
DNSSEC Key
Management and Zone

Signing
Olaf Kolkman

<net-dns@ripe.net>

$Revision: 1.14 $

DNSSEC Key Management and Zone Signing

Table of Contents
About this document ... v
1. Introduction .. 1

Background .. 1
2. Maintaining the Keys ... 2

Creating keys ... 2
Deleting keys .. 3
Rolling keys .. 4

Rolling Keys Signing Keys ... 4
Rolling Zone Signing Keys .. 6

3. Operating the signer .. 8
Stand Alone Signer ... 8
Client/Server .. 8

A. "Cookbook" .. 10
B. Installation and Configuration .. 12

Architecture .. 12
Installation .. 13

Prerequisites .. 13
Installing Net::DNS::SEC::Maint::Key and Net::DNS::SEC::Maint::Zone 14
Installing the zone signer client .. 15
Setting up your UNIX environment ... 15

Configuration .. 15
Configuring the SOAP based zone signer daemon 17

C. Where do your private keys live ... 18
D. How to make your key store/signer application more secure 19
Bibliography ... 21

iii

List of Figures
B.1. ssh configuration .. 12
B.2. Architecture outline .. 12
D.1. Securing the signer .. 19

iv

About this document
This documentation is under development. Just as the code this documentation came with
is a development release. Please help us catch serious bugs and let us know if you have
any suggestions for improvement.

v

Chapter 1. Introduction
Background

Zone Signing is the core of DNSSEC management. During the signing of a zone DNSSIG
resource records are created for all the data in the zone file. Using these signatures and
related public keys security aware DNS clients can verify the validity of DNS data. In addi-
tion to creating signatures the signing process introduces NSEC RRs that can be used to
validate the non-existence of data.

BIND 9.3.0 contains a tool called dnssec-signzone. This tool signs the zone and intro-
duces the NSEC RRs. To use this tool users have to create key pairs, keep track of these
keys and ensure proper usage.

This software suite is intended to ease key management issues. Using this tool people
maintaining signed zones do not have to maintain manual logs of which keys are in use.

The intention is that zone signing is "orthogonal" to the key maintenance. The maintkeydb
command is used to maintain the keys for a given zone while the dnssigner program will
sort out, based on the zone, which keys to use for signing, and which public keys to insert
into the zone. The persons running the dnssigner command is not required to have know-
ledge of which keys are in use, they do not even need "physical" access to the private key
material.

The maintkeydb tool offers some assistance to the key manager with maintaining consist-
ency during the key rollovers.

The key management procedures that are implemented are based on early experience.
See also the Internet Draft 'DNSSEC key operations' draft-kolk-
man-dnssec-operational-practices-01.txt
[http://www.ietf.org/internet-drafts/draft-kolkman-dnssec-operational-practices-01.txt] which
describes the key rollover described herein.

1

http://www.ietf.org/internet-drafts/draft-kolkman-dnssec-operational-practices-01.txt
http://www.ietf.org/internet-drafts/draft-kolkman-dnssec-operational-practices-01.txt

Chapter 2. Maintaining the Keys
maintkeydb is the tool designed to maintain keys used for DNSSEC operations. This
chapter intends to provide you with a number of examples of the use of maintkeydb while
performing certain key management tasks. (Also see Appendix A, "Cookbook" if you think
this chapter is a little too verbose.)

It is assumed that the software is installed on a machine on which the private key are
stored. We will refer to as the signer box or shorter, the box. Once the box is configured
you can start maintaining your keys. The program maintkeydb is your interface. It can be
used in two different ways. With direct command line arguments or as an interactive shell.

Use perldoc maintkeydb to read the documentation that comes with the tool itself.

Creating keys

> maintkeydb create help
Purpose: create new keys
You can choose to generate a ksk, a zsk or both keys.

