
RIPE Database User Manual: Getting
Started

!
!
!

IMPORTANT
Please note that this document is obsolete. A new version will be
prepared following a project to restructure the RIPE Database
documentation.

In tended Audience

This document is intended for users who have no previous experience with the
RIPE Database. It should give the reader a basic understanding of the following
concepts:

! What the RIPE Database is
! How to get information from the RIPE Database
! How to maintain information in the RIPE Database

!
It is not intended to be a complete reference. Full information on the RIPE Database may
be found in the following documents:

! RIPE Database Query Reference Manual [1]
!
!
!
!

Abstract
!
This is a hands-on tutorial that walks the reader through the basic concepts and techniques
that are needed to use the RIPE Database using examples and exercises.

!
!
!

Conventions Used in This Document
!
We use <label> for a placeholder or to indicate syntax.
We use [option] to indicate an optional text or command argument. We
use a bold font to indicate an object type.
We use "attribute:" to indicate an attribute of an object.
"RIPE Database" usually means the interface software rather than the information in the
database. Where there may be any doubt, this manual wil l make clear what is being
discussed.

!
!
!
!
!
!

!!!!1.0 The RIPE Database
!

The RIPE Network Management Database, often called the 'RIPE Database' is a public
database that contains information about registered IP address space and AS Numbers,
routing policies, and reverse DNS delegations in the RIPE NCC service region. It is used
for Internet network management.

!
1.1 Database Objects

!
Records in the RIPE Database are called "objects". Each object is a list of "attribute-
value" pairs displayed in plain text. An example:

!
person: John
Smith
address: Example
LTD

High street 12
St.Mery Mead
Essex, UK

phone: +44 1737 892
004
e- mail:
john.smith@example.com
nic - hdl: JS1-
TEST
remarks: *******************************
remarks: This object is only an example!
remarks: *******************************
abuse - mailbox: abuse@example.com
changed: john.smith@example.com 20051104
source: TEST

!
This is a person object for John Smith. The attributes are "person:", "address:", "phone:"
and so on. An attribute name always starts in the first column, and ends with a colon (:).
Everything after the colon is the value.

!
Objects can store information about different resources. For example:

!
Network Management Resource Object types
IP Address Ranges inetnum, inet6num
Routing Policies aut-num, route, route6
Reverse DNS Delegations domain
Contact Information person, role, organisation
Authentication Information mntner

!

1.2 TEST Database

The RIPE NCC provides a TEST Database where users can learn how to use the whois
database software. The TEST Database uses the same software as the RIPE Database, but
changes in one do not affect the other. The data in the TEST Database is not a copy of the
real data in the RIPE Database and is provided purely for learning purposes.

!
All examples below use the TEST Database. However, all procedures described are the
same for the RIPE Database. In section 5.0 Using the Production RIPE Database, we wil l
explain what the differences are when using the RIPE Database. Do not use the
production RIPE Database for testing purposes. It is good practice to delete all objects
you have created in the TEST Database when you have finished the exercises in this
guide.

!
!
!

2.0 How to Get In formation from the TEST Database
!

2.1 Web Queries
!

The simplest way to get information from the TEST Database is to use the web interface
available at:
http://www.ripe.net/perl/test-whois

!

2.2 Makin g Simple Queries
!

To query for a particular object the user specifies its "primary key:". This is an attribute
value that identifies a unique occurrence of the object type.

!
Object Type Primary Key Att ri bute Example Primary Key Value
inetnum "inetnum:" 193.0.0.0 - 193.0.0.255
inet6num "inet6num:" 2001:0610:0240::/42
person "nic-hdl:" JS1-TEST

!

Example:
!

We are going to query for the person object with the "nic-hdl:" attribute JS1-TEST. Type
the following in the query box:

!
js1 - test

!
The reply includes the object in section 1.1 Database Objects. Note that the attribute
value is not case-sensitive.

3.0 How to Maintain Information in the RIPE Database
!
The RIPE Database is used for storing information about Internet resources. You wil l
need to create objects in the database to document your usage of these resources.

!
Objects in the RIPE Database must reflect the current state of the resources they describe.
It is important to modify objects as the details of resources change, or delete objects if
resources are no longer used. When IP addresses are assigned to customers, or new staff
members are appointed as contacts, it is important to create new objects to reflect this in
the database.

!
You can make updates to the database by using the online update interface (webupdates)
available at:
https://www.ripe.net/fcgi-bin/webupdates.pl

!

With webupdates, users can directly create, modify or delete database objects using
automated processing. Af ter you submit an object update, the screen wil l return a
complete report of the requested operation.

!
If there were any errors, the update wil l fail, and the report wil l describe the reason(s) for
this failure. If the error report does not help you resolve the problem, you can send a copy
of it to <ripe-dbm@ripe.net >. A RIPE NCC customer support representative wil l help
you resolve the problem.

!
The following sections describe the process of creating and maintaining objects in the
TEST Database. By the end of this document, you wil l have learned how to create and
protect an object representing a network assignment.

