
Penetration Test Report

Réseaux IP Européens Network
Coordination Centre

V 1.0
Diemen, July 23rd, 2021
Confidential

Document Properties

Client Réseaux IP Européens Network Coordination Centre

Title Penetration Test Report

Target The externally (and transitively) accessible applications

Version 1.0

Pentester Abhinav Mishra

Authors Abhinav Mishra, Patricia Piolon

Reviewed by Patricia Piolon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 July 23rd, 2021 Abhinav Mishra Initial draft

1.0 July 23rd, 2021 Patricia Piolon Review

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 7

2 Methodology 8
2.1 Planning 8

2.2 Risk Classification 8

3 Reconnaissance and Fingerprinting 10

4 Findings 11
4.1 RIPE-009 — Unencrypted Communication 11

4.2 RIPE-008 — Cross Site Request Forgery 12

4.3 RIPE-007 — Improper session management 14

4.4 RIPE-006 — Unrestricted File Upload 16

4.5 RIPE-005 — Password Reset Token Does Not Expire on Email Change 18

4.6 RIPE-004 — Improper input validation 19

4.7 RIPE-003 — Open Redirect to Subdomains 21

4.8 RIPE-001 — Cross-origin Resource Sharing Policy Misconfiguration 22

5 Non-Findings 24
5.1 NF-002 — Non Finding Test Cases 24

6 Future Work 26

7 Conclusion 27

Appendix 1 Testing team 28

1 Executive Summary

1.1 Introduction

Between June 23, 2021 and July 22, 2021, Radically Open Security B.V. carried out a penetration test for Réseaux IP

Européens Network Coordination Centre

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target(s):

• The externally (and transitively) accessible applications

The scoped services are broken down as follows:

• Pentest on the externally and transitively accessible systems: 8-10 days

• Reporting: 2 days

• Total effort: 10 - 12 days

1.3 Project objectives

ROS will perform a penetration test of the externally (and transitively) accessible applications with RIPE NCC in order

to assess the security of the applications and data. To do so ROS will access and guide RIPE NCC in attempting to find

vulnerabilities, exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The Security Audit took place between June 23, 2021 and July 22, 2021.

1.5 Results In A Nutshell

During this grey-box penetration test we found 3 Elevated, 4 Moderate and 1 Low-severity issue. The Elevated-severity

issues are related to unencrypted communication, unrestricted file uploads and an open redirect. These vulnerabilities

may be exploited to perform a man-in-the-middle (MitM) attack, upload malicious files to the server and/or trick users into

visiting a phishing page.

4 Radically Open Security B.V.

Confidential

The Moderate- and Low-severity issues arise from a lack of security controls against Cross-site Request Forgery

(CSRF), the insecure handling of password reset links and problems with input validation, CORS configuration and

session management. Fixing these issues will further improve the defense-in-depth of the applications, resulting in a

more secure application suite.

1.6 Summary of Findings

ID Type Description Threat level

RIPE-009 Transport Layer
Security

The applications at https://ba-apps.prepdev.ripe.net and
http://core-1.rpki.prepdev.ripe.net:8080 work over HTTP,
which is an unencrypted medium.

Elevated

RIPE-006 Insecure configuration The endpoint https://my.prepdev.ripe.net/api/file-
attachment allows the uploading of all files, irrespective of
file type. Also, the endpoint does not implement any anti-
automation.

Elevated

RIPE-003 Open Redirect The endpoint https://access.prepdev.ripe.net/?originalUrl=
allows redirection to any ripe.net subdomain.

Elevated

RIPE-008 CSRF The application at https://lirportal.prepdev.ripe.net/
does not implement anti-CSRF controls on some of its
endpoints.

Moderate

RIPE-005 Authentication A password reset link sent to a user's email address is
not invalidated if the user's registered email is changed
afterwards.

Moderate

RIPE-004 Improper Input
Validation

The application uses the user-submitted value of the
JSON parameter and copies it to the HTML document as
plain text between tags.

Moderate

RIPE-001 Insecure configuration The HTML5 cross-origin resource sharing
(CORS) policy for the request to endpoint https://
access.prepdev.ripe.net/user/profile allows access from
any domain.

Moderate

RIPE-007 Session management The https://lirportal.prepdev.ripe.net/training/ endpoint
requires the JSESSIONID cookie only, which does not
expire on user logout. Moreover, the cookie is missing its
secure flag.

