

Wi-Fi Network Monitoring with GÉANT WiFiMon

Nikos Kostopoulos, NTUA/GRNET

Ph.D. Student / WiFiMon Team Member

(nkostopoulos@netmode.ntua.gr)

South East Europe (SEE) 10
Ripe NCC Regional Meeting
12 April 2022, Ljubljana, Slovenia

www.geant.org

Introduction

WiFiMon: Introduction

- Monitoring Wi-Fi network performance as experienced by end users
- Combination of crowdsourced and hardware probe measurements
- IEEE 802.1X networks (*eduroam*): Data from *RADIUS* and *DHCP* logs strengthen analysis options, e.g. per *Access Point* (*AP*)

Contribution:

- Detection of Wi-Fi throughput degradation
- Determination of underperforming areas within a Wi-Fi network
- → Admins may enhance performance, e.g. by installing more APs

WiFiMon vs other monitoring solutions:

- Monitoring from the end user perspective (end user experience)
- No requirements for end user intervention or installation of apps
- Centralized view of Wi-Fi performance available to the Wi-Fi administrator

Example: WiFiMon vs Ookla Speedtest

	WiFiMon	Ookla Speedtest		
Measurements are triggered:	automatically by visiting a site	by pressing "GO"		
Results are collected by:	the Wi-Fi administrator	the end users		

Design Features & Operation

Design Features of WiFiMon

Monitoring based on crowdsourced and/or hardware probe based measurements

Correlation with RADIUS and DHCP logs respecting end user privacy

Independence of Wi-Fi technology and hardware vendor

Lightweight, active monitoring without impact on end user browsing experience

WiFiMon Operation WiFiMon Administrator 5 Configuration Edits (e.g. Monitored Subnets) Measurements Visualization **Monitored** WiFiMon Test Website Server (WTS) WiFiMon Analysis Performance 4d Server (WAS) Results Performance **Fetch** Tests Trigger HTML Subnet 4b Check **RADIUS DHCP** (2b) Logs Logs Wireless Monitored **Filebeat Filebeat** Network Wi-Fi Network Agent Agent Metrics DHCP **RADIUS** Server Server Data To/From WiFiMon Software WiFiMon Hardware RADIUS/DHCP Server Probes (WSPs) Probes (WHPs) (2a) **WiFiMon Accounting Data Sources** WiFiMon Performance Data Sources

WiFiMon Components:

- WiFiMon Software Probes (WSPs)
- WiFiMon Hardware Probes (WHPs)
- WiFiMon Test Server (WTS)
- WiFiMon Analysis Server (WAS)

Components

WiFiMon Test Server (WTS)

Purpose: Holds code and test data for performance measurements

- Based on *JavaScript (JS)* technology
- HTML script tags pointing to test tools are added to frequently visited sites
- Measurements of the HTTP service (Majority of Internet traffic)

3 available test tools:

- → NetTest (https://code.google.com/archive/p/nettest/)
- → Akamai Boomerang (https://github.com/akamai/boomerang)
- → LibreSpeed Speedtest (https://github.com/librespeed/speedtest)

WTS Placement: Close to monitored networks
(RTT between end devices and WTS included in results)

→ If not possible: WiFiMon captures relative changes in Wi-Fi performance

WiFiMon Software Probes (WSPs)

- User devices (laptops, smartphones, ...)
- Crowdsourced measurements triggered against the WTS when users visit a WiFiMon-enabled site (not triggered by end users themselves)
- No requirement for additional software within user devices
- Repetitive measurements regulated via a cookie value (WAS/WTS not overloaded)

Example: Lines for Akamai Boomerang test tool

(injected in a sample web site)