!
3.1 Selecting the Database

!
Throughout much of this document, you wil l learn how to perform modifications using
the TEST Database. Before each update is performed, you need to select the TEST
Database as source in webupdates.

!
To select the TEST Database as source, go to:
https://www.ripe.net/fcgi-bin/webupdates.pl

!

Click [Select Source] in the header of webupdates:

!

2. Select "RIPE TEST Database" from the list and press Select Update Source.
!
3.2 Creating Objects

!
The inetnum object contains information about registered IP address space; this includes
the range of addresses, status and responsible contacts.

!
Before this object can be created in the database, you must first create some preliminary
objects. These objects contain information that is referenced by the inetnum object. This
requires the creation of the following objects:

! A person object that contains information about the administrative and technical
contacts for this network. This is referenced from the "admin-c:" and "tech-c:"
attributes of the inetnum object.

! A mntner object that contains authentication information that identifies who can
modify the contents of this object. This is referenced from the "mnt-by:" attribute
of the inetnum object. The mntner object protects the inetnum object.

!
3.3 Registering Contact Information

!
Contact information, such as a phone number and e-mail address, is stored in the person
object. To create a new person object in the database:

!
1. Select the TEST Database as your update source. We tell you how to do this in

section 3.1 Selecting the Database.
2. Click on the [Add] option (in the header of webupdates) to create a new object in

the TEST Database and select object type: "person":
!

!

3. Click on Add Object.
4. In the next screen, enter the information for the attributes of the object that you

are creating.
!
An attribute has two main characteristics:

! Mandatory/Optional Ð If an attribute is mandatory, it must always be present in
any object of that type that is stored in the RIPE Database. If it is optional, you
can leave it out.

! Single/Multiple Ð If an attribute is single, then only one attribute of that type can
be present in an object. If it is multiple, the object can contain more than one
instanceof the same attribute.

!
Note: To see the full template of an object type including the characteristics of all its
attributes, you can query the database for: "-t [object type]".

Example:
!

Click on [Query Database] and enter:
!

- t person
person: [mandatory] [single] [lookup key]
addres s: [mandatory] [multiple] []
phone: [mandatory] [multiple] []
fax - no: [optional] [multiple] []
e- mail: [optional] [multiple] [lookup key]
org: [optional] [multiple] [invers e key]
nic - hdl: [mandatory] [single] [primary/look - up key]
remarks: [option al] [multiple] []
notify: [optional] [multiple] [invers e key]
abuse - mailbox: [optional] [multiple] [invers e key]
mnt - by: [optional] [multiple] [invers e key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

!

When creating a new object with webupdates, only the mandatory attributes are shown
automatically. You can add optional attributes and/or other instances of multiple attributes
by using the Add New Field section.

!
Return to the webupdates screen and prepare a person object to be created in the TEST
Database.

!
Use "AUTO-1" for the "nic-hdl:" attribute, your e-mail address for the "changed:"
attribute, and "TEST" for the "source:" attribute.

!

By checking the Force New box, you guarantee that the object is only created if it does
not already exist in the database. We recommend that you keep this option checked, to
avoid accidentally modifying an existing object.

!
5. When you have finished setting up the object, press Submit Update.
6. Wait for an acknowledgement from the TEST Database to appear on your screen. This
may take some time to complete. Here is an example of the type of message you wil l see,
if your update is successful:

Create SUCCEEDED: [person] JS1 - TEST John Smith
***Warning: Date '20051104' added to changed:
attribute 'jo hn.smith@example.com'

!
Note: The text after the [person] tag (JSI-TEST) is the NIC handle of the person. It
replaces the AUTO-1 value of the "nic-hdl:" attribute in the original submission. It wil l
be unique and is the primary key of this person object. Any references to this person
object wil l use this NIC handle.

!
You can use the new NIC handle value to query for this object. If you do this, you can
also see that the "changed:" attribute has had the date of the creation added. This is
normal behaviour and is the reason for the "*** Warning:" message in the example above.

!
If there was an error, the acknowledgement wil l tell you that the update has failed and
wil l also report any errors. For example, it may contain the following:
Update FAILED: [person] AUTO - 1 John Smith
***Error: Syntax error in object

!
This message means that the update failed because of a problem with the syntax in the
object. Check for invalid attribute values to find the cause of the error.

!
3.4 Registering Authentication Information

!
"Authentication" is when you prove that you have the right to modify this object. This
information prevents other users from modifying your data. In the database, the
information that verifies authentication is stored in the mntner object (also called the
maintainer object).

!
To create a new mntner object in the database, do the following:

!
1. As with the creation of your person object, choose the TEST Database as update
source, and then select mntner from the object list in the [Add] section:

!

!
2. Set up your mntner object using webupdates. Follow the same steps that you used
previously for the person object.

!
Note: For any object type, you can get the object's template with a detailed description of
the meaning and syntax of each allowed attribute, by querying for: "-v [object type]".