If keys are first create for a zone then multiple zone signing keys
are created, thereby bootstrapping the prerequisites for automatic
rollovers using the rollovers command. The system will not create keys
if it thereby might disable automatic rollover. Use "force" to force
creation of keys.
The usage is as follows:
create ["force"] <"zsk"|"ksk"|"both"> <RSASHA1|DSA|RSA|RSAMD5> <size> <zone[[zone]...]>

maintkeydb create will create one key signing key and two zone signing keys will be cre-
ated. One ZKS set as "active" which means it is used for signing, and one set as "pub-
lished" which means it is not used for signing zone data. This particular set of keys is cre-
ated so that the prerequisites for a successful key rollover are met.

bash $ maintkeydb create both RSASHA1 1024 example.com
Created 3 keys for example.com

bash $ maintkeydb list example.com
example.com RSASHA1 25379 ZSK published (0d00h00m)
example.com RSASHA1 25589 ZSK active (0d00h00m)
example.com RSASHA1 58140 KSK active (0d00h00m)

It could well be that you would like to have the zone signing key and the key signing key of
different length. In that case you will have to specify either zsk or ksk instead of both in the
line above.

Instead of using maintkeydb the command line you can also use it as a shell. Below is an
example.

maintkeydb -i
Command? >create
Force creation?
[skip|force] > skip
Create a KSK, a ZSK or both?
type > ksk
Algorithm?
algorithm > RSASHA1

2

Key Size?
keysize > 2048
Enter one or more zone names
zone(s) > example.net
Created 1 key for example.net

Command? >list
active, inactive, rollover or published keys?
state > allstates
KSK or ZSK?
type > both
Enter one or more zone names
zone(s) > all
example.com RSASHA1 25379 ZSK published (0d00h01m)
example.com RSASHA1 25589 ZSK active (0d00h01m)
example.com RSASHA1 58140 KSK active (0d00h01m)
example.net RSASHA1 10320 KSK active (0d00h00m)
Command? >create zsk RSASHA1 1048 example.net
Created 2 keys for example.net

Command? >list allstates zsk
Enter one or more zone names
zone(s) > all
example.com RSASHA1 25379 ZSK published (0d00h02m)
example.com RSASHA1 25589 ZSK active (0d00h02m)
example.net RSASHA1 08906 ZSK published (0d00h00m)
example.net RSASHA1 17639 ZSK active (0d00h00m)
Command? >exit
bash $

Deleting keys
There are two methods to delete keys. You can either delete keys by providing a zone
name, algorithm and key id or you can, more crudely delete all keys for a specific zone at
once. Use delete_id or delete_name respectively. Below are two examples of deleting
keys with maintkeydb, one in "shell" mode one from the command line.

bash $ maintkeydb -i
Command? >delete_id help
Purpose: Delete keys by keyid

Zone-Algorithm-KeyID uniquely defines a key. Use the list <zone> to
identify the keys. In shell mode command-line completion [tab] will show
you the available KeyIDs.
delete_id <zone> <RSASHA1|DSA|RSA|RSAMD5> <keyID[[keyID] ...]>
Command? >delete_id
Enter a zone name
zone > example.net
Algorithm?
algorithm > RSASHA1
Enter one or more KeyIDs?
keyID > [press TAB]
08906 10320 17639
keyID > 08906
Deleting: example.net RSASHA1 08906 ZSK published (10d21h02m)
Command? >list example.net
allstates both example.net
example.net RSASHA1 10320 KSK active (10d21h03m)
example.net RSASHA1 17639 ZSK active (10d21h03m)
Command? >exit
bash $

bash $ maintkeydb delete_name help
Purpose: Delete keys by name

To delete the KSK, the ZSK or just all keys for given algorithm and zones. Be careful
you will not be asked for confirmation.

Specfying at least one zone is mandatory.
delete_name <"zsk"|"ksk"|"both"> <RSASHA1|DSA|RSA|RSAMD5> <zone[[zone]...>
bash $ maintkeydb delete_name both RSASHA1 example.net
Deleting: example.net RSASHA1 10320 KSK active (10d21h05m)

Maintaining the Keys

3

Deleting: example.net RSASHA1 17639 ZSK active (10d21h04m)
bash $ maintkeydb list
example.com RSASHA1 25379 ZSK published (10d21h07m)
example.com RSASHA1 25589 ZSK active (10d21h07m)
example.com RSASHA1 58140 KSK active (10d21h07m)
bash $

Rolling keys
Rolling the key pairs is an operation that needs to be done on a regular basis. During a key
rollover one key pair gets replaced by another. During the rollover one has to take care of
the propagation of the key information through the DNS. Please refer to I-
D-dnsop-dnssec-operational-practices-01 for details of the key rollover scheme that has
been implemented.