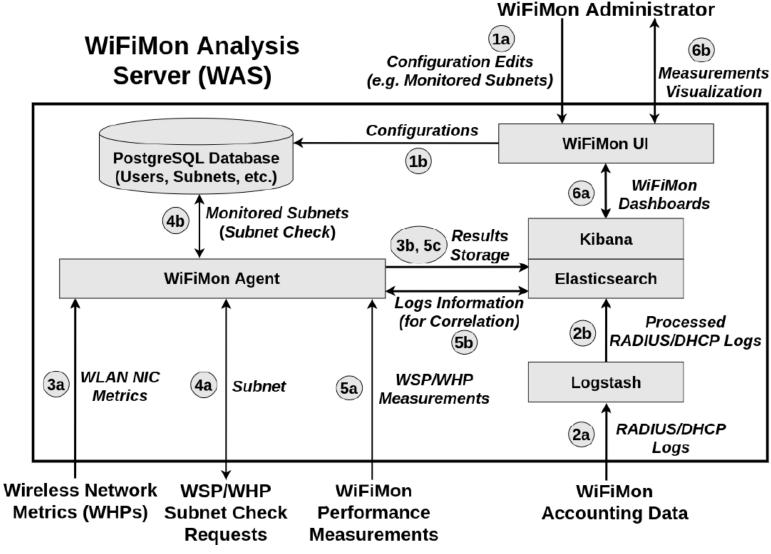
```
<html>
<head>
<title>Boomerang measurement page</title>
        <script type="text/javascript" src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/jquery-3.5.1.min.js"></script>
        <script type="text/javascript" src="https://www.google.com/jsapi"></script>
        <script src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/boomerang.js" type="text/javascript"></script>
        <script src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/bw.js" type="text/javascript"></script>
        <script src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/rt.js" type="text/javascript"></script>
        <script type="text/javascript" id="settings" hostingWebsite="https" agentIp="f1-5-205.unil.cloud.switch.ch" agentPort="8443"</pre>
testtool="boomerang" imagesLocation="https://fl-5-205.unil.cloud.switch.ch/wifimon/images/" cookieTimeInMinutes="0.01"
            src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/boomerang-trigger.js" defer></script>
</head>
<body>
    <h1>Sample https page for WiFiMon measurements using <strong>boomerang</strong></h1>
</body>
</html>
```


WiFiMon Hardware Probes (WHPs)

- Wi-Fi performance measurements from **fixed points** within the network (distance between *WHP*s and *AP*s is relatively constant)
- Baseline throughput that complements crowdsourced measurements
 (probes are standalone and can be used without crowdsourced measurements)
- Performance measurements similar to WSPs (on predefined intervals)
- Additional data about monitored and nearby ESSID's (APs, signal strength, link quality, bit rate, TX power)

Triggering measurements based on *crontabs*:

```
00,10,20,30,40,50 * * * * Xvfb :100 &
02,12,22,32,42,52 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_nettest.html >/dev/null 2>&1
04,14,24,34,44,54 * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_speedworker.html >/dev/null 2>&1
06,16,26,36,46,56 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_boomerang.html >/dev/null 2>&1
08,18,28,38,48,58 * * * * /home/pi/wireless.py >> ~/cron.log 2>&1
```


Tested for Raspberry Pi v3 and v4,

→ Possible for any single-board computer

WiFiMon Analysis Server (WAS)

WAS Modules:

- WiFiMon Agent: Collects and processes the received monitoring data
- WiFiMon User Interface (UI): Depicts the results of data processing

WiFiMon User Interface (1)

WiFiMon User Interface (2)

Dashboards available for:

- Average values
- Median values
- Maximum values
- Minimum values
- 95th Percentile values

Depicting estimations of:

- Download throughput
- Upload throughput
- HTTP ping Round Trip Time (RTT)

That may be:

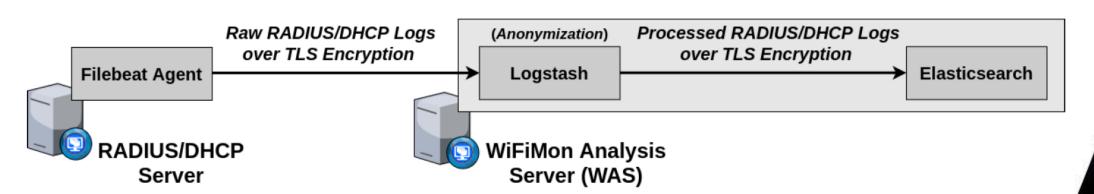
- Uncorrelated
- Correlated with the available APs