To get a full description of all the mntner object's fields, query the RIPE Database for:
!
- v mntner

!
Check the syntax definition for the "mntner:" attribute field, when choosing your own
mntner name:

!
A unique identifier of the mntner
object. Made up of letters, digits, the
character underscore "_", and the
character hyphen " - "; the first
character of a name must be a letter,
and the last character of a name must be
a letter or a digit.

!
For the "admin-c:" and "tech-c:" attributes, you should use the value of the "nic-hdl:"
from the person object that you created earlier in this tutorial. The database wil l not
allow you to create a mntner object unless this person object already exists.

!
The "auth:" attribute begins with a keyword identifying the authentication method. This
is followed by the authentication information.

!
A password is used to authenticate database updates in the example below. To encrypt
your password using MD5-PW, you can use this web tool:
https://www.ripe.net/cgi-bin/crypt.cgi

!

Here is an example of an "auth:" attribute using an MD5 encrypted password:
auth: MD5 - PW $1$9KZv4vZf$zD8GoM7Ppvc74ypGmjedt/

!
The "mnt-by:" attribute refers to the mntner that is authorised to perform updates on an
object. The mntner object usually maintains itself, so use your maintainer name (the
value of the "mntner:" attribute) in the "mnt-by:" attribute.

!
Use "TEST-DBM-MNT" in the "referral-by:" attribute.

!

3. When you have finished composing the object, press Submit Update.
!
4. Wait for an acknowledgement from the TEST Database to appear on your screen. This
may take some time to complete. Here is a sample of the type of message you wil l see, if
your update is successful:

!
Create SUCCEEDE D: [mntner] EXAMPLE -
MNT

!
If there was an error, correct the faulty attribute value(s) and re-submit the update.

!
5. The e-mail address in the "mnt-nfy:" attribute of the mntner wil l receive an e-mail that
wil l contain details of the new object.

!
You can now query the RIPE Database and see your new mntner object. Type the
following in the query window, substituting your mntner name:

!
- B example -
mnt

!
Your new mntner object, as well as the person object referenced, wil l be returned.

% Information related to 'EXA MPLE- MNT'
!
!
mntner: EXAMPLE- MNT
descr: Sample maintainer for example
admin - c: JS1- TEST
tech - c: JS1- TEST
upd - to: john.smith@example.com
mnt - nfy: john.smith@exam ple.com
auth: MD5- PW 1wCDUXtMe$MptgAFcPa3sy9QqQnbX4X/

!
notify: john.smith@example.com
abuse - mailbox: abuse@example.com
mnt - by: EXAMPLE- MNT
referral - by: TEST- DBM- MNT
changed: john.smith@example.com 20051104
source: TEST
person: John Smith
address: Example LTD

High street
12 St.Mery
Mead Essex,
UK

phone: +44 1737 892 004
e- mail: john.smith@example.com
nic - hdl: JS1- TEST
remarks: *******************************
remarks: This object is only an example!
remarks: *******************************
abuse - mailbox: abuse@example.com
chan ged: john.smith@example.com 20051104
source: TEST

!
Note: the "-B" flag in the query is used in order to retrieve the complete objects from the
RIPE Database. In a default query (without the "-B" flag), user contact information is
filtered from the returned data. This helps to protect users from contact abuse. Filtered
query results are easy to identify by looking at the "source:" attribute:

!
source: TEST # Filtered

!
If the keyword "# Filtered" is shown, it means that the query result has been filtered and
some of the attributes are not shown.

!
By default, a query returns other objects containing associated contact information. This
is why it returns the person object. If you do not want to see this information, use the "-r"
(disable recursion) flag in your query. You can see how this works by typing the same
query with this flag:

!
- r - B example - mnt

!
This time, only the mntner object is returned. Disabling recursion can result in a smaller,
easier to understand reply, especially when associated contact information is unimportant.
This is often the case when managing your own objects.

!
!
3.5 Protecting Your Contact Information

!
Now that you have a mntner object, you can protect other objects in the database. An
object is protected by adding a reference to the mntner in the "mnt-by:" attribute.

!
Most object types require you to protect them with your mntner object. However, person
objects do not. We recommend that you protect them.. To protect your person object:

!
1. As before, within webupdates, choose the TEST Database as your update source, click
on the [Edit] option and enter your person object "nic-hdle:"

!

!
You can also enter your "person:" name instead of the "nic-hdl:" value. In this case, a list
wil l be returned with all person objects that have that name. For common names, there
may be many entries returned. Choose your object from this list.

!
2. The editor screen that follows, wil l show your person object with all of its current
attribute values:

!

Using the Add New Field section, add your mntner as the "mnt-by:" for your person
object.

!

!
Fil l in the value of the new attribute with your mntner object:

!

!
The database wil l not allow you to use a "mnt-by:" value, unless the mntner object
already exists. An error wil l appear in the acknowledgement returned after you submit the
update.

!
3. Add an additional "changed:" attribute to reflect the fact that you are modifying the
object. Follow the same procedure shown above for the "mnt-by:" attribute. It must be
placed after the existing "changed:" attribute values.

!

!
4. When you add a "mnt-by:" attribute to an object, you must authenticate yourself as the
new mntner object. As this example uses the MD5-PW method, add a "password:" field

to the object, using the Add New Field section. The position of this field in the object is
not important.