There are two types of rollovers to consider. That of zone signing keys, an operation that
does not need 'external' interaction and can be done relatively frequently. The other type of
rollover is the rollover of keys signing keys. During that type of rollover public key informa-
tion needs to be "uploaded" to DNS parents or configured in verifiers. A key signing key
rollover will typically occur less frequently than a zone signing key rollover.

In general the rollover happens in two stages, during the first stage the preparations are
done. The new keys et has to propagate through the Internet. How fast that happens de-
pends on how fast the changes are applied to your zone (Through the signing operation),
how fast the zone is served by secondary servers and on the TTLs on the data previously
in your zone. That data may still live in distant caches (see I-
D-dnsop-dnssec-operational-practices-01 for the details).

The tools do not provide hooks to test the state of the DNS (yet). You have to verify that all
keys propagated to the Internet and wait for 2 TTLs before you engage in the second
stage.

Rolling Keys Signing Keys
One needs to interact with "external" parties when rolling Key Signing Keys. During the first
stage of the rollover a new Key Signing Key is introduced and the "old" key is marked as
being in "rollover" stage.

bash $ maintkeydb list example.com
example.com RSASHA1 25379 ZSK published (11d00h03m)
example.com RSASHA1 25589 ZSK active (11d00h03m)
example.com RSASHA1 58140 KSK active (11d00h03m)
bash $ maintkeydb rollover ksk-stage1 RSASHA1 example.com
bash $ maintkeydb list example.com
example.com RSASHA1 25379 ZSK published (11d00h04m)
example.com RSASHA1 25589 ZSK active (11d00h04m)
example.com RSASHA1 36252 KSK active (0d00h00m)
example.com RSASHA1 58140 KSK active (11d00h04m) (R)

The key marked as being in rollover will be deleted during stage2 of the rollover.

What you have to do now is make sure that your parent (the .com zone in this example
creates a new DS record to point to your new key signing key. To find out which keys you
will have to send to your parent you use the maintkeydb parent data command.

bash $ maintkeydb parentdata key example.com
example.com. 0 IN DNSKEY 257 3 5 (

AQPiQ9Mlv9qqsqxwrENJY/EP1vhRPedQzlX5
8p80OKKIpLUNU4dko+9nz3yyJ2YP/V76yAZC
SWwvdoXfWaTSB5lvO4+EzmLyCUu8ZizlD3jK
AG3QYMoFyfr1AajteQ5kdyKoCXawRLgVSgdc
J7BT/xzPHKlKgaJ96601otwKM1E8ML6HboTP
jw+Dx0YVYhU8F/Wh8Bf1vbI8drgnX0yxi9+V

Maintaining the Keys

4

kMx+FtvNO6i1MU2GVZp7j5CbACOhoSdK22U4
TpWUvG+IvulhZ6S6TjZFkwpq0xM0NecvE7Yn
WimUwgmth2HJTZJCzbOWRMIHz3XPX0MCMVww
+efOWnPFVlEy+V8vfunl
) ; Key ID = 36252

bash $

If your parent's registrar only accepts "DS" RRs you can alternatively specify ds instead of
key:

bash $ maintkeydb parentdata ds example.com
example.com. 0 IN DS 36252 5 1 f2fb1958f15832749ad25f5e9707abcb933a8162
bash $

If you want to verify what appears in your zone file you can issue the maintkeydb
showkeys command this will output the key set as it will appear in your zone file.

bash $ maintkeydb showkeys example.com

;;;;;; DNSKEY RRs for example.com ;;;;;;;;;
example.com. 0 IN DNSKEY 256 3 5 (

AQOz8oz5sm5CCu4gCZBCI0URL319aAkrAGU6
rPYqNq8e3MZ5AaE3NAPwYsc7RX60U9xLNwtj
qdnR0MjbilD1lXVAACdu5fm/B2xOhdx+8Q1a
+SFKvM9ndQeARwWsE3NSIQ2rANFTNkoT+tkg
6S6QSzdmpvh1ESgHUd91sP1M5yxsUw==
) ; Key ID = 25379 ZSK