Sources:

- Crowdsourced measurements
- Hardware Probe measurements

Correlation with RADIUS/DHCP Logs

Logs are:


- Extracted from RADIUS/DHCP servers using Filebeat
- Processed and transformed by Logstash in WAS
- Stored in *Elasticsearch* of *WAS*

Correlation options:

- With end user IP address (relying solely on *RADIUS* logs)
- With end user MAC address (using both RADIUS and DHCP logs)

Personally Identifiable Information (PII): IP and MAC addresses are secured in transit using a TLS-encrypted channel and stored hashed in WAS (based on X-Pack)

→ Correlation comparisons are performed on hashed strings.

Other Features of WiFiMon

- Notification of WiFiMon version updates
 - WiFiMon Users are informed of new versions from the UI
 - Enables monitoring WiFiMon utilization (optional feature)

- Log Exporter specifically designed for eduroam
 - WHP data exported towards the JSON collector of eduroam (optional)
 - May be used with any JSON collector

- WTS location information
 - Facilitates using multiple *WTS* instances
 - Monitoring multiple sites with a single WAS

Installation

WiFiMon Installation

GÉANT Service since 2020!

Options:

- Institutions install all components within their premises
 - Ansible playbook for WAS automated installation
 - Manual installation for WTS
 - All data stay within the institution premises
 - Support from WiFiMon team for all components
- **NMaaS** (more appropriate for testing/trying WiFiMon)
 - Another GÉANT Service
 - WiFiMon WAS instance deployed on NMaaS
 - WTS installation still required by institutions (should be close to the monitored network)
 - Support from WiFiMon team for interfacing WTS and Dockerized WAS on NMaaS

NMaaS Portfolio

Ansible WAS Installation

Specs (minimum/recommended):

- 4 CPU cores
- 8 GB / 16 GB RAM
- 10 GB / 50 GB Free Space

```
wifimon_database_host: localhost
wifimon database name: wifimon database
wifimon_database_user: wifimon_user
wifimon database user pass: wifimonpass
wifimon_admin_email: admin@test.com
wifimon admin pass: th1sIs@Secret
# The value of <letsencrypt admin mail> variable below must be an real email address
letsencrypt admin email: admins@test.com
was_server_hostname: your_was_hostname_here
was server domainname: your domain name here.com
# Password for elasticsearch system user
elastic elasticsearch password: Elastic pass 123
# Password for kibana system user
kibana elasticsearch password: Kibana pass 123
# Password for Logstash system user
logstash system user password: Logstash pass 123
# Password for Logstash Log writer user
logstash writer user password: Logstash pass 123
# SHA key for encryption of fields in radius/dhcp logs. Please do not use default value
fingerprint key: 1b34947577646ec59d2ba874c62a90a80759eac0ada9715e
```

Operating Systems Tested:

- Debian 10
- Debian 11
- Ubuntu 18.04
- Ubuntu 20.04

Other Requirements:

- Ansible (and its requirements)
- Root access
- Appropriate DNS records
- Filling details (e.g. passwords)
 within a file (see figure)

Experience from WiFiMon Pilots

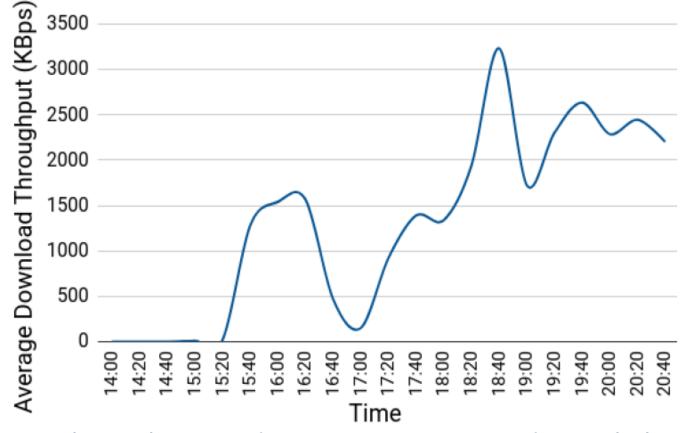
Evaluation

Based on pilots in 2 recent conference venues:

- TNC19 Conference (Tallinn, 2019)
- *GÉANT* Symposium 2020 (Ljubljana, 2020)

TNC19:

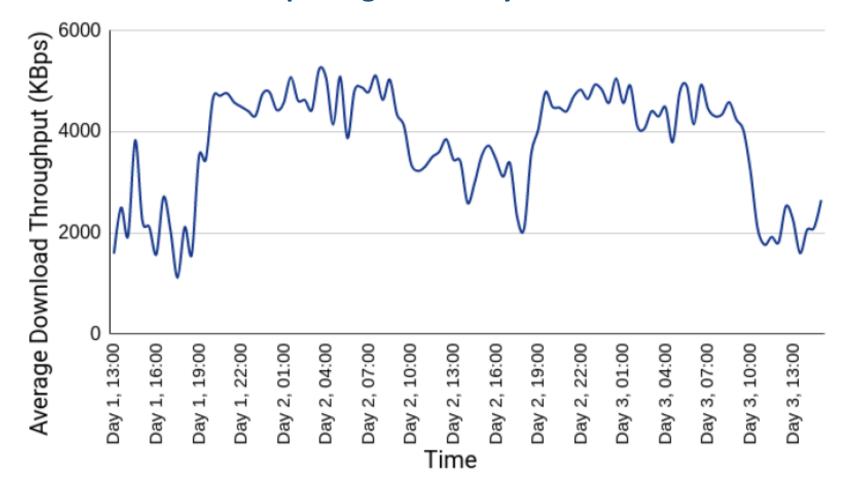
- More than 800 participants
- Monitored Wi-Fi network setup for the conference days
- Monitoring using only WHPs (Five Raspberry Pi 3 model B devices)
- WHP monitoring interval: 20 minutes
- WTS in TalTech: RTT between WTS and venue less than 4 msec


GÉANT Symposium 2020:

- Around 250 participants
- Monitored *eduroam* ESSID
- WHPs: Seven Raspberry Pi 3 model B devices (Interval: 5 minutes)
- Also including *WSP*s: HTML lines in the conference agenda after receiving consent during the online registration process
- WTS in ARNES, the Slovenian NREN

TNC19 Pilot (1)

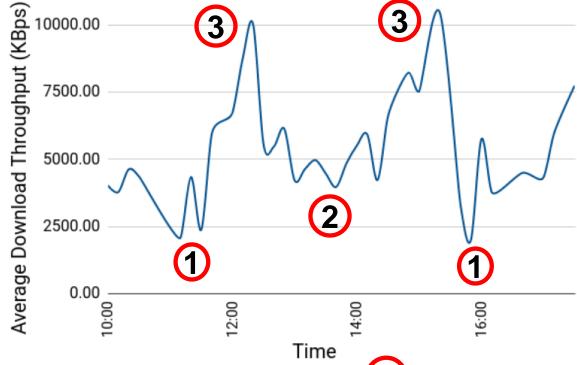
Average download throughput reported by a *WHP* placed in the main hall during the 1st conference day:



- 14:00 15:20: Low throughput and connectivity issues during lightning talks
- 15:20 16:30: Less people in the venue → Higher throughput
- Around 17:00: Significant drop because of opening ceremony
- After 18:00: Wi-Fi performance restored after people had left the venue

TNC19 Pilot (2)