!

!
In this new "password:" field, type the clear-text password that you used to encrypt the
MD5 string present in the "auth:" attribute of your mntner object. For example:

!

!
5. The final edited object should look similar to the one shown below. Click on Submit
Update when you are ready.

!
!
!
!

6. Wait for an acknowledgement from the database. This wil l indicate the success or
failure of your update. If the password entered did not match the one used in the mntner
object, the update wil l fail and you wil l see a message similar to:

!
Modify FAILED: [person] JS1 - TEST John Smith
***Error: Authorisation failed
***Info: Syntax check passed

!
In this case, you can just correct the password and re-submit the update.

3.6 Locating Network Assignments
!
Network assignments are represented by inetnum objects. Before you can create a new
inetnum object, you must find a range of IP addresses that are not currently assigned.
This section describes how you can query the database for this information. You can also
use the queries whenever you want to get IP address information from the database.

!
By default, the database returns the smallest range that encompasses the entire range that
you specify in your query. This is a 'less specific' object. For example, if you query the
following:
10.11.12.0 - 10.11.13.255

!
You might get something like this:

!
inetnum: 10.0.0.0 - 10.255.255.255
netname: IANA- ABLK- RESERVED1
descr: Class A address space for private internets
descr: See http://www.ripe.net/db/rfc1918.html for details
country: EU # Country is really world wide
admin - c: AA1- TEST
tech - c: AA2- TEST
status: ALLOCATED UNSPECIFIED
remarks: This network should never be rou ted outside an

enterprise
remarks: See RFC1918 for further information
mnt - by: TEST- DBM- MNT
mnt - lower: TEST- DBM- MNT
mnt - routes: TEST - DBM- MNT
source: TEST # Filtered

!
!
!
This is called the less specific match. The range 10.11.12.0 - 10.11.13.255 fits entirely
within the range 10.0.0.0 - 10.255.255.255. This is the smallest inetnum object in the
database that encompasses the IP range in your query.

!
If you want the server to give you only an exact match, then you can request this using
the "-x" f lag. An exact match is one where the IP range of the inetnum object is the same
as the IP range in the query.
- x 10.11.12.0 - 10.11.13.255

!
In this case you wil l get only an exact match, or an error that tells you that no such
inetnum object exists:

!
%ERROR:101: no entr ies found
%
% No entries found in the selected source(s).

!
Sometimes, you may want to see all of the less specificinetnum objects that encompass a
range. In this case, you can use the "-L" f lag. If you do this, you wil l see all inetnum
objects that encompass the entire range queried, as well as any exact match.

For example, if you query the following:
- L 10.11.12.0 - 10.11.13.255

!
You might get something like this:

!
% Information related to '0.0.0.0 - 255.255.255.255'

!
!
inetnum: 0.0.0.0 - 255.255.255.255
netname: IANA- BLK
descr: The whole IPv4 address space
country: EU # Country is really world wide
org: ORG- TT1- TEST
admin - c: AA1- TEST
tech - c: AA2- TEST
status: ALLOCATED UNSPECIFIED
remarks: The country is really worldwide.
mnt - by: TEST- ROOT- MNT
mnt - lower: TEST- DBM- MNT
mnt - routes: TEST- DBM- MNT
remarks: This is an automatically created object.
source: TEST # Filtered

% Information related to '10.0.0.0 -

10.255.255.255' inetnum: 10.0.0.0 -

10.255.255.255
netname: IANA- ABLK- RESERVED1
descr: Class A address space for private internets
descr: See http://www.ripe.net/db/rfc1918.html for details
country: EU # Country is really world wide
admin - c: AA1- TEST
tech - c: AA2- TEST
status: ALLOCATED UNSPECIFIED
remarks: Thi s network should never be routed outside an
enterprise
remarks: See RFC1918 for further information
mnt - by: TEST- DBM- MNT
mnt - lower: TEST- DBM- MNT
mnt - routes: TEST- DBM- MNT
source: TEST # Filtered

!

!
For the query examples shown above, the "-B" flag was not included. The output from
the RIPE Database was filtered for contacts, as described in 3.4 Registering
Authentication Information. Therefore, the objects above are not shown fully. The "#
Filtered" tag in the "source:" attribute tells you that the object was filtered. From here on,
we wil l use the "-B" flag in most queries. This wil l retrieve the full objects as they are
stored in the database itself.

