IPv6-Only with MAP-T

Sky Italia – AS210278

sky broadband

Richard Patterson RIPE NCC Open House - May 2021

Why MAP-T?

Pros:

- IPv4aaS.
 - IPv6-only access layer.
 - Reduce operational overhead.
- Allows IPv4 address sharing, or 1:1.
- Fewer bytes of overhead compared to encapsulation.
- Layer 4 header exposed for 5-tuple hashing.
- No DNS synthesizing required.
- Stateless.

Cons:

- No vendor could provide a real-world reference customer with a large deployment.
- Lack of CPE Support.
- IP pool management becomes more complicated.

MAP Border Relay Vendor Selection

- Cisco ASR9K w/ Tomahawk
 - Near line-rate performance.
 - Probably want the Virtualized Services Module (VSM). [ICMP PTB, fragment handling, etc.]
- A10 Thunder
 - Good implementation & complete feature set.
 - High bps cost.
- Nokia vSR / ESA
 - Good implementation & complete feature set.
 - x86-only. No FP-based implementation.

Huawei CX600-X8 w/ LPUI-480

- Near line-rate performance and complete feature set.
- No additional hardware required for ICMP generation, fragment handling.
- Selected for BNG function, MAP BR feature came for the cost of a licence

MAP-T Network Topology

IPv4 Allocations

"But I thought this was an IPv6-only talk?"

- Greenfield network starting with 0 IPv4 addresses.
- Registered a new LIR, got a /22.
- We also bought a /13 from the open market.
 - Still not enough for our subscriber forecast, let alone addressing infrastructure as well.
- Dual Stack subscribers initially to de-risk the product launch.
- Borrowed additional IPv4 from Sky UK.
 - Borrowed IP space for use with Dual Stack only.
 - The new /13 remained untouched to simplify IP planning for the MAP domains.

Dimensioning IPv4 Usage / MAP-T Rules

101.56.0.0/13								
/14	/14							
/15	/15	/15	/15					
/15	/15		/16	/16				
Subscribers	Subscribers	Subscribers	Infrastructure					
Fixed ratio 16:1	Fixed ratio 1:1	Reserved	CDN					
32x blocks of ~65K Subs (/20)	32x blocks of 4K Subs (/20)		CSP	SPARE				
~2.1M Subscribers Total	130K Subs Total		Loopbacks, etc.					

IPv6 Allocations

- RIPE NCC allocates an LIR up to a /29 without question.
- Enough for ~500K subscribers with /48-sized PDs.
 - As recommended in RIPE-690 BCOP
 - Not enough for our projected growth
- >/29 available with justification
 - Lots of back-n-forth emails.
 - IPv6 Transition technology constraints are excluded as justification.
 - We almost went with /56-sized PDs.
 - Some RIPE NCC members decide that spinning up a new LIR is the path of least resistance.

[members-discuss] [EXTERNAL] Re: New Charging Scheme

• Previous message (by thread): [members-discuss] [EXTERNAL] Re: New Charging Scheme

com

Next message (by thread): [members-discuss] [EXTERNAL] Re: New Charging Scheme

Messages sorted by: [date] [thread] [subject] [author]

Tue Feb 19 15:52:07 CET 2019

> From: Patterson, Richard (Sky Network Services (SNS))
> Sent: Tuesday, February 19, 2019 12:44 PM
[snip]
>

> It felt like the IPv4-conservative approach was being applied to IPv6, and

> that kind of defeats the purpose IMO.

I have experienced this as well. For technical reasons (not convenience), I needed another /29 (or rather 6 /32's). This turned out to take too long and too much of my time, so I gave up and opened another LIR simply for the /29 IPv6.

Of course that meant I had to buy one less /22 IPv4 on the free market, so the tight IPv6 policies directly caused faster depletion of IPv4. Though I don't know whether this happens often enough to be significant, it's still ass-backwards.

Regards,

Dimensioning IPv6 Usage / DHCPv6 Pools

2a0e:400::/25								
15 x /29		/29						
13x /29	2x /29	/31	/31	/31	/31			
Subscribers		Infrastructure						
External		Private	Internal	External	Spare			
/48 per subscriber = ~8M		Loopbacks	Point-to- Points	Public Servers				
~ 6.8 Million	~1M	Management	Intranet	CDNs				
104 blocks of /32	256 blocks of /36	Backend Servers	Middleware Servers	Enterprise / Corporate	Future Use			
IPv4 Sharing Ratio 16:1	1:1	,						

IP Pool Management

Previously (in the UK):

- We over-provisioned DHCPv6 pools without fear of running out.
- DHCPv4 pools were tightly managed by automation to allow for efficient usage.

With MAP:

- IPv4-usage is now directly tied to DHCPv6 pools.
 - DHCPv6 Prefix Delegation + MAP Basic Mapping Rule = IPv4 Address + Layer 4 Ports.
- Over-provisioning DHCPv6 means wasting, or at least inefficient IPv4-usage.
- We still haven't automated it like we have automated our UK DHCPv4 pools.