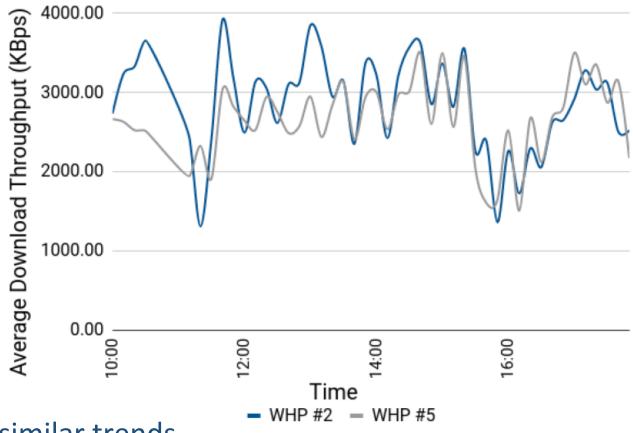
Average download throughput reported by a WHP placed in the room where coffee/lunch breaks and the opening ceremony occurred:



Wi-Fi performance degraded when people were at the venue, while the throughput was higher and more stable when participants were absent.

GÉANT Symposium 2020 Pilot (1)

Average download throughput reported by <u>crowdsourced</u> measurements (1st Symposium Day between 10:00 and 17:00):



- Major drops: 11:00 11:40 and 15:30 16:00 (1)
 - → Periods after coffee break (more people visiting symposium agenda)
- Notable drop: 12:30 14:00 **(2)**
 - → During and after lunch time when most participants gathered in less space
- Higher levels: Around 12:20 and 15:20 (3)
 - → Participants distributed across many different sessions

GÉANT Symposium 2020 Pilot (2)

Average download throughput reported by WHPs #2 and #5 (1st Symposium day):

- Both WHPs follow similar trends
- Both WHPs conceive the throughput drops reported by WSP measurements
- WHPs reported less throughput as they were placed near the available power plugs, typically farther from Access Points than the audience (e.g. on the floor)

GÉANT Symposium 2020 Pilot (3)

WLAN metrics and performance measurements from the 1st Symposium day:

WHP No	Average Signal Level (dBm)	Average Bit Rate (Mbps)	Average Link Quality	Average TX Power (dBm)	Average Download Throughput (KBps)	Average Upload Throughput (KBps)	Average Ping Latency (msec)
1	-43	71	67/70	31	1588	763	48
2	-52	49	58/70	31	2883	1500	30
3	-59	78	51/70	31	2644	1429	44
4	-59	59	51/70	31	1431	650	41
5	-66	75	44/70	31	2678	1514	23
6	-62	65	48/70	31	1758	890	41
7	-55	66	55/70	31	2730	1562	32

Observation: WLAN metric trends may not follow those of performance measurements

- WHP #1: best average link quality, but among the worst throughput results
- WHP #5: worst average link quality, but among the best throughput results

Conclusion: Multiple sources of information, i.e. crowdsourced and probe measurements, are vital for proper Wi-Fi performance evaluation

→ High values of signal strength/link quality do not necessarily guarantee high Wi-Fi throughputs

Future Steps and Useful Links

Future Steps

- Additional information from WHPs
 - CPU/Memory/Disk info
 - Wi-Fi frequency
 - TWAMP protocol measurements

- Additional monitoring tools
 - Research for appropriate *UNIX*-based tools

Automatic prediction of Wi-Fi performance drops (Time series analysis)

Automatic correlation between crowdsourced and probe measurements

Support for IPv6

Check out the WiFiMon video!

https://www.youtube.com/watch?v=9LuGIF6JSnA

... or the WiFiMon Infoshare

https://www.youtube.com/watch?v=VXQV2zWRKgo

... or previous presentations

https://wiki.geant.org/display/WIF/WiFiMon+Publications

... or the WiFiMon paper at IEEE/IFIP WONS 2021

http://dl.ifip.org/db/conf/wons/wons2021/1570695031.pdf

Thank you

Homepage:

https://wiki.geant.org/display/WIF

WiFiMon Mailing List:

wifimon-ops@lists.geant.org

www.geant.org

© GEANT Association on behalf of the GN4 Phase 3 project (GN4-3 The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).