!
You can also look for smaller inetnum objects corresponding to sub-ranges that are
completely contained within a given range. This is a more specific query. You can use this

on an allocation to look for ranges that have no other assignments. To do this, use the "-
m" flag.
- B - m 10.11.0.0 - 10.11.255.255

!
You wil l get a reply that looks something like this:

!
% Information related to '10.11.11.0 - 10.11.11.255'

!
!
inetnum: 10.11.11.0 - 10.11.11.255
netname: Example - Network
descr: This is a fictitious assignment for the
descr: End- User called "Example"
country: GB
admin - c: JS1- TEST
tech - c: JS1- TEST
status: ASSIGNED PA
notify: john.smith@example.com
mnt - by: EXAMPLE- MNT
mnt - lower: EXAMPLE- MNT
mnt - routes: EXAMPLE- MNT
changed: john.smith@example.com 20051125
source: TEST

% Information related to '10.11.13.0 -

10.11.13.255' inetnum: 10.11.13.0 - 10.11.13.255
netname: Example - Network - 2
descr: This is another fictitious assignment for the
descr: End- User called "Example"
country: GB
admin - c: JS1- TEST
tech - c: JS1- TEST
status: ASSIGNED PA
notify: john.smith@example.com
mnt - by: EXAMPLE- MNT
mnt - lower: EXAMPLE- MNT
mnt - routes: EXAMPLE- MNT
changed: john.smith@example.com 20051125
source: TEST

!
!
This is a one-level more specific query. This means that the largest inetnum object that is
completely contained within the given range is returned.

!
In this example, the IP addresses 10.11.12.0 - 10.11.12.255 are not assigned and are
available. You wil l need to find an available range to do the exercise in the next section.

!
If you want to see all inetnum objects completely contained in a given range, you can
use the "-M" flag:

This wil l return all levels of inetnum objects in the range. This can return an extremely
large number of objects, but can be useful for finding all of the inetnum objects for a
portion of the Internet.

!
- M 10.0.0.0 - 10.255.255.255

!
This wil l return all levels of inetnum objects in the range. This can return an extremely
large number of objects, but can be useful for finding all of the inetnum objects for a
portion of the Internet.

!
3.7 Recording Network Assignments

!
Now that all of the objects necessary for an inetnum object have been created and
protected and you have located an appropriate range of IP numbers, you can create the
inetnum object itself. It should be noted that this method of 'finding' IP ranges to 'use' is
only for test purposes in the TEST Database. Here you can create any inetnum objects for
testing purposes, even if you have no authority over that range.

!
To create a new inetnum object in the database:

!
1. As before, choose the TEST Database as source, then click on [Add] to create a new
inetnum object:

!

!
2. Use the object editor to enter your network information. The following
attributes are worth mentioning:

! For the "inetnum:" attribute, enter the IP range that you want to register. Since this
is just for the TEST Database, it doesn't have to be a range that is really allocated
to your organisation. You can use any available IP range. Follow the instructions
in section 3.6 Locating Network Assignments to find an available IP range in the
TEST Database.

! For the "admin-c:" and "tech-c:" attributes, use the nic-hdl of your person object.
! For the "status:" attribute use 'ASSIGNED PA'.
! For the "notify:" attribute, use the e-mail address where you wish to be notified of

any updates to this object.
! For the "mnt-by:" or any other "mnt-* :" attribute, use the name of your

maintainer.

You can get a full explanation of the syntax and meaning of all the attributes in this object
by querying for:

!
- v inetnum

!
This wil l work for any object type.

!
Once again, you wil l need to provide authentication for your maintainer to create this
object. Add your maintainer password to the field "password:". You can find out how to
do this in Section 3.5 Protecting Your Contact Information.

!

!
The creation of new inetnum objects must also be authorised hierarchically. This means
that while creating an inetnum object, the authentication for the one-level less
specificinetnum object (encompassing IP address range) is also required.

!
The "mnt-lower:" attribute in inetnum objects allows you to specify a specific maintainer
for the creation of more specific (sub-assignments) inetnum objects.

!
To find out for which specific maintainer you must provide authentication, do the
following:

! Query the RIPE Database for the one-level less specificinetnum object:
!
- l [your IP range]

! Look for the mntner object referenced in the "mnt-lower:" attribute. If there is no
"mnt-lower:" attribute, the mntner object referenced in the "mnt-by:" attribute is
used.

!
For this specific example, querying for the one-level less specific object (-l 10.11.12.0 -
10.11.12.255) shows that it has:

!
mnt - lower: TEST - DBM- MNT

!
To allow users to freely create inetnum objects in the TEST Database, we have published
the password for this maintainer. You can find it in the mntner object itself:

!
mntner: TEST- DBM- MNT
descr: Mntner for TEST DBM objects.
admin - c: AA1- TEST
tech - c: AA2- TEST
auth: MD5- PW 1N2zhyJ3g$hzX7XTL84DtBkCWhBZE2c/
remarks:

* remarks: Password is "emptypassword" without the quotes.
remarks:

* mnt - by: TEST- ROOT- MNT

referral - by: TEST- ROOT- MNT
remarks: This is an automatically created object.
source: TEST # Filtered

!
To pass the hierarchical authentication, you need to add an extra "password:" field to the
object update with the password from TEST-DBM-MNT:

!

!
3. See below for an example of a new inetnum object. Click on Submit Update.

!

