
IPv6 deployment at Xphone

Amos Rosenboim CTO Oasis communication technologies

- > Xphone & Oasis background
- Status and stats
- Technical details
- > Summary

Oasis background

♦ Oasis is a systems integrator specializing in xSP networks.

- ♦ We are in business since 2006.
- IPv6 is both a personal passion (past), as well as a business differentiator (present).
- We spend time and money training our staff and staying up to date.
- ◆ I like IPv6 because it reminds me of the early internet days

Xphone background

- Xphone is a provider of Long distance voice calls and ISP services.
- Recently won LTE spectrum tender and will add mobile services soon.
- Oasis built the network for Xphone in 2008 and is operating it since.
- The network is built using gear from Juniper (mainly), F5, Ericsson and Cisco.

Xphone background

IPv6 was added to the network since day 1.

- There was really no traffic other than our ping tests and some dancing turtles.
- About 100K subscribers, mostly DSL, but also cables and FTTH.
- Which means they exhausted their RIPE assigned IPv4 pool ~3 years ago and are doing CGNAT for most users.
 - This is when things started to get interesting, more on this later.

◆ IPv6 is deployed end to end within the Xphone network:

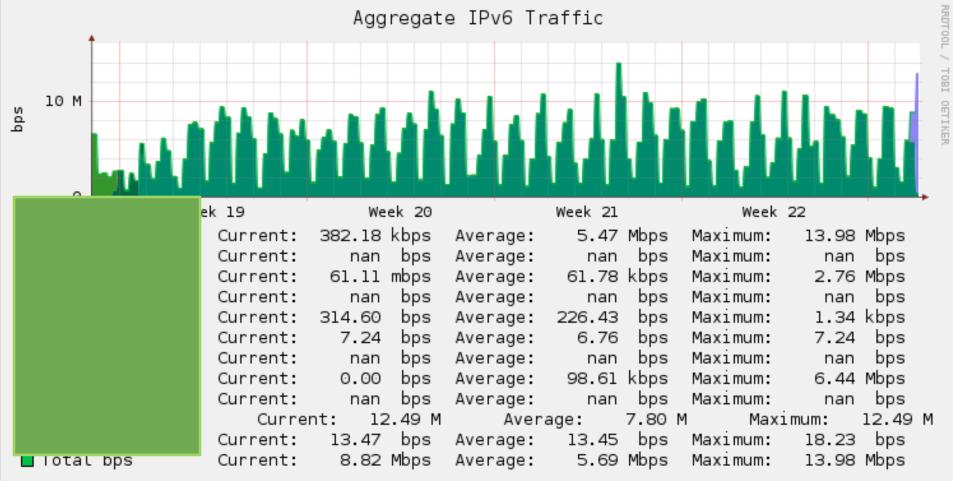
All core links.

♦ All transit and peering links if the other side support it.

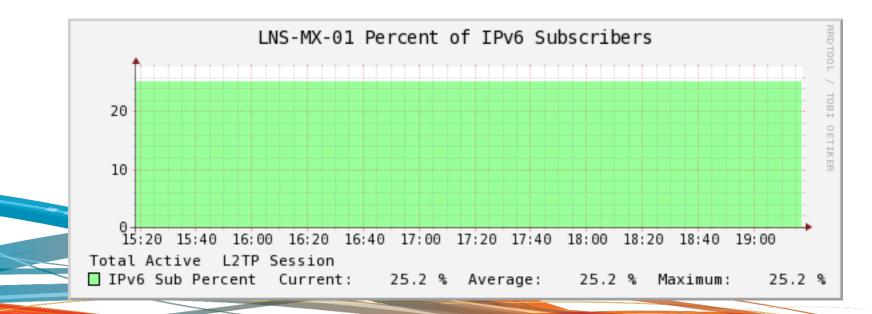
♦ For DSL and FTTH users, cables coming soon.

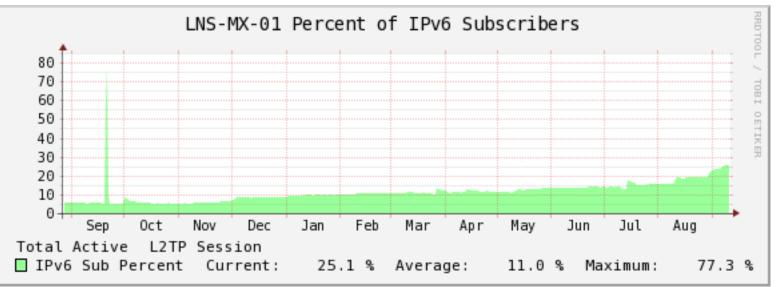
On Xphone caching/resolver DNS servers.

On Xphone Authoritative DNS servers.


On CDNs hosted within the Xphone network.

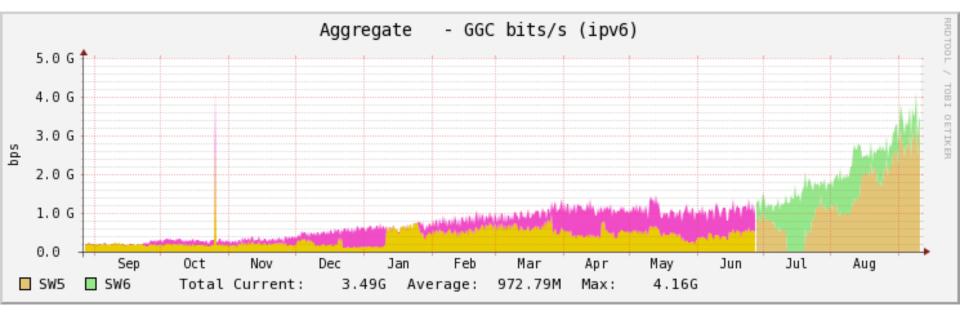
On Xphone mail server (obsolete).