IPv4 Address Sharing

- ~95% of subscribers on a MAP profile with a 16:1 sharing ratio.
- ~5% of subscribers on an "Opt-Out" MAP profile with sharing ratio 1:1 to allow:
 - Port forwarding
 - DMZ
 - Non-port-based layer 4 protocols
 - GRE
 - ESP
- Proactively detect opt-out triggers using WebPA.
 - DMZ enablement.
 - Port forwarding / firewall rules.
 - UPnP AddPortMapping requests for ports used by known-problematic applications.
 - Direct cost impact. Could be abused, needs to be monitored.
 - Proactively opt-back-in when no longer required.

Regulatory Compliance

- Stateless translation = No per-flow logging.
 - Some jurisdictions expect 5-tuple logging when sharing IPv4 addresses.
 - Some Border Relays can still support per-flow logging. (A10)
- AGCOM, the local regulator, specifies a maximum IPv4 address sharing ratio.
 - 16:1 for Fixed-line.
 - 32:1 for Mobile.
- Lawful Intercept & Additional Mandatory Obligations
 - Location of LI & AMO functions in relation to the the MAP Border Relay function.
- Our Broadband Network Gateway (BNG) is also our MAP Border Relay
 - Custom solution to enrich RADIUS Accounting session data with MAP rules.
 - RFC8658: RADIUS Attributes for Softwires, support to come.

Customer Premise Equipment MAP CE

- In-house developed Sky Hub 4.
 - Based on RDK-B with a Broadcom SoC.
- Initial trials run using CERNET's ivi implementation. (Incl. in Broadcom's SDK)
 - Integrated stateful NAPT44
 - Couldn't use existing iptables rules for NAT or IPv4 firewalling.
 - Hooks in to Netfilter on PREROUTING before conntrack/mangle/nat.
 - Port forwarding broken. (Broadcom patched ivictl with rudimentary support)
 - Non-port-based layer 4 protocols broken.
- Migrated to Andrew Yourtchenko's NAT46 kernel module.^[1]
 - Used by OpenWRT.
 - Broadcom patched with support for their hardware acceleration.

Customer Premise Equipment Cont'd.

Netfilter w/ port-restricted SNAT

- Source ports can be re-used when the destination IP and port are different.
 - However Netfilter's SNAT target isn't built with multiple non-contiguous sport ranges in mind.
 - Support removed in 2.6.11-rc1
- Netfilter's Connlimit match used to fall-through multiple SNAT rules with different port ranges.
 - Broadcom patched with daddr & dport matching for more efficient sport usage.
- Even high-speed fixed-line broadband usage can make do with very few external source ports.
 - Regulations mean we didn't push this beyond (65536-1024)/16 = 4,032 ports per subscriber.
 - Left as an exercise for the reader to quantify. Sorry. $\textcircled{\odot}$

MTU & Fragmentation

- Build your access & transport networks to handle the additional overhead to avoid unnecessary fragmentation.
- Varying frame-size support from different wholesale access providers.
 - Who may in turn aggregate multiple access-types from 3rd parties, also with varying frame-size support.
- Don't forget the IPv6 Fragmentation Header (+8 bytes)
 - Used to signal if IPv4 DF=0, even when there aren't IPv6 fragments.

IPv6 First

- Recursive DNS over IPv6-only.
- Voice over IPv6-only.
- CPE management must be IPv6 capable.
 - WebPA (akin to TR.069 / ACS)
 - NTP
 - Firmware Upgrade Server
- Plume Pod WiFi extenders updated to support IPv6.
 - Internal GRE tunnel over IPv6.
 - Using ULA endpoints for stability even when WAN is down.
 - Cloud management over IPv6 using Opensync 2.0^[1]
 - Our first use-case for a 2^{nd} /64 on the LAN.

CDN, Steering & Analytics

- IPv6 where possible to avoid translation.
 - Border Relay being co-located with BNG makes this somewhat moot for us.
- EDNSO Client Subnet
 - IPv6-only recursive DNS + DNS proxy on CPE = ECS all IPv6.
 - Simplifies ECS summarisation and topology mapping.
- IPv4 topology may be different to IPv6 topology
 - Location of Border Relays.
 - Anycasting Border Relay prefixes.
 - MAP domain design decisions. Single large domain or many smaller ones.
- Application owners & 3rd parties may want a feed of MAP rules to understand the IPv4 address sharing behaviour.

Dual Stack

- Wasted effort resolving dual stack-related bugs and complexities.
 - RADIUS Accounting & dealing with multiple independent sessions.
 - Wholesale access provider hit a vendor bug with DHCPv4.^[1]
 - DHCPv6 was unaffected.
- Consumes IPv4 space which you will need for planning MAP domains.
- Customers used to dual stack may get a surprise when forced to use MAP-T.
 - Majority won't notice as they use Sky-provided CPE.
 - Small number with 3rd party CPEs that don't support MAP-T.
 - An even smaller number (**0.085%**) are 3rd party CPEs connected with single stack IPv4-only.

Where Are We At?

- Currently still in a staff trial phase, with >500 subscribers.
- Testing new Sky Hub firmware with nat46 integration.
- DHCPv6 Server S46 PortParams Option bug.
 - Sky Hubs unaffected, but OpenWRT is.
- MTU Problems
 - Unexpected IPv6 Fragmentation Header being added when IPv4 DF=0.
- Rollout targeted for July.
- MAP-T default on for all new subscribers by August.

IPv6 Per-Country Deployment for AS210278: SKYIT-BB, Italy (IT)

