

Distance/RTT Analysis for Ukraine

 $RTT = d_1 + d_2 + d_3$ $d_1 = \sum (propagatation \ delay)_i$ $d_2 = \sum (equipment \ delay)_i$ $min(d_3) = 0$ (!)

2

How RTT Depends on Distance

$$RTT = min(\{RTT_i\}) = d_1 + d_2$$
Length of th
sector
$$d_1 = \sum_{i} \frac{distance_i}{c_{fibre_i}}$$
Velocity of s

The speed of light in different fibres differs insignificantly (±10% max), so:

 $d_1 \approx \frac{total\ distance}{}$ *C*_{fibre}

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

ne fiber

speed in bre

How RTT Depends on Distance

Les Cottrell, Warren Matthews and Connie Logg from Stanford University, 2000-2002 гг.:

How RTT Depends on Distance For 2000 (old slow equipment, no ASICs etc):

$d_{2} = 5.9 \ ms$

- In 2019, we can expect much less value
- And if so, the minimal RTT value between two nodes is approximately proportional to the distance between them:

 $RTT \approx \frac{total\ distance}{}$

*C*_{fibre}

RTT Between Cities

The speed of light in fibre is 60-70% of the speed of light in a vacuum, i.e.

In other words:

Each 100 kilometres add 1 ms to RTT • Therefore, in the case of perfectly straight fibre the ratio

$$S = \frac{RTT_{real}}{RTT_{ideal}} = 100 \frac{RT}{dista}$$

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

T, ms

is equal to 1 nce, km

How RIPE Atlas Can Help

https://atlas.ripe.net/results/maps/network-coverage/?filter=b%27Ukraine%27+(ua)

How RIPE Atlas Can Help

- There are approximately 200 working probes in Ukraine
- They are distributed all over the country
- We can start measuring the RTT between samples and build a matrix of delays between cities
- By comparing the delay and distance, we can conclude if the cabling is geographically optimal

Prerequisites

- No "special features" of the RIPE NCC employee were used to obtain results
 - (...and I am not sure that such a feature even exists)
- own accumulated credits
 - (...yes, it took a lot of them)
- with the RIPE Atlas team
 - mine!)

• The measurements were performed with a personal account on my

• Nevertheless, nothing would have happened without interaction

- (...they answer the questions from the community exactly the same as they do

Setup

- 3,000 lines on Python3
- Active usage of the library ripe.atlas.cousteau (from github)
- Found and fixed by the team:
 - Two mistakes in the documentation
 - Four errors in the system code
- 70 million measurements were done in one month

• Five new classes were added to this library (local repository yet)

Disclaimer

The study is indicative in nature, it can not be perceived as "the ultimate truth":

- We don't have samples for every Autonomous System in Ukraine, nor for each IPv4 prefix, so we can't "see" everything
- Some phenomena may have been temporary; today the picture may have changed
- Despite checking the results, it is still possible that peculiar behaviour of RIPE Atlas samples and target nodes may have had an influence

11

The Points Selection

• The obvious criteria is the size of the cities

• Problem: in some cities we have just a few probes:

- Mariupol: one probe
- Kherson: one probe
- Poltava: one probe

• Two cities were aggregated into the agglomeration:

- Dnipro-Zaporizhia - 122 км

- Top-10 excluding Crimea and occupied districts of Donetsk and Luhansk regions

- Kryvyi Rih: no probes at all (thus this town was excluded from the research)

The Points Selection

In total, including agglomerations, there are 10 logical "areas":

- Poltava
- Known problem:
 - sampling

- Kyiv, Kharkiv, Odessa, Dnipro, Lviv, Mykolayv, Mariupol, Vinnytsya, Kherson,

- Remembering the low number of probes in some cities, we have to enrich our

How to Enrich Sampling • RTT(IP1, IP2) = RTT(IP2, IP1)

- **RIPE** Atlas probes
- The primary criteria:
 - The host responds to ICMP (nmap scanning was used)
 - Geographical "binding" in the RIPE Database
 - Direct and reverse name resolution match
 - Additional "bonus":
 - The IP address belongs to the local website
 - Geo-referencing inside the domain name

• At this stage, 30 nodes were selected In total, 127 probes and 153 (127+26) targets

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

- Meaning we need to find nodes in each region that can be "pinged" from our

Verification of Results

- At each stage, results cross-verified, questionable nodes and probes excluded
- Examples:
 - The probe, which RTT to itself exceeds two ms
 - RIPE Atlas probe marked as from Odessa which has high RTT to anywhere (probably, it is actually located somewhere else)
- Some other oddities:
 - Probes in MOAS (Multiple-Origin Autonomous System) - Rare results like 77.47.130.162 -> 89.162.136.106:
 - - Attempt 1: 8.69552 ms
 - Attempt 2: 'Network unreachable' + i.e. ICMP unreach was received; who sent it?
 - Attempt 3: 8.342565 ms

In total, eight IP addresses were excluded

Processing of Results

- Between each pair of IP addresses we take a minimum RTT
- Systems?
 - The minimum RTT value (MinRTT)
 - The median RRT (MedRTT) which is the arithmetic mean of the central elements of the sorted set:
 - 0.2, 0.4, 0.5, 1, **1**, **1**, **1**, 4, 10, 25
 - Median: 1
 - Arithmetic mean: 5.4

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

How do l aggregate data between different areas or Autonomous

Local RTT Inside AS

- there
- Important as a stage intermediate inspection
- 32 results
- As expected:
 - minRTT almost never exceeds three ms
 - MedRTT almost never exceeds five ms

Not expected (and probably should be fixed):

