3: 19 monitors
- Type-4: 10 monitors





#### Baseline Hijackers (forged path shape):

*Higher* Type:

Longer forged

paths

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

Median Visibility

- Type-1: 101 monitors
- Type-2: 40 monitors
- Type-3: 19 monitors
- Type-4: 10 monitors





#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }

Higher Type: Longer forged paths

• Type-N: { ASH, ..., ASV }

#### Realistic Hijackers:

- Completely stealthy: 62% sims
- Less visible than baseline
- Shorter Type-4: 95% exported routes





#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }

Higher Type: Longer forged paths

• Type-N: { ASH, ..., ASV }

#### Realistic Hijackers:

- Completely stealthy: 62% sims
- Less visible than baseline
- Shorter Type-4: 95% exported routes

#### **Omniscient Hijackers:**

• Completely stealthy





#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }



Less Impactful Hijacks



#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }



Less Impactful Hijacks



#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

### Baseline Hijackers:

Cannot stealthily intercept > 2% Internet



Less Impactful Hijacks



#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

### Baseline Hijackers:

Cannot stealthily intercept > 2% Internet

#### Realistic & Omni Hijackers:

- Stealthily intercepts > 2% Internet: 1.65% and 5.65% sims (respectively)
- Up to 16.2% & 23.5% Internet Stealthily intercepted (respectively)



Less Impactful Hijacks



#### Baseline Hijackers (forged path shape):

- Type-0: { ASH }
- Type-1: { ASH, ASV }
- Type-N: { ASH, ..., ASV }

### Baseline Hijackers:

Cannot stealthily intercept > 2% Internet

#### Realistic & Omni Hijackers:

- Stealthily intercepts > 2% Internet: 1.65% and 5.65% sims (respectively)
- Up to 16.2% & 23.5% Internet Stealthily intercepted (respectively)



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

|           | Customers | Peers | Transits |
|-----------|-----------|-------|----------|
| Type-1    |           |       |          |
| Type-4    |           |       |          |
| Realistic |           |       |          |
| Omni      |           |       |          |

Table: Reason why forged routes were visible



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

|           | Customers | Peers | Transits |
|-----------|-----------|-------|----------|
| Type-1    | 0.3%      | 47%   | 99%      |
| Type-4    |           |       |          |
| Realistic |           |       |          |
| Omni      |           |       |          |

Table: Reason why forged routes were visible



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

|           | Customers | Peers | Transits |
|-----------|-----------|-------|----------|
| Type-1    | 0.3%      | 47%   | 99%      |
| Type-4    | 0.0%      | 24%   | 99%      |
| Realistic |           |       |          |
| Omni      |           |       |          |

#### Table: Reason why forged routes were visible

#### Peers:

• Path lengths matter more for such neighbors.

### Transit Providers:

• Business relations matter more.



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

|           | Customers | Peers | Transits |
|-----------|-----------|-------|----------|
| Type-1    | 0.3%      | 47%   | 99%      |
| Type-4    | 0.0%      | 24%   | 99%      |
| Realistic | 0.0%      | 3%    | 99%      |
| Omni      |           |       |          |

### **Realistic Hijackers**

- Easy to hide when exporting to Peer links.
- Hard to hide when exporting to transits.

#### Table: Reason why forged routes were visible



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

|           | Customers | Peers | Transits |  |
|-----------|-----------|-------|----------|--|
| Type-1    | 0.3%      | 47%   | 99%      |  |
| Type-4    | 0.0%      | 24%   | 99%      |  |
| Realistic | 0.0%      | 3%    | 99%      |  |
| Omni      | 0%        | 0%    | 0%       |  |

#### Table: Reason why forged routes were visible

### **Realistic Hijackers**

- Easy to hide when exporting to Peer links.
- Hard to hide when exporting to transits.

### Omni Hijackers

• Completely stealthy.



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.



- Knowledge about which BGP feeders will report the attack matters.
- Knowledge about routing policies of other ASes matters.
- Where the hijack is exported matters.

### Real World Set-up:

- ✤ Victim: Testbed site at Wisconsin.
- ✤ *Hijacker:* Testbed site at *GRNET* and *AMS-IX*.
- **Goal:** Design a stealthy hijack not observable by public RCs.



→ Goal: Design a stealthy hijack not observable by public RCs.

- ✤ Safe: Will <u>not</u> report the attack.
- ✤ Dangerous: Will report the attack.



→ Goal: Design a stealthy hijack not observable by public RCs.

- Safe: Will <u>not</u> report the attack.
- ✤ Dangerous: Will report the attack.