Low

Executive Summary 5

1.6.1 Findings by Threat Level

12.5%

50.0%

37.5%

Elevated (3)

Moderate (4)

Low (1)

1.6.2 Findings by Type

12.5%

12.5%

12.5%

12.5% 12.5%

12.5%

25.0%

Insecure configuration (2)

Transport layer security (1)

CSRF (1)

Session management (1)

Authentication (1)

Improper input validation (1)

Open redirect (1)

6 Radically Open Security B.V.

Confidential

1.7 Summary of Recommendations

ID Type Recommendation

RIPE-009 Transport Layer
Security

Applications should use transport-level encryption (SSL/TLS) to protect all
communications passing between the client and the server. Set the Strict-
Transport-Security HTTP header to ensure that clients will refuse to access
the server over an insecure connection.

RIPE-008 CSRF The most robust way to defend against CSRF attacks is to include a CSRF
token in the relevant requests. The token should be:

• Unpredictable with high entropy, as for session tokens in general.
• Tied to the user's session.
• Strictly validated in every case before the relevant action is executed.
• Implemented and validated for all applicable requests.

RIPE-007 Session management The secure flag should be set on all cookies that are used for transmitting
sensitive data when accessing content over HTTPS. If cookies are used
to transmit session tokens, then areas of the application that are accessed
over HTTPS should employ their own session handling mechanism, and
the session tokens in use should never be transmitted over unencrypted
communications. Additionally, all of a user's session tokens should be set to
expire as soon as they log out of the application.

RIPE-006 Insecure configuration Implement the recommendations detailed in the full finding.

RIPE-005 Authentication Invalidate all password reset links when the victim updates their registered
email address.

RIPE-004 Improper Input
Validation

An application that takes user-controllable data and copies it into application
responses opens up the possibility for cross-site scripting attacks. This type
of issue can be prevented by:

• making sure that input is validated as strictly as possible on arrival
given the kind of content that it is expected to contain.

• HTML-encoding user input whenever it is copied into an application
response.

For more details please refert to: https://cheatsheetseries.owasp.org/
cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

RIPE-003 Open Redirect Applications should avoid incorporating user-controllable data into redirection
targets, or should only allow domains from a whitelist.

RIPE-001 Insecure configuration Specify trusted origins instead of allowing all domains.

Executive Summary 7

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

8 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Confidential

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 9

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• nmap – http://nmap.org

• Burp Suite Pro – https://portswigger.net/burp/pro

• Naabu – https://github.com/projectdiscovery/naabu

• Nuclei – https://github.com/projectdiscovery/nuclei

10 Radically Open Security B.V.

http://nmap.org
https://portswigger.net/burp/pro
https://github.com/projectdiscovery/naabu
https://github.com/projectdiscovery/nuclei

Confidential

4 Findings

We have identified the following issues:

4.1 RIPE-009 — Unencrypted Communication

Vulnerability ID: RIPE-009

Vulnerability type: Transport Layer Security

Threat level: Elevated

Description:

The applications at https://ba-apps.prepdev.ripe.net and http://

core-1.rpki.prepdev.ripe.net:8080 work over HTTP, which is an unencrypted medium.

Technical description:

The application(s) allow users to connect over an unencrypted connection, i.e. HTTP. An attacker suitably positioned

to view a legitimate user's network traffic could record and monitor their interactions with the application and obtain any

information the user supplies.

The admin password is also submitted over HTTP, and is therefore also susceptible to theft.

Findings 11

Impact:

To exploit this vulnerability, an attacker must be suitably positioned to eavesdrop on the victim's network traffic. This

scenario typically occurs when a client communicates with the server over an insecure connection such as public Wi-Fi,

or a corporate or home network that is shared with a compromised computer. The attacker would be able to then capture

all traffic in clear text, including the admin password.

Recommendation:

Applications should use transport-level encryption (SSL/TLS) to protect all communications passing between the client

and the server. Set the Strict-Transport-Security HTTP header to ensure that clients will refuse to access the server over

an insecure connection.

4.2 RIPE-008 — Cross Site Request Forgery

Vulnerability ID: RIPE-008

Vulnerability type: CSRF

Threat level: Moderate

Description:

The application at https://lirportal.prepdev.ripe.net/ does not implement anti-CSRF controls on some of

its endpoints.