example.com. 0 IN DNSKEY 256 3 5 (
AQO+fa+ITw4/aY5B0L7mRaCkeFMW0YFcodun
rYPhHnmu+2duUP/Z29mUW/MBEuaBCoXpzC7Z
ekaTpFx5t8MZ/2MsqtjhRifbE309Zgbo2fLC
vAFB7AAVpvsZdscTbQ/wNxS7m93q4WtyDDyh
IyV/KGvQ7eGRfd4GQVN8dhsgBpty5Q==
) ; Key ID = 25589 ZSK

example.com. 0 IN DNSKEY 257 3 5 (
AQPiQ9Mlv9qqsqxwrENJY/EP1vhRPedQzlX5
8p80OKKIpLUNU4dko+9nz3yyJ2YP/V76yAZC
SWwvdoXfWaTSB5lvO4+EzmLyCUu8ZizlD3jK
AG3QYMoFyfr1AajteQ5kdyKoCXawRLgVSgdc
J7BT/xzPHKlKgaJ96601otwKM1E8ML6HboTP
jw+Dx0YVYhU8F/Wh8Bf1vbI8drgnX0yxi9+V
kMx+FtvNO6i1MU2GVZp7j5CbACOhoSdK22U4
TpWUvG+IvulhZ6S6TjZFkwpq0xM0NecvE7Yn
WimUwgmth2HJTZJCzbOWRMIHz3XPX0MCMVww
+efOWnPFVlEy+V8vfunl
) ; Key ID = 36252 KSK (upload to parent)

example.com. 0 IN DNSKEY 257 3 5 (
AQPZOKdG8V8mf63picc28uNeAY5nwknkMkNT
oEbQsALnAC4tlMxgb7gs2mcL6z05qTLUIj9F
tmRO9tpfy7RTaM2XwHx2n9opLhDJYEbD4pYD
pGe+ktXKmLaSkjgIF9RvQ44sHpIIteqqakGr
T1Lavtj9IBl8V/Mvam55DLXFjtjV5w==
) ; Key ID = 58140 KSK (to be depricated)

bash $

or, if you want to see the KSKs in your keyset only use the ds option, that will only print the
key signing keys, as a bonus the DS RRs will be printed.

bash $ maintkeydb showkeys ds example.com

;;;;;; DNSKEY RRs for example.com ;;;;;;;;;
example.com. 0 IN DNSKEY 257 3 5 (

AQPiQ9Mlv9qqsqxwrENJY/EP1vhRPedQzlX5
8p80OKKIpLUNU4dko+9nz3yyJ2YP/V76yAZC
SWwvdoXfWaTSB5lvO4+EzmLyCUu8ZizlD3jK
AG3QYMoFyfr1AajteQ5kdyKoCXawRLgVSgdc
J7BT/xzPHKlKgaJ96601otwKM1E8ML6HboTP
jw+Dx0YVYhU8F/Wh8Bf1vbI8drgnX0yxi9+V
kMx+FtvNO6i1MU2GVZp7j5CbACOhoSdK22U4
TpWUvG+IvulhZ6S6TjZFkwpq0xM0NecvE7Yn
WimUwgmth2HJTZJCzbOWRMIHz3XPX0MCMVww
+efOWnPFVlEy+V8vfunl
) ; Key ID = 36252 KSK (upload to parent)

Maintaining the Keys

5

example.com. 0 IN DNSKEY 257 3 5 (
AQPZOKdG8V8mf63picc28uNeAY5nwknkMkNT
oEbQsALnAC4tlMxgb7gs2mcL6z05qTLUIj9F
tmRO9tpfy7RTaM2XwHx2n9opLhDJYEbD4pYD
pGe+ktXKmLaSkjgIF9RvQ44sHpIIteqqakGr
T1Lavtj9IBl8V/Mvam55DLXFjtjV5w==
) ; Key ID = 58140 KSK (to be depricated)

;;;;;; DS RRs for example.com ;;;;;;;;;
example.com. 0 IN DS 36252 5 1 f2fb1958f15832749ad25f5e9707abcb933a8162
; The next DS RR is an old one, it is to disappear
example.com. 0 IN DS 58140 5 1 877d2eeba0e626066bd8ee5e5099ab9c7e1e387d
bash $

Note the comments that indicate which keys are to be sent to the parent.