→ Goal: Design a stealthy hijack not observable by public RCs.

- Safe: Will <u>not</u> report the attack.
- ✤ Dangerous: Will report the attack.





→ Goal: Design a stealthy hijack not observable by public RCs.

- ✤ Safe: Will <u>not</u> report the attack.
- Dangerous: Will report the attack.
- ★ A Proximity Classifier (AS-path lengths).
- ★ A business relationship Classifier (Gao-Rexford).





|                                                            |                              | GRNET Transit<br>ASN 5408 | AMS Transit<br>ASN 8283 | AMS Transit<br>ASN 12859 | AMS Peer<br>ASN 9002 | AMS Peer<br>ASN 6461 | AMS Peer<br>ASN 52320 |
|------------------------------------------------------------|------------------------------|---------------------------|-------------------------|--------------------------|----------------------|----------------------|-----------------------|
| # Total Monitors                                           |                              |                           |                         |                          |                      |                      |                       |
| % Monitors<br>Correctly Classified<br>Proximity Classifier | Accuracy                     |                           |                         |                          |                      |                      |                       |
|                                                            | Sensitivity<br>(Specificity) |                           |                         |                          |                      |                      |                       |
| % Monitors<br>Correctly Classified<br>Business Classifier  | Accuracy                     |                           |                         |                          |                      |                      |                       |
|                                                            | Sensitivity<br>(Specificity) |                           |                         |                          |                      |                      |                       |



|                                                            |                              | GRNET Transit<br>ASN 5408 | AMS Transit<br>ASN 8283 | AMS Transit<br>ASN 12859 | AMS Peer<br>ASN 9002 | AMS Peer<br>ASN 6461 | AMS Peer<br>ASN 52320 |
|------------------------------------------------------------|------------------------------|---------------------------|-------------------------|--------------------------|----------------------|----------------------|-----------------------|
| # Total Monitors                                           |                              | 663                       | 695                     | 683                      | 652                  | 653                  | 653                   |
| % Monitors<br>Correctly Classified<br>Proximity Classifier | Accuracy                     |                           |                         |                          |                      |                      |                       |
|                                                            | Sensitivity<br>(Specificity) |                           |                         |                          |                      |                      |                       |
| % Monitors<br>Correctly Classified<br>Business Classifier  | Accuracy                     |                           |                         |                          |                      |                      |                       |
|                                                            | Sensitivity<br>(Specificity) |                           |                         |                          |                      |                      |                       |



|                                                            |                              | GRNET Transit<br>ASN 5408 | AMS Transit<br>ASN 8283 | AMS Transit<br>ASN 12859 | AMS Peer<br>ASN 9002 | AMS Peer<br>ASN 6461 | AMS Peer<br>ASN 52320 |
|------------------------------------------------------------|------------------------------|---------------------------|-------------------------|--------------------------|----------------------|----------------------|-----------------------|
| # Total Monitors                                           |                              | 663                       | 695                     | 683                      | 652                  | 653                  | 653                   |
| % Monitors<br>Correctly Classified<br>Proximity Classifier | Accuracy                     | 78%                       | 74%                     | 84%                      | 97%                  | 93%                  | 99%                   |
|                                                            | Sensitivity<br>(Specificity) | 13% <i>(</i> 99%)         | 62% (93%)               | 75% (91%)                | 100% <i>(97%)</i>    | <b>10%</b> (94%)     | 100% <i>(99%)</i>     |
| % Monitors                                                 | Accuracy                     |                           |                         |                          |                      |                      |                       |
| Correctly Classified<br>Business Classifier                | Sensitivity<br>(Specificity) |                           |                         |                          |                      |                      |                       |
|                                                            |                              | ·                         |                         |                          |                      |                      |                       |

Transits: Average Accuracy = 78%

Proximity classifier <u>not</u> sufficient

(Overestimates Safe Monitors)

Peers: Possible to identify all dangerous monitors Usually High specificity & sensitivity (Outliers may exist)