!
4. Wait for the acknowledgement to return from the whois database. If your update was
successful, you wil l get a reply containing something like the following:

!
Create SUCCEEDED: [inetnum] 10.11.12.0 - 10.11.12.255

If there was an error, the acknowledgement wil l tell you what errors were found. For
example, it may contain the following:

!
Update FAILED: [inetnum] 10.11.12.0 - 10.11.12.25 5
***Error: Syntax error in object

!
5. If it is successful, the e-mail address in the "mnt-nfy:" attribute of your mntner object
wil l receive an e-mail with the details of the new object.

!
3.8 Modi fying the INETNUM object

!
You can modify information in your inetnum object. You might need to do this if the
technical contact has changed and is now represented by the person object "MJ3-TEST".
(You must first create a new person object before you can follow this example.) To
modify an existing object, do the following:

!
1. Click on [Edit] in webupdates. In the text box, enter one IP address of the inetnum
object range, the full IP range, the "netname:", or even the name from the referenced
person object(s). Click on Edit Object.

!

!
2. From the "Search Results" list, select your inetnum object and click on Edit.

!

!
3. Using the object editor, change the "tech-c:" attribute to the new person object. Add a
"notify:" attribute, so the new technical contact wil l be notified when the inetnum object
is modified.

!
You also need to include the password for your maintainer so that the modification is
authorised, as well as a new "changed:" line to keep track of the history of modifications
to the object. The new "changed:" line must follow all existing ones.

!
Note: The hierarchical authorisation is only required for creation of inetnum objects, not
modification. You do not have to include the second password (from the less-specific IP
block) in this update.

!

You cannot change the primary attribute of the object (inetnum: 10.11.12.0 -
10.11.12.255). The database wil l consider this to be a creation of a new object.

!
4. Click on Submit Update to process this:

!

!
5. Wait for an acknowledgement from the database. This wil l tell you if your update was
successful. If there was an error, the message that you receive wil l tell you what was
wrong.

!
6. The e-mail address in the "notify:" attribute of the original object wil l be sent a
message with the details of the change. In a similar way, a notification e-mail wil l be sent
to the "mnt-nfy:" of the maintainer.

3.9 Deleting Objects
!
Sometimes you no longer need objects that you maintain. You should delete these. For
example, if an assignment is no longer used you should delete the inetnum object and all
person and mntner objects that are referenced only from that object.

!
To delete an existing object:

!
1. Select the object that you wish to remove using the [Edit] option in webupdates.
Follow steps 1 and 2 in Section 3.8 Modifying the INETNUM Object to query for this
object and present the object details.

!
2. In the object editor, do not change any of the attributes. If the object submitted is not
an exact copy of the one stored in the RIPE Database, the deletion wil l fail.

!
Add only a "password:" field to authenticate you as the valid maintainer. Deletion of
objects in the RIPE Database/TEST Database must also be authorised.

!

!
3. At the bottom of the editor page, enter the reason for this object deletion in the Reason
box. Click on Delete Object, when done.

!

!
This wil l automatically submit the update for processing to the TEST Database adding a
line in the format:

!
delete: [reason for deletion]

!
This indicates that this object is to be deleted from the database.

Example of a deletion:

!

4. Press Submit Update.
!
5. Wait for an acknowledgement from the database. This wil l tell you if your deletion was
successful.

6. The e-mail addresses in the "notify:" attribute of the object, as well as the "mnt-nfy:"
attribute of the mnt-by: mntner,attribute of the mnt-by: mntnerwil l receive a message
with the details of the deletion.

!
Objects that are referenced by other objects cannot be deleted. For example, a mntner
object cannot be deleted while it is used in "mnt-by:" or any other attribute. You can find
the references to a mntner object by using an inverse query. Type the following in the
query window, substituting your mntner object:

!
- i mnt - by,mn t - lower,mnt - routes,mnt - domains,mnt - re f - r EXAMPLE- MNT

!
This wil l return all of the objects that reference EXAMPLE-MNT. The "-i" flag requests
the inverse query, and the "mnt-by,mnt-lower,mnt-routes,mnt-domains,mnt-ref" specify
which attributes you want to look at. There must not be a space after any of the commas.
The "-r" disables recursion (associated objects wil l not be displayed).

Before you can delete a mntner object, you must remove all references to it.

For example, if you have the following mntner and person objects:
% Information related to 'EXAMPLE - MNT'

!
mntner: EXAMPLE- MNT
descr: Sample maintainer for example
admin - c: JS1- TEST
tech - c: JS1- TEST
upd - to: john.smith@example.com
mnt - nfy: john.smith@example.com
auth: MD5- PW 1wCDUXtMe$MptgAFcPa3sy9QqQnbX4X/
notify: john.smith@example.com
abuse - mailbox: abuse@example. com
mnt - by: EXAMPLE- MNT
referral - by: TEST- DBM- MNT
changed: john.smith@example.com 20051104
source: TEST

% Information related to 'JS1 -

TEST' person: John Smith
address: Example LTD

High street
12 St.Mery
Mead Essex,
UK

phone: +44 1737 892 004
e- m ail: john.smith@example.com
nic - hdl: JS1- TEST
mnt - by: EXAMPLE- MNT
remarks: *******************************
remarks: This object is only an example!
remarks: ************** *****************
abuse - mailbox: abuse@example.com
changed: john.smith@example.com 20051104

changed: john.smith@ex ample.com 20051109
source: TEST

!
The mntner "EXAMPLE-MNT" cannot be deleted, because it is referenced by the
person "JS1-TEST". The person "JS1-TEST" cannot be deleted, because it is referenced
by the mntner "EXAMPLE-MNT". To delete these objects, do the following:

!
1. Modify the person object, and remove the "mnt-by:" attribute. This removes all

protection, but this is not a security issue, because the object wil l be deleted.
2. Delete the mntner object.
3. Delete the person object.