- Kyiv, AS15895 (Kyivstar PJSC): MinRTT=5.5ms, MedRTT=16.2ms
- Kyiv, AS25229 (Kyivski Telekomunikatsiyni Merezhi LLC, aka Volia): MinRTT=7ms, MedRTT=13ms
- Kharkiv, AS25229: MinRTT=3.5ms, MedRTT=3.5ms

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

Degenerate case: RTT inside the city and within each Autonomous System

RTT Inside Cities

• We can process data between all possible IP addresses

- This approach seems to correlate with users' experiences since they are randomly distributed among operators
- These columns of the table below are labeled "between IP"
- account RTT within a single Autonomous System
 - This approach reflects the operator's view on connectivity
 - These columns of the table below are labeled "between ASes"

• We can first group the addresses by ASN, and thus not take into

RTT Inside Cities

Area	Min RTT between IPs	Median RTT between IPs		Median RTT between ASes
Дніпро	0,24	17,92	1,24	17,41
Київ	0,17	14,94	0,38	1,38
Львів	0,50	31,94	0,50	16,13
Миколаїв	0,22	23,02	20,22	24,15
Одеса	0,43	10,75	0,43	14,59
Харьків	0,62	7,57	0,65	11,63

RTT Inside Cities: Conclusions

• Overall, the situation doesn't look good:

- However, all but one MinRTT are less that two ms
 - Confirmation of the hypothesis that $d_2 \approx 0$
- MedRTT between ASes never exceeds 25 ms

Nevertheless, there is a huge space to improve the situation

- Mykolayv
- RTT=15ms inside the city is still too much

MinRTT Between Cities: matrix

Area/Area	Вінниця	Дніпро	Київ	Львів	Маріупол	Миколаї	Одес	Полтав	Харьків	Херсон
Вінниця	X	2,21	1,53	3,11	2,72	3,72	3,12	2,01	1,62	3,16
Дніпро	2,21	Х	1,73	1,62	7,82	2,81	1,34	7,24	2,08	2,08
Київ	1,53	1,73	X	1,52	2,14	2,37	1,61	1,58	1,53	1,82
Львів	3,11	1,62	1,52	X	2,20	2,51	1,56	1,53	1,50	2,07
Маріуполь	2,72	7,82	2,14	2,20	X	5,43	3,89	5,94	2,68	5,47
Миколаїв	3,72	2,81	2,37	2,51	5,43	X	1,93	4,01	3,22	2,47
Одеса	3,12	1,34	1,61	1,56	3,89	1,93	X	2,69	0,11	2,44
Полтава	2,01	7,24	1,58	1,53	5,94	4,01	2,69	X	6,63	3,95
Харьків	1,62	2,08	1,53	1,50	2,68	3,22	0,11	6,63	X	2,31
Херсон	3,16	2,08	1,82	2,07	5,47	2,47	2,44	3,95	2,31	X

....Well, doesn't look so easy to comprehend, right?

Heatmaps

- Heatmapping is the natural and easy way to visualise matrices
- To build heat maps, we need thresholds
- value of S

• Let's analyse typical cases of the geo-topology and corresponding

What is "S"? Example: direct fibre

S = 1

Now, add some angles...

$S = \sqrt{2} \simeq 1.41$

...time for the triangle

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

S = 2

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

S=3

...triangle again, the long one

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

 $S \simeq 6.6$

...now let's bend it

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

$S \simeq 9.3$

Time for heatmaps! MinRTT

S≼2	
2 <s≼3< th=""><th></th></s≼3<>	
3 <s≼5< th=""><th></th></s≼5<>	
S>5	

S	-
Вінниця	X
Дніпро	
Київ	
Львів	
Маріуполь	
Миколаїв	
Одеса	
Полтава	
Харьків	
Херсон	

RIPE NCC Days in Kyiv | 2019-09-26 | Alex Semenyaka

Place

MinRTT: Observations

- The picture is not perfect in any sense, but still acceptable
- the city:

• There is a certain correlation between "rightness" and the size of

Correlation between the place and the size of the city

Time for heatmaps! MedRTT

S≼2	
2 <s≼3< th=""><th></th></s≼3<>	
3 <s≼5< th=""><th></th></s≼5<>	
S>5	

Area/Area	В I H H ц я
Вінниця	Х
Дніпро	
Київ	
Львів	
Маріуполь	
Миколаїв	
Одеса	
Полтава	
Харьків	
Херсон	

MedRTT: Observations

- The picture is really bad
- attention
- No any correlation: almost all values are horrible
- Further analysis makes no sense 😟

• There are a lot of "pathological" values medRTT that clearly need

Conclusions

- scale
- Within cities, the situation is still acceptable
- just bad

• RIPE Atlas provides you the opportunity to explore RTT on a large

Indicators of "straightness" of paths between cities on average are

Some speculations

- fibreoptic cables like "at least, some exist"
- traffic paths
 - There are no local resources for which access speed is critical
 - "Gamers must suffer"
 - "Traders must suffer bigger time"

Global underfunding of the industry leads to the approach to the

• Mass extreme price optimisation leads to strange and suboptimal

• Market consolidation is likely to significantly change this picture

What's Next

- Conduct a more in-depth analysis of the results already obtained • Make improvements in the code (more readability, even less manual
- work in the future)
- More automation on results verification
- Perform similar measurements for other countries and between them
 - Next step: RTT measurements between European capitals
- On verified data sets, make these measurements regular and the results public
 - Need more RIPE Atlas probes in Ukraine!

Acknowledgements

- do this research
- To the RIPE Atlas team for the toolset that they developed
- To Viktor Naumov for advice and assistance during the work

• To Emile Aben for the IXP Country Jedi tool, which inspired me to

Questions