|                                                            |                              | GRNET Transit<br>ASN 5408 | AMS Transit<br>ASN 8283 | AMS Transit<br>ASN 12859 | AMS Peer<br>ASN 9002 | AMS Peer<br>ASN 6461 | AMS Peer<br>ASN 52320 |
|------------------------------------------------------------|------------------------------|---------------------------|-------------------------|--------------------------|----------------------|----------------------|-----------------------|
| # Total Monitors                                           |                              | 663                       | 695                     | 683                      | 652                  | 653                  | 653                   |
| % Monitors<br>Correctly Classified<br>Proximity Classifier | Accuracy                     | 78%                       | 74%                     | 84%                      | 97%                  | 93%                  | 99%                   |
|                                                            | Sensitivity<br>(Specificity) | 13% (99%)                 | 62% (93%)               | 75% (91%)                | 100% <i>(</i> 97%)   | <b>10%</b> (94%)     | 100% <i>(</i> 99%)    |
| % Monitors<br>Correctly Classified<br>Business Classifier  | Accuracy                     | 90%                       | 92%                     | 89%                      | Same                 | Same                 | Same                  |
|                                                            | Sensitivity<br>(Specificity) | 95% <i>(89%)</i>          | 96% <i>(86%)</i>        | 97% (81%)                | Same                 | Same                 | Same                  |

Transits: Average Accuracy = 90%

reduces FNs (dangerous misclassifications) by <= 91%

Higher Sensitivity at the cost of Specificity

Peers: Practically unchanged





- RQ: How capable hijackers are to hide from Route Collectors (RCs)?
- What we learned:

 $\succ$ 

 $\succ$ 

Future Work:

 $\succ$ 

 $\succ$ 



## Conclusions

- RQ: How capable hijackers are to hide from Route Collectors (RCs)?
- What we learned:
  - Traditional RCs may be vulnerable to stealthy attacks if the following properties hold:
    (1) Feeder reports their best routes to RC and (2) RC is Public.
  - Stealthy hijacks: may thrive in *Peer* links.
  - > *Transit* links: Harder for hijackers to completely hide.
- Future Work:
  - $\succ$
  - $\succ$



## Conclusions

- RQ: How capable hijackers are to hide from Route Collectors (RCs)?
- What we learned:
  - Traditional RCs may be vulnerable to stealthy attacks if the following properties hold:
    (1) Feeder reports their best routes to RC and (2) RC is Public.
  - Stealthy hijacks: may thrive in *Peer* links.
  - > *Transit* links: Harder for hijackers to completely hide.
- Future Work: Solutions against stealthy attacks.
  - Selecting new feeders in more strategic locations.
  - Benefits of BGP Monitoring Protocol (BMP).







## Appendix



## **Appendix – Topologies With More IXP Links**



#### Adding more IXP links

- No impact to success rate
- Visible hijacks: stealthier

### 90th percentile visibility

- Type-1: 28% less monitors
- Type-4: 50.9% less monitors
- Realistic: 48.3% less monitors



## **Appendix – Topologies With More IXP Links**



#### Adding more IXP links

• Stealthy hijacks more impactful

### Traditional Topology (IXP0)

- Type-1: 0.7% affected ASes
- Realistic: 16.2% affected ASes
- Omni: 23.5% affected ASes

### Fully IXP Topology (IXP100)

- Type-1: 2.2% affected ASes
- Realistic: 45.5% affected ASes
- Omni: 49.0% affected ASes



## **Appendix – Topologies With More Monitors**



#### **Non-Reactive Hijackers**

 Prevents attacks affecting > 2% Internet



## **Appendix – Topologies With More Monitors**





### **Proximity Classifier – Reason for Misclassifications**

| Proximity Classifier:<br>Reason for<br>Misclassification<br>(FP / FN) | GRnet<br>Transit<br>ASN 5408 | AMS<br>Transit<br>ASN 8283 | AMS<br>Transit<br>ASN 12859 | AMS<br>Peer<br>ASN 9002 | AMS<br>Peer<br>ASN 6461 | AMS<br>Peer<br>ASN 52320 |
|-----------------------------------------------------------------------|------------------------------|----------------------------|-----------------------------|-------------------------|-------------------------|--------------------------|
| 1. Shortest AS-Path                                                   | FP: 1                        | FP: 2                      | FP: 0                       | FP: 0                   | FP: 1                   | FP: 0                    |
| Violation                                                             | FN: 140                      | FN: 158                    | FN: 79                      | FN: 0                   | FN: 8                   | FN: 0                    |
| a) Longer Path preferred                                              | FP: 0                        | FP: 1                      | FP: 0                       | FP: 0                   | FP: 1                   | FP: 0                    |
|                                                                       | FN: 139                      | FN: 157                    | FN: 79                      | FN: 0                   | FN: 0                   | FN: 0                    |
| b) Victim Path not                                                    | FP: 1                        | FP: 1                      | FP: 0                       | FP: 0                   | FP: 0                   | FP: 0                    |
| observed                                                              | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| c) Hijacker Path not                                                  | FP: 0                        | FP: 0                      | FP: 0                       | FP: 0                   | FP: 0                   | FP: 0                    |
| observed                                                              | FN: 1                        | FN: 1                      | FN: 0                       | FN: 0                   | FN: 8                   | FN: 0                    |
| 3. Tie breakers                                                       | FP: 2                        | FP: 15                     | FP: 29                      | FP: 15                  | FP: 33                  | FP: 1                    |
| Violations                                                            | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| d) Victim path preferred                                              | FP: 2                        | FP: 15                     | FP: 29                      | FP: 15                  | FP: 33                  | FP: 1                    |
|                                                                       | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| Total (FP / FN)                                                       | FP: 3                        | FP: 17                     | FP: 29                      | FP: 15                  | FP: 34                  | FP: 1                    |
|                                                                       | FN: 140                      | FN: 158                    | FN: 79                      | FN: 0                   | FN: 8                   | FN: 0                    |