You will now have to wait until your parent has published the "new" DS RR and for the "old"
DS RR to expire from all the caches, that live somewhere on the Internet and are not under
your control. It will take at least the TTL value of the "old" DS RR as published by your par-
ent for that to happen. You may want to play safe and wait for the signature over the "old"
DS to be expired before pulling the DNSKEY it points to. Pulling the DNSKEY is done by
"stage2" of the rollover.

bash $ maintkeydb rollover ksk-stage2 RSASHA1 example.com
bash $ maintkeydb list example.com
example.com RSASHA1 25379 ZSK published (11d18h16m)
example.com RSASHA1 25589 ZSK active (11d18h16m)
example.com RSASHA1 36252 KSK active (0d17h13m)

You can verify that the key previously marked to be in "rollover" has now been removed.

Rolling Zone Signing Keys
The prerequisite for a zone signing key rollover is that there are two keys present, one is
set to active and is used for signing, the other is only published i.e. available in the DNS,
but is not used for signing. If you have used the "create" function with the default settings
the two keys should have been created.

Again you have to take into account that it takes a while before data published in the DNS
has reached all the clients. So do not roll to fast. The timing mostly depends on your TTL
settings.

We perform a stage one rollover using the interactive mode:

bash $ maintkeydb list example.com
example.com RSASHA1 25379 ZSK published (11d20h03m)
example.com RSASHA1 25589 ZSK active (11d20h03m)
example.com RSASHA1 36252 KSK active (0d20h00m)

Command? >rollover
Enter rollover stage?
rollover stage > zsk-stage1
Algorithm?
algorithm > RSASHA1
Enter one or more zone names
zone(s) > example.com
Command? >list
active, inactive, rollover or published keys?
state > allstates
KSK or ZSK?
type > zsk
Enter one or more zone names
zone(s) > example.com

Maintaining the Keys

6

example.com RSASHA1 25379 ZSK active (0d00h00m)
example.com RSASHA1 25589 ZSK published (0d00h00m) (R)
Command? > exit
bash $

You can tell that the key with key ID 25589, the key that was previously active is set to
"published" and has its rollover attribute set (the "(R)" behind the at the end). There is a
newly created key with ID 25379 that is set to active. The times are both "reset" to 0 as
these indicate the time since the last state change and both keys had a state change.

In the stage2 key rollover the published key with the rollover key will be deleted and a new
key will be published that is ready for introduction as a signing key in the future. We
demonstrate the stage two rollover in the command line mode.

bash $ maintkeydb rollover zsk-stage1 RSASHA1 example.com
There is a key marked as being rolled
You probably want to run zsk-stage2 for example.com (RSASHA1)
bash $ echo $?
6
bash $

Oops.. typo... you see the tool provides a warning and returns a non-zero return code.

bash $ maintkeydb rollover zsk-stage2 RSASHA1 example.com
bash $ echo $?
0
bash $ maintkeydb list example.com
example.com RSASHA1 25379 ZSK active (0d00h07m)
example.com RSASHA1 36252 KSK active (0d21h01m)
example.com RSASHA1 61760 ZSK published (0d00h00m)

Maintaining the Keys

7

Chapter 3. Operating the signer
Stand Alone Signer

The dnssigner is the application that uses the key store to sign zones. The intention is that
the "user" is not aware of which keys are currently being marked as "active", "passive" or in
"rollover" but just signs the zone. During the signing operation the appropriate set of public
keys will be added and the zone will be signed with the appropriate private keys.

The dnssigner command takes the following form:

dnssigner -h
dnssigner -V

General Flags
-h print this help message and exit
-V print version information and exit
-v increase verbosity

Client
zonefile name of the zonefile.

-o <origin> origin of the zone. If not supplied the name of the zone
will be used as origin.

-t print statistics of the signing process to stderr.

-s YYYYMMDDHHMMSS|+offset:
SIG start time - absolute|offset (now)

-e YYYYMMDDHHMMSS|+offset|"now"+offset]:
SIG end time - absolute|from start|from now (now + 30 days)

The arguments are similar BIND's dnssec-signzone except that key information is not
needed.