!
(Please remember to delete all objects you created in the TEST Database while doing
these exercises.)

!
!
!

4.0 Extr a Features
!
4.1 Keeping a Password in webupdates Memory

!
If you want to use your maintainer authentication password in several updates, you can
save it for a specified amount of time.

!
To do this:

!
1. Before starting to update any of your objects, click on the [Authori sation] option.

!
2. Type in your password and select the amount of time that you want to keep your
password in memory.

!

!
3. Click on Register

!
You can now start editing your objects. From here on, and for however long that you
specify, all updates submitted through webupdates from your computer wil l automatically
include the password you entered.

!
4.2 Edit an Object in Text-Based View Using webupdates

Using webupdates, you can edit an object in text-based mode, instead of the field-based
mode used so far. This can be helpful in situations when copy-paste operations are
needed.

!
This is done using the Switch View option. It allows you to switch between 'field-based'
and 'text-based' editing.

!
For example, if you are editing an object as shown below:

!

!
Pressing the Switch View button allows you to switch to text-based mode:

!

In this mode, you can edit the object as free text, including adding and removing
attributes to the object.

!
Pressing Switch View once again switches back to the field-based mode. Pressing
Submit Update submits your update to the RIPE Database.

!
You can switch between both edit modes while editing an object. However, please notice
that webupdates wil l only let you switch from text-based mode to field-based mode, if
there are no syntax errors in the object.

!
4.3 Updates By E-mail

!
Another way of updating objects in the RIPE/TEST Database is by using e-mail. This is
useful if you need to update several objects at the same time.

!
You should send updates for the TEST Database to < test-dbm@ripe.net>. We
automatically process all updates sent to this e-mail address, no human handling is
involved.

!
Follow these steps when you prepare your e-mail :

!
1. Include the complete objects that you wish to update (create, modify or delete) in

the e-mail, with at least one blank line between each object, and completely
aligned to the left (no space characters at the beginning of the lines). Please don't
include any blank lines in between the attributes of any object, as this wil l prevent
it from being recognised.

2. If you want to delete an object, include the complete object exactly as stored in
the RIPE Database and add an extra field to the object with the syntax:

!
delete: [reason for deleting]

3. Include in the e-mail, all the clear-text passwords needed to perform the updates,
with the following syntax:

!
password: [clear-text password]

!
You need only include each cleartext password once in the message, even if it is
required by several objects.

4. Send your e-mail to <test-dbm@ripe.net >
!
Here is an example of an e-mail update to the TEST Database:

!
inetnum: 10.11.12.0 - 10.11.12.255
netname: Example - Network
descr: This is a new fictitious assignmen t

for the end - user called "Example"
country: NL
admin - c: JS1- TEST
tech - c: MJ3- TEST
status: ASSIGNED PA
notify: john.smith@example.com
notify: mark.johnson@ripe.net
mnt - by: EXAMPLE- MNT
mnt - lower: EXAMPLE- MNT
mnt - routes: EXAMPLE- MNT
changed: john.smith@example.com 20051129
changed: john.smith@example.com 20051130
source: TEST
delete: IP assignment has been cancelled

!
person: John Smith
address: Example LTD

High street
12 St.Mery
Mead Essex,
UK

phone: +44 1742 812 991
e- mail: john.smith@example.com
nic - hdl: JS1- TEST
mnt - by: EXAMPLE- MNT
remarks:

remarks: This object is still an example, but the phone has
changed!
remarks:
** ************* abuse -
mailbox: abuse@example.com
changed: john.smith@example.com 20051104
changed: john.smith@example .com 20051109
changed: john.smith@example.com
source: TEST

!

password: this is my clear - text password, really!
!

Af ter your update has been processed, you wil l receive the results by e-mail. The reply
wil l tell you which objects were updated successfully and which ones failed. For the
objects that failed, you wil l get an explanation with the errors. This is similar to what is
shown in the webupdates report.

!
4.4 Whois Client

!
You can also perform queries on the database by using a whois software client.

!
There is a whois client, developed by the RIPE NCC, available for free download. [3]

To perform queries on the TEST Database, use the syntax:

whois –h test-whois.ripe.net <query-text>
!

Where <query-text> is the full query text that would be entered in the web query box
shown in Section 2.1 Web Queries.

!
4.5 Import ant Query Flags

!
Here is a list of commonly used flags that can be useful when querying the RIPE
database. Please note that these flags are case-sensitive.

!
General query flags:

!