Technical description:

It is possible to perform a CSRF attack on some of the endpoints through a POST request.

12 Radically Open Security B.V.

Confidential

Create API Request

As shown in the above screenshot, the request does not contain any Anti-CSRF token, which makes it feasible to create

a simple malicious HTML form and trick users into submitting it.

CSRF form for API key creation

Impact:

This vulnerability could allow an attacker to induce users to perform actions that they do not intend to perform, such as

creating API keys. It also allows an attacker to partly circumvent the same-origin policy, which is designed to prevent

different websites from interfering with each other.

Recommendation:

The most robust way to defend against CSRF attacks is to include a CSRF token in the relevant requests. The token

should be:

Findings 13

• Unpredictable with high entropy, as for session tokens in general.

• Tied to the user's session.

• Strictly validated in every case before the relevant action is executed.

• Implemented and validated for all applicable requests.

4.3 RIPE-007 — Improper session management

Vulnerability ID: RIPE-007

Vulnerability type: Session management

Threat level: Low

Description:

The https://lirportal.prepdev.ripe.net/training/ endpoint requires the JSESSIONID cookie only,

which does not expire on user logout. Moreover, the cookie is missing its secure flag.

Technical description:

When a user visits the endpoint https://lirportal.prepdev.ripe.net/training/, a new cookie with the

name JSESSIONID is set, but its secure flag is missing.

When the user logs out of the application, JSESSIONID does not expire, and it remains possible to get authenticated

responses from the endpoint:

14 Radically Open Security B.V.

Confidential

Impact:

Because the cookie lacks a secure flag, it is susceptible to be leaked during a MitM attack. More in general, non-

expiring cookies of this type result in an increased attack surface. An attacker with access to valid cookies from previous

sessions can access information the endpoint that should be restricted to legitimate and authenticated users.

Recommendation:

The secure flag should be set on all cookies that are used for transmitting sensitive data when accessing content over

HTTPS. If cookies are used to transmit session tokens, then areas of the application that are accessed over HTTPS

should employ their own session handling mechanism, and the session tokens in use should never be transmitted over

unencrypted communications.

Additionally, all of a user's session tokens should be set to expire as soon as they log out of the application.

Findings 15

4.4 RIPE-006 — Unrestricted File Upload

Vulnerability ID: RIPE-006

Vulnerability type: Insecure configuration

Threat level: Elevated

Description:

The endpoint https://my.prepdev.ripe.net/api/file-attachment allows the uploading of all files,

irrespective of file type. Also, the endpoint does not implement any anti-automation.

Technical description:

The endpoint https://my.prepdev.ripe.net/api/file-attachment lets users upload files of any type,

including php, html, etc.

File Upload

16 Radically Open Security B.V.

Confidential

Because the endpoint is additionally lacking anti-automation, is also possible to automate the file upload request and

upload numerous files through a script.

Impact:

Malicious users could upload any number of malicious files of any type to the application server. While the uploaded files

are not executed on the server, the server may still be used to distribute malicious files, e.g. files containing malware.

Recommendation:

It is strongly recommended to verify both the content and type of a file before allowing it to be uploaded. These checks

should always happen on the server side. Some important recommendations as per OWASP (https://owasp.org/www-

community/vulnerabilities/Unrestricted_File_Upload):

• Restrict allowed file types to those that are strictly necessary for business.

• Never accept a filename and extension directly; always apply an allowlist filter.

• The application should perform filtering and content checking on all files that are uploaded to the server. Files

should be thoroughly scanned and validated before being made available to other users. If in doubt, the file should

be discarded.

• The web application should provide a list of permitted extensions for a file type, and only allow users to select

extensions from this list.

• All control and Unicode characters should be removed from filenames and extensions. Special characters such as

;, :, >, <, /, ., *, and so on should be discarded as well. If there is no special need to have unicode characters,

it is highly recommended to only allow alpha-numeric characters and a single dot as in the file name. Likewise,

do not allow empty file names or extensions (e.g. regular expression [a-zA-Z0-9]{1,200}.[a-zA-Z0-9]

{1,10}).

Findings 17

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

• Limit the filename length. For instance, the maximum length of the name of a file plus its extension should be less

than 255 characters (not counting parent directories) on an NTFS partition.

• It is recommended to not let users name a file at all and instead use an algorithm; e.g. an MD5 hash of the name

of file plus the current date.