## **Gao-Rexford Classifier – Reason for Misclassifications**

| Gao Rexford Classifier<br>Reason for<br>Misclassification<br>(FP / FN) | GRnet<br>Transit<br>ASN 5408 | AMS<br>Transit<br>ASN 8283 | AMS<br>Transit<br>ASN 12859 | AMS<br>Peer<br>ASN 9002 | AMS<br>Peer<br>ASN 6461 | AMS<br>Peer<br>ASN 52320 |
|------------------------------------------------------------------------|------------------------------|----------------------------|-----------------------------|-------------------------|-------------------------|--------------------------|
| 1. Gao Rexford                                                         | FP: 52                       | FP: 27                     | FP: 48                      | FP: 3                   | FP: 2                   | FP: 1                    |
| Violation                                                              | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| a) customer - provider                                                 | FP:1<br>FN:0                 | FP: 0<br>FN: 0             | FP: 0<br>FN: 0              | FP: 0<br>FN: 0          | FP: 0<br>FN: 0          | FP: 0<br>FN: 0           |
| b) customer - peer                                                     | FP: 0<br>FN: 0               | FP: 6<br>FN: 0             | FP: 20<br>FN:0              | FP: 0<br>FN: 0          | FP: 0<br>FN: 0          | FP: 0<br>FN: 0           |
| c) peer - provider                                                     | FP: 51<br>FN: 0              | FP: 21<br>FN: 0            | FP: 28<br>FN:0              | FP: 3<br>FN: 0          | FP: 2<br>FN: 0          | FP: 1<br>FN: 0           |
| 2. Shortest AS-Path                                                    | FP: 1                        | FP: 2                      | FP: 0                       | FP: 0                   | FP: 1                   | FP: 0                    |
| Violation                                                              | FN: 8                        | FN: 17                     | FN: 9                       | FN: 0                   | FN: 8                   | FN: 0                    |
| d) Longer Path preferred                                               | FP:0                         | FP: 0                      | FP: 0                       | FP: 0                   | FP: 1                   | FP: 0                    |
| (Same Gao relation)                                                    | FN: 4                        | FN: 13                     | FN: 9                       | FN: 0                   | FN: 0                   | FN: 0                    |
| e) Longer Path preferred                                               | FP: 0                        | FP: 1                      | FP: 0                       | FP: 0                   | FP: 0                   | FP: 0                    |
| (Unknown relation)                                                     | FN: 3                        | FN: 3                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| f) Victim Path not                                                     | FP: 1                        | FP: 1                      | <b>FP</b> : 0               | FP: 0                   | FP: 0                   | FP: 0                    |
| observed                                                               | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| g) Hijacker Path not                                                   | FP: 0                        | FP: 0                      | FP: 0                       | FP: 0                   | FP: 0                   | FP: 0                    |
| observed                                                               | FN: 1                        | FN: 1                      | FN: 0                       | FN: 0                   | FN: 8                   | FN: 0                    |
| 3. Tie breakers                                                        | FP: 2                        | FP: 8                      | FP: 17                      | FP: 15                  | FP: 33                  | FP: 1                    |
| Violations                                                             | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| h) Victim nath proferred                                               | <i>FP</i> : 2                | FP: 8                      | FP: 17                      | FP: 15                  | FP: 33                  | FP: 1                    |
| n) viciim pain prejerrea                                               | FN: 0                        | FN: 0                      | FN: 0                       | FN: 0                   | FN: 0                   | FN: 0                    |
| Total (FP/FN)                                                          | FP: 55<br>FN: 8              | FP: 37<br>FN: 17           | FP: 65<br>FN: 9             | FP: 18<br>FN: 0         | FP: 36<br>FN: 8         | FP: 2<br>FN: 0           |