Disables the default query behaviour of filtering the "notify:",
"changed:" and "e-mail:" attributes, to protect users from contact

-B abuse. This flag is helpful for retrieving the objects exactly as they
are stored in the RIPE Database. It is important to use this flag when
updating database objects by e-mail, to prevent information from
being lost in the update.

!
Disables the default query behaviour of recursion for contact
information after retrieving the objects that match the lookup key.

-r You should use this flag if you do not want to retrieve the person
and role objects that contain the contact information associated with
the object that you are querying for.

!
!
!
-t <object-type>

Requests a template for the specified object type. Using this flag
you can see all the possible attributes used in an object type as well
as their characteristics.

!
-v <object-type> Requests a verbose template for the specified object type. This flag

works as Ðt, but also gives you a detailed explanation of each
attribute, and the expected syntax. It can be very helpful when you
receive a syntax error while updating an object in the RIPE
Database.

!
!
!
!
-i <attri bute-
name><inverse-
key>

Perform an inverse query. This flag is useful to see in which objects
a certain object is referenced. For example:

!
- i mnt - by EXAMPLE- MNT

!
wil l show all the objects that are maintained by the maintainer
EXAMPLE-MNT.

!

IP range query flags:
!
!
!
-l <ip-lookup>

One-level less specific query. This returns the smallest inetnum
range that encompasses the entire IP range specified in the query,
excluding the exact match.

!
!
!
-L <ip-lookup>

All-levels less specific query. This returns all the less specific
inetnum objects that encompass the IP range specified in the query,
including the exact match.

!
!
!
-m <ip-lookup>

One-level more specific query. This returns the largest inetnum
ranges that are completely contained in the IP range specified in the
query, excluding the exact match

!
!
!
-M <ip-lookup>

All-levels more specific query. This returns all the levels of inetnum
objects contained in the IP range specified in the query, excluding
the exact match. This can return an extremely large number of
objects, depending on which IP range is used.

!
!
!
-x <ip-lookup>

Exact match query. This returns the inetnum object that exactly
corresponds to the IP range specified in the query. If no exact match
is found no objects are returned

!

In a default IP range query, without any of the flags mentioned above, the exact match
object wil l be returned. If no exact match is found, the one-level less specific inetnum
object wil l be returned.

!
!
!
!

To see a full list of all the flags that you can use when querying the RIPE Database, enter
'help' in the query box:

help
!
!
!

5.0 Using the Production RIPE Database
!
You should now have an understanding of the basic concepts of the RIPE Database and
be able to maintain your own data and perform queries. This section explains the
differences between the TEST Database and the RIPE Database.

!
For the RIPE Database:

!
1. Queries use a different search tool: http://www.ripe.net/whois

!

2. For queries using a whois client, connect to the server: whois.ripe.net

whois -h whois.ripe.net <query-text>

3. In webupdates, select RIPE Database as the source (default), by using the [Select
Source] option:

!

!
4. You should send e-mail updates for the RIPE Database to < auto-dbm@ripe.net >.

!
5. Objects in the RIPE Database use RIPE for both the "source:" attribute and the suffix
appended to "nic-hdl:" attributes.

!
6. When creating your mntner object in the RIPE Database, use RIPE-DBM-MNT for
the "referral-by:" attribute.

!
7. You cannot create inetnum objects in the RIPE Database unless you have received
authorisation from the LIR that holds the responsibilit y for that address range.

6.0 Where to Learn More
!
The following resources are available to help you use the RIPE Database.

!
6.1 Help

!
A query for "help" wil l return a full list of all of the 'flags' that you can use when you
query the database.

!
help

!
While we covered some of these in this document, there are many others.

!
To receive detailed information about an object type and all of its attributes, query for:

!
- v <object - type>

!
6.2 Database FAQ

!
The Database Frequently Asked Questions (FAQs) are available at:
http://www.ripe.net/info/faq/db/index.html

!

We frequently update this page with helpful information based on the needs of users and
new features offered by the software.

!
6.3 RIPE Database Documents

!
The definitive source of information for the RIPE Database is the database area of the
RIPE Document Store:
http://www.ripe.net/ripe/docs/database.html

!

Here you can find the latest versions of the RIPE Database Reference Manuals [1], which
contain detailed information about all of the topics covered in this guide, as well as other
relevant documents covering how to use the RIPE Database.

!
6.4 LIR Training Courses

!
The RIPE NCC provides training for Local Internet Registries. You can find more
information about this at:
http://www.ripe.net/training/

!

6.5 Specific Questions
!
If you have a specific question that has not been answered in this guide, send it to < ripe-
dbm@ripe.net>. A RIPE NCC customer service representative wil l answer your mail.

You can also post a question to the <db-help@ripe.net > mailing list. You can find
information about this list at:
http://www.ripe.net/mailman/listinfo/db-help/index.html

!
!
!

References
!
[1] RIPE Database Query Reference Manual
http://www.ripe.net/ripe/docs/db-query-manual.html

!

[3] Whois Client
You can find the latest version at:
http://whois.sourceforge.net/