Client/Server
The same functionality can be provided through a "SOAP" based zone signer server-client
application. The client provides the zones and arguments while the server does all the
work, all communication is over a SOAP channel. Refer to the section called “ Configuring
the SOAP based zone signer daemon ” for how to configure the daemon.

The client has exactly the same arguments as dnssigner but needs the address and port
number of the server.

Usage:
dnssigner_client -H <host> -P <port> [-o <ORIGIN>] [-s <STARTDATE>] [-e <ENDDATE>] <ZONEFILE>
dnssigner_client -H <host> -P <port> -o <ORIGIN> (Zone file is fed through STDIN)
dnssigner_client -?

dnssigner_client takes (either from STDIN or from given file name) an unsigned
DNS zone file, passes it through DNSSEC Signer Appliance and puts the signed
zone file to STDOUT.

Options:

-? or -h Help. This message.

-H host Host on which the dnssigner_daemon process runs

-P port Port on which the dnssigner_daemon process runs

-o ORIGIN Origin. if file is supplied it is optional and
file name is taken as the origin.

-s STARTDATE Start date

8

-e ENDDATE End date

ZONEFILE DNS zone file

Operating the signer

9

Appendix A. "Cookbook"
Here we describe the steps to take when maintaining a zone.

Create keys

bash $ maintkeydb create KSK RSASHA1 2048 example.net
Created 1 key for example.net

bash $ maintkeydb create ZSK RSASHA1 1024 example.net
Created 2 keys for example.net

bash $

Use the signer to sign your zone and publish the signed zone in the DNS.

bash $ dnssigner example.com
Output written to :example.com.signed

After some time (say a few months) roll your zone signing keys.

bash $ maintkeydb rollover zsk-stage1 RSASHA1 example.net

Use the signer to sign your zone and publish the signed zone in the DNS. Wait until the
change has been picked up by all your secondary servers and then wait at least the the
maximum TTL value over all the records in your zone, then proceed with stage2.

bash $ maintkeydb rollover zsk-stage2 RSASHA1 example.net

Use the signer to sign your zone and publish the signed zone in the DNS.

Once ever so often (say once or twice per year) roll your key-signing keys

bash $ maintkeydb rollover ksk-stage1 RSASHA1 example.net

Use the signer to sign your zone and publish the signed zone in the DNS. Remember the
TTL on the DS record currently at your parent. (dig example.net DS) and upload the new
key that you obtain from the database with:

example.net. 0 IN DNSKEY 257 3 5 (
AQOv4Vvdv2K6zYhuc20+Kd0r9DbwEZamqig8
hthWSd02UF9MjWs2KRyYYGmMPfQktIwe6hyD
gxcvWKEvMKn1swJWRT/jWhU6VA4vTW8a8h60
E5p8und0vp3+67kz2cuZpzEaZlj4boj42kmX
SSHmCsS2BcmcwWPsEvEg3ikQFFT1VrCGIUl8
pUlJJLE+rczNND+9ab3eg4BzB1DTbRzHwkBj
+giX3KezJ92SVjK0kbm8BDj/QlkyaaxuJcjG
CjbJynIDL85ywdi66YYpGrELDuvyiDQ++os3
FfPslydIfZ6RDQMU1hrXPb/wJOwopIfxsR4/
Eqz5djr1cCHfehpLYTRx
) ; Key ID = 2526

example.net. 0 IN DS 2526 5 1 5aa9bff246e645776ab9cc3de130978df82e6090

Wait until your parent has published the new DS in all its authoritative servers and then at
least another TTL of the previous DS (you noted that above). Only then perform stage2 of

10

the KSK rollover:

bash $ maintkeydb rollover ksk-stage2 RSASHA1 example.net

Use the signer to sign your zone and publish the signed zone in the DNS and the rollover
is done.

bash $ dnssigner example.com
Output written to :example.com.signed

Note that the command issued is exactly the same, even after the rollover of the keys. The
whole issue of key maintenance has been seperated from the signing of the zone.

"Cookbook"

11

Appendix B. Installation and
Configuration
Architecture

See Figure B.2, “Architecture outline”.

We provide the a perl library(Net::DNS::SEC::Maint::Key) that implements a "key-
store". And a perl library(Net::DNS::SEC::Maint::Zone) that implements the interac-
tions between zonefiles and the keystore. The maintkeydb application implements the
user interface using the first library while dnssigner is the user interface for the
second.These software components can be integrated in the provisioning chain but it is
possible, and preferred, to use these components to build a key store/signer application
server.