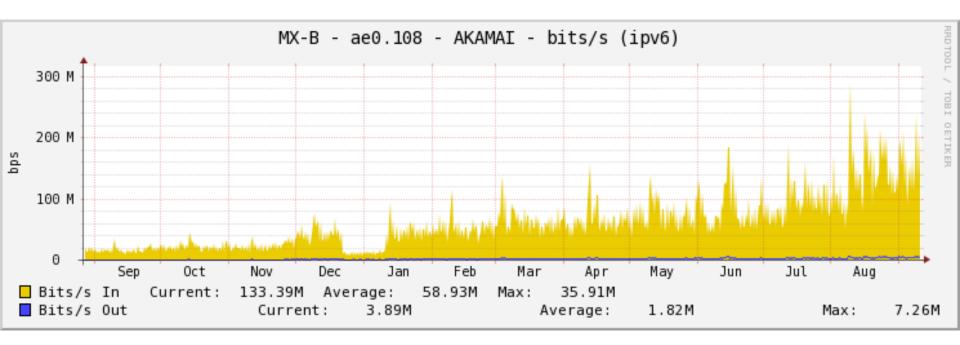

Code	Region	IPv6 Capable	IPv6 Preferred	Samples	Weight	Weighted Samples
XA	World	6.56%	5.81%	643,326,138	1	643,326,138
XD	Asia	2.38%	1.68%	342,473,601	1	341,840,993

Code	SubRegion	IPv6 Capable	IPv6 Preferred	Samples	Weight	Weighted Samples
XV	Western Asia, Asia	2.35%	0.84%	23,511,928	1	23,497,551

ASN	AS Name	IPv6 Capable	IPv6 Preferred
AS47956	XFONE XFone 018 Ltd	21.32%	19.93%







Technical details

- Core and peering (AKA routing and switching) are pretty straight forward and mostly work out of the box.
 - OSPFv3 as the IGP.
 - MP-BGP for customer routes (no 6PE/6VPE as the network does not implement MPLS).
 - P2P links are assigned /64, we might move to /126

Technical details

- The complexity (and problems) are in the access network.
 - PPP users get a /64 prefix for the WAN link and /56 for the LAN using DHCPv6-PD (/48 is available per request).
 - DNS is assigned through stateless DHCPv6 (other config flag).
 - IPv6 support is controlled by Radius attribute.
- Not surprisingly, the open source software (Radius and DNS) worked flawlessly.

Lessons learned: technical

- Many deployment options, use the one that addresses your biggest issues use others ad hoc.
- Addressing design is tricky, BCPs change frequently.
 - How to subnet my allocation ? on nibble boundaries
 - What prefix length to assign?
 - ♦ This is getting better these days.

Lessons learned: technical Access is messy (2012).

- Address assignment is challenging, RA alone doesn't work as it has no way to assign additional configuration parameters.
- DHCPv6 is getting to be OK, we are almost there (2012).
 (2016 we are there).
- Many software bugs:
 - Client ignores prefix in RA if it's not a /64.
 - DHCPv6 implementation only handle PD DHCP requests.
 - Wonderful interactions between Juniper BNG and DLINK CPE (Router lifetime=0)

Lessons learned: technical

Data center is surprisingly good, if you choose the right vendors (2012).

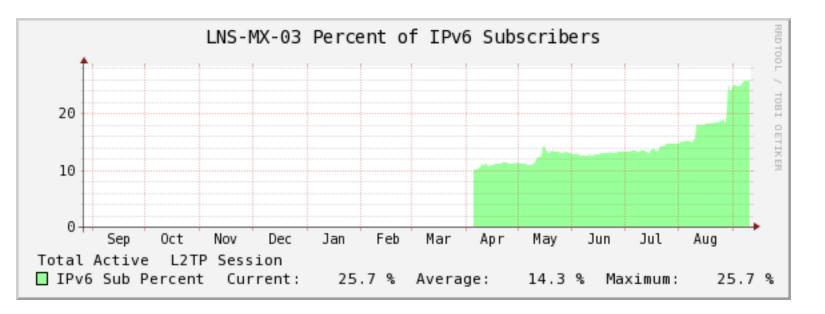
Some voodoo exists though (2016).

◆ CGNAT boxes are necessary, but evil:

- They get overloaded (bots??) implement connection limiting and connection rate limiting.
- Let's try to assemble fragmented SIP packets.
- What's your score on Xbox Live ?
- They cost quite a bit.

Lessons learned: non-technical

- The number one problem for IPv6 adoption is lack of content (2012).
 - There is no justification for this, for a content provider it's pretty easy to at least experiment with ipv6.
 - Global content providers (e.g Google, Facebook, Yahoo) have been a major force behind IPv6 in recent years, and are making a huge leap forward today (2012).
 - Israeli content providers ? (2012 & 2016)


Lessons learned: non-technical

- The second biggest issues is customer equipment readiness: (2012)
 PCs with old OS. (2016 - no longer an issue).
 - Home routers there are tens of thousands of unmanaged devices already deployed (2012).
 - What is the incentive to upgrade ? (TR69 might be your friend)
 - ◆ Mobile phones.(2016- this is no longer an issue).
- Globally, governments have been a driving force for IPv6, in Israel the government techs and regulators are very silent about it.

We are getting better...

Nightly upgrades of CPEs, thanks Yariv and Amir.

Summary

- Israel is way behind the leaders.
 - But we are heading in the right direction
 - And recently also in the right speed.
 - Hopefully by end of the year the game will completely change.
- Locally our next challenge is with the content providers and mobile operators.
- Implementation is still complex, and since no network is like other, you'll have your own problems and will need to gain your own operatiuonal experience.
- We are here to help ③