• The directory to which the files are uploaded should not have any “execute” permission and all script handlers

should be removed from these directories.

• Limit the file size to a maximum value in order to prevent denial of service attacks (on file space or other web

application functions such as the image resizer).

• Also consider setting a minimum file size, again to prevent denial of service attacks.

Finally, is also important to implement anti-automation on this endpoint, to prevent malicious actors flooding the server

with numerous malicious uploads.

4.5 RIPE-005 — Password Reset Token Does Not Expire on Email Change

Vulnerability ID: RIPE-005

Vulnerability type: Authentication

Threat level: Moderate

Description:

A password reset link sent to a user's email address is not invalidated if the user's registered email is changed

afterwards.

Technical description:

The application allows users to change their password using a password reset link sent to an email address that is no

longer their registered address.

Steps to reproduce:

• User A is registered with the email user@test.com in the RIPE application.

• Noticing unauthorised access to their email inbox, User A changes the email linked to their account to

user_new@test.com

• Before User A changed their registered email address, however, the attacker has already requested a password

reset link to be sent to the hacked email address.

18 Radically Open Security B.V.

Confidential

• The password reset link sent to older email address user@test.com is still valid and will allow the attacker to

reset the account password. (Although do note that the attacker would still need to find the victim's new email

address).

This opens a small attack surface for someone's RIPE application account to get compromised, even if they detect the

compromise of their inbox and update their email address.

Impact:

The vulnerability allows an attacker with access to an unused password reset link sent to an older email to reset the

victim's password even when the email linked to that account has been changed.

Recommendation:

Invalidate all password reset links when the victim updates their registered email address.

4.6 RIPE-004 — Improper input validation

Vulnerability ID: RIPE-004

Vulnerability type: Improper Input Validation

Threat level: Moderate

Description:

The application uses the user-submitted value of the JSON parameter and copies it to the HTML document as plain text

between tags.

Technical description:

It is possible to inject an XSS payload into the JSON parameters asn and prefix in the POST request sent to

https://my.prepdev.ripe.net/api/rpki/alerts/suppress. The user input is copied from a request and

echoed into the application's immediate response.

Findings 19

Request & Response

Affected URL: https://my.prepdev.ripe.net/api/rpki/roas/stage

Affected Parameters: asn and prefix

Impact:

This issue demonstrates that it is possible to inject arbitrary JavaScript into the application's response. Although the

request uses a Content-type header (Content-Type: text/plain; charset=UTF-8), and therefore the issue

is only directly exploitable (as XSS) if a browser can be made to interpret the response as HTML, the issue might be

indirectly exploitable if a client-side script processes the response and embeds it into an HTML context. This finding

however only shows the improper input validation in the application.

Recommendation:

An application that takes user-controllable data and copies it into application responses opens up the possibility for

cross-site scripting attacks. This type of issue can be prevented by:

20 Radically Open Security B.V.

https://my.prepdev.ripe.net/api/rpki/roas/stage

Confidential

• making sure that input is validated as strictly as possible on arrival given the kind of content that it is expected to

contain.

• HTML-encoding user input whenever it is copied into an application response.

For more details please refert to: https://cheatsheetseries.owasp.org/cheatsheets/

Cross_Site_Scripting_Prevention_Cheat_Sheet.html

4.7 RIPE-003 — Open Redirect to Subdomains

Vulnerability ID: RIPE-003

Vulnerability type: Open Redirect

Threat level: Elevated

Description:

The endpoint https://access.prepdev.ripe.net/?originalUrl= allows redirection to any ripe.net

subdomain.

Technical description:

The application incorporates user-controllable data into the redirection url in an unsafe manner. An attacker

can construct a URL like https://access.prepdev.ripe.net/?originalUrl=https://

attacker.domain.ripe.net, which would cause the user to be redirected to attacker.domain.ripe.net.

Note

Findings 21

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

A malicious user with access to RIPE Atlas probes can create a DNS record of a subdomain pointing to a host of their

choice. This allows them to create a subdomain and control the content served on that domain.

Impact:

An attacker may target the users of the Ripe.net application in a phishing attack using the legitimate https://

access.prepdev.ripe.net/?originalUrl= URL. The fact that the attack would be making use of an authentic

application URL, target the correct domain and use a valid SSL certificate (if SSL is used) would lend credibility to

the phishing attack because many users, even those actively verifying authenticity, would not notice the subsequent

redirection to a different domain.