The libraries can be used to build additional key management applications.

If the application server is properly set up getting access to the private keys will be non-
trivial for users that do not have physical access to the machine.

Using ssh magic as in Figure B.1, “ssh configuration”, access to the key store/signer ap-
plication can be provided through a dedicated interactive shell. That shell can be used to
perform key pair creation, rollovers and other key management tasks. Users of the shell do
not have access to the private key material.

Figure B.1. ssh configuration

Example content of ~/.ssh/authorized_keys2
consult the ssh documentation for details.

command="/usr/local/bin/maintkeydb -i",no-port-forwarding,\
no-X11-forwarding,no-agent-forwarding
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAA...zrPyXc

Zones can be signed through a SOAP based client/server application. The zone signer
uses the information stored in the key store to sort out which zones use which keys.

Figure B.2. Architecture outline

12

1Do not hesitate to contact the developer if you run into problems

The key store/signer application server can be build using a out of the box components. A
commodity PC with Linux and FreeBSD installed can be used. Some effort should be put in
securing the box. We'll give some suggestions later.

Installation
These are the instruction for setting up the system. If you are setting up a key store/signer
application server these instructions are relevant. See below for how to set up a zone sign-
ing client.

We assume that all installations are done in /usr/local your mileage may vary if you try
to install the software elsewhere.1

Prerequisites
First you have to make sure you have installed BIND 9.3.0 or more recent. It is important
that during the installation you have configured the package with the --with-openssl
configuration otherwise DNSSEC functionality will not be available. For example:

cd bind9source-dir/
./configure --with-openssl=/usr/local --prefix=/usr/local
make

On the key store/signer application server you will need to install a recent perl5 and you
will have to use CPAN to install a number of perl dependencies.

Installation and Configuration

13

2Other errors than these are an indication that things go wrong. During the tests of this bundle we constantly ran
into a problem with one of the more esotheric dependencies. During the install of the libwww-perl package a few
of the t/robottests. After digging around for some time we found that /etc/hosts contained the wrong IP ad-
dress mapping for our hostname.

We have made a "bundle" available together that will allow for "easy" installations of the
dependencies. Download the bundle's tar ball. And perform the following commands.

If you would like to install the perl dependencies manually than you can get a listing of
them by unpacking the bundle and issuing the command perldoc KeystoreSignerPre.

There are at least two non-perl libraries that you have to have installed for all these mod-
ules to be installed succesfully. You will need openssl that is used by the perl crypto librar-
ies Since there is some XML library dependency you will have to have the expat libraries
installed on your system. These are available on sourceforge [expat.sourceforge.net].

> tar -xvzf Bundle-Private-KeystoreSignerPre-0.001_1.tar.gz
> cd Bundle-Private-KeystoreSignerPre-0.001_1
> perl Makefile.PL
> sudo make install
> sudo perl -MCPAN -e 'install Bundle::Private::KeystoreSignerPre'

Just enter the defaults for any questions asked during the installation process.

During the installation process you may see warnings like:

The most recent version "2.07" of the module "File::Copy"
comes with the current version of perl (5.8.4).
(...)

Bundle summary: The following items in bundle
Bundle::Private::KeystoreSignerPre had installation problems:

File::Basename File::Copy File::Basename

it is safe to ignore these if you have a recent version of perl.2

Installing Net::DNS::SEC::Maint::Key and
Net::DNS::SEC::Maint::Zone

Once you have the prerequisite bundles installed you can start installing
Net::DNS::SEC::Maint::Key and Net::DNS::SEC::Maint::Zone. You will need to install the
packages in the above order. What follows is an example install session. Except for the
version numbers, which may be different, you can just cut and paste these commands.

> tar -xvzf Net-DNS-SEC-Maint-Key-0.010_1.tar.gz
> cd Net-DNS-SEC-Maint-Key-0.010_1
> perl Makefile.PL PREFIX=/usr/local
> make
> make test
> sudo make install

> tar -xvzf Net-DNS-SEC-Maint-Zone-0.010_2.tar.gz
> cd Net-DNS-SEC-Maint-Zone-0.010_2
> perl Makefile.PL PREFIX=/usr/local
> make
> make test
> sudo make install

You should not get complaints about missing dependencies when you run perl Make-

Installation and Configuration

14

expat.sourceforge.net

file.PL. During make test a number of tests are run. They will surely fail if dnssec-keygen
and or openssl are not in your path.

Installing the zone signer client
Since the zone signer client has fewer dependencies the zone signer client script can be
installed as a separate package. This package only depends on IO::Handle,
File::Basename, Getopt::Std and SOAP::Transport::HTTP .

If you are uncertain the following command should get you all set:

perl -MCPAN -e 'install qw(IO::Handle File::Basename SOAP::Transport::HTTP);'.

Note that Getopt::Std is excluded. It comes with recent perl versions.

The installation package can be created from the Net-DNS-SEC-Maint-Zone distribution by
running the create-client-dist.sh command.

> tar -xvzf Net-DNS-SEC-Maint-Zone-0.010_2.tar.gz
> cd Net-DNS-SEC-Maint-Zone-0.010_2
> ./create-client-dist.sh

This will create a tar ball named
Net-DNS-SEC-Maint-ZoneSigner-0.00_01.tar.gz(version number probably dif-
fers). Copy this file to the appropriate machine and install.

> tar -xvzf Net-DNS-SEC-Maint-ZoneSigner-0.00_01.tar.gz
> cd Net-DNS-SEC-Maint-ZoneSigner-0.00_01
> perl Makefile.PL PREFIX=/usr/local
> make
> make test
> sudo make install

Setting up your UNIX environment
In order for the tools to work you will have to set up a couple of directories in which the
private key material will be kept.

All users of the key store will need to be member of a specific group we use the group
dnssecmt as the example throughout this document. Make sure you edited /etc/group
to include the uid's you want to allow access to private key material.

Create the needed directories and set the appropriate permissions by issuing the following
commands.

mkdir /usr/local/var/dnssec_maint/
mkdir /usr/local/var/dnssec_maint/DNS_KEY_DB
mkdir /usr/local/var/dnssec_maint/log
mkdir /usr/local/var/dnssec_maint/tmp
chmod -R o-rwx /usr/local/var/dnssec_maint
chgrp -R dnssecmt /usr/local/var/dnssec_maint
chmod -R g+rwX /usr/local/var/dnssec_maint

Configuration

Installation and Configuration

15

Once you have installed the software you have to configure your key store/signer. Both the
key store and and the signer depend on the same configuration settings.

The Net::DNS::SEC::Maint::Key package came with dnssecmaint-config. You can use this
program to install a configuration file. At a later stage you can use this program to modify
your configuration.

dnssecmaint-config is called without arguments. It will ask for a few configuration settings.
In most cases the defaults make sense. What follows is a example session. The program
must be run with write permissions for the directory where you want to store the configura-
tion file (default location for this file will be /usr/local/etc/dnssecmaint.conf)

This is a program to write Net::DNS::SEC::Maint configuration files.
It is typically used at install time or to create alternative configurations.
Type 'exit' to leave the program.

conffile specifies where the configuration file can be found
conffile is set to /usr/local/etc/dnssecmaint.conf
Enter value for conffile>/usr/local/etc/dnssecmaint.conf

dns_key_db Path to the directory in which the key database is kept
dns_key_db is set to /usr/local/var/dnssec_maint/DNS_Key_DB
Enter value for dns_key_db>/usr/local/var/dnssec_maint/DNS_Key_DB

dnssec_keygen full path to BIND's dnssec-keygen command with optional arguments
This vallue is currently set using the DNSSECMAINT_DNSSEC_KEYGEN
dnssec_keygen is set to /usr/local/sbin/dnssec-keygen -r /dev/urandom
Enter value for dnssec_keygen>/usr/local/sbin/dnssec-keygen -r /dev/urandom

dnssec_signzone full path to BIND's dnssec-signzone command with optional argume
nts
This vallue is currently set using the DNSSECMAINT_DNSSEC_SIGNZONE
dnssec_signzone is set to /usr/local/sbin/dnssec-signzone -r /dev/urandom
Enter value for dnssec_signzone>/usr/local/sbin/dnssec-signzone -r /dev/