Recommendation:

Applications should avoid incorporating user-controllable data into redirection targets, or should only allow domains from

a whitelist.

4.8 RIPE-001 — Cross-origin Resource Sharing Policy Misconfiguration

Vulnerability ID: RIPE-001

Vulnerability type: Insecure configuration

Threat level: Moderate

Description:

The HTML5 cross-origin resource sharing (CORS) policy for the request to endpoint https://

access.prepdev.ripe.net/user/profile allows access from any domain.

Technical description:

An HTML5 cross-origin resource sharing (CORS) policy controls whether and how content running on other domains can

perform two-way interaction with the domain that publishes the policy. Trusting arbitrary origins effectively disables the

same-origin policy, allowing two-way interaction by third-party web sites.

22 Radically Open Security B.V.

Confidential

Accepting random domains

Impact:

An attacker with the ability to execute JavaScript in the context of on an external domain could try to access application-

specific data and exfiltrate it.

Recommendation:

Specify trusted origins instead of allowing all domains.

Findings 23

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-002 — Non Finding Test Cases

During the penetration test, we perform the following tests which did not result in any vulnerability.

• Verify if it is possible to bypass the authentication

• Verify if any of the endpoints used in the application, is missing access control

• Verify all pages and resources by default require authentication except those specifically intended to be public

(Principle of complete mediation).

• Verify that all password fields do not echo the user's password when it is entered.

• Verify all authentication controls are enforced on the server side.

• Verify all authentication controls fail securely to ensure attackers cannot log in.

• Verify there are no default passwords in use for the application framework or any components used by the

application (such as "admin/password").

• Verify that sessions are invalidated when the user logs out.

• Verify that the session id is never disclosed in URLs, error messages, or logs. This includes verifying that the

application does not support URL rewriting of session cookies.

• Verify that all successful authentication and re-authentication generates a new session and session id.

• Verify that session ids are sufficiently long, random and unique across the correct active session base.

• Verify that session ids stored in cookies have their path set to an appropriately restrictive value for the application,

and authentication session tokens additionally set the 'HttpOnly' and 'secure' attributes.

• Verify that access to sensitive records is protected, such that only authorized objects or data is accessible to each

user (for example, protect against users tampering with a parameter to see or alter another user's account).

• Verify that directory browsing/indexing is disabled unless deliberately desired. Additionally, applications should not

allow discovery or disclosure of file or directory metadata, such as Thumbs.db, .DS_Store, .git or .svn folders.

• Verify that the application is not susceptible to OS Command Injection, or that security controls prevent OS

Command Injection.

• Verify that the application is not susceptible to Remote File Inclusion (RFI) or Local File Inclusion (LFI) when

content is used that is a path to a file.

• Verify that the application is not susceptible to common XML attacks, such as XPath query tampering, XML

External Entity attacks, and XML injection attacks.

• Verify that all forms containing sensitive information have disabled client side caching, including autocomplete

features.

• Verify that all sensitive data is sent to the server in the HTTP message body or headers (i.e., URL parameters are

never used to send sensitive data).

24 Radically Open Security B.V.

Confidential

• Verify the application code does not execute uploaded data obtained from untrusted sources.

• Verify the use of session-based authentication and authorization.

• Verify that the application is protected against cross site scripting, SQL injection, Insecure direct object reference

etc.

Non-Findings 25

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

26 Radically Open Security B.V.

Confidential

7 Conclusion

3 Elevated, 4 Moderate and 1 Low-severity issue were found during the penetration test. The implementation of access

control and authorisation was found to be strong throughout the application and no vulnerability was discovered in those

aspects. The security issues we did encounter are related to unencrypted communication, unrestricted file upload, open

redirect, input validation, and session management. The end-user security could, and should, be improved by fixing all

of the discovered weaknesses. Although not critical, fixing the low and moderate-rated issues will still help to reduce the

applications' attack surface.

We therefore recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations

are effective and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 27

Appendix 1 Testing team

Abhinav Mishra Abhinav has 10+ years of experience in the penetration testing of web, mobile,
infrastructure, API and other fields. He has received numerous accolades from multiple
organizations for responsible disclosure of vulnerabilities. He is also known for providing
trainings on web, mobile and infrastructure security.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

28 Radically Open Security B.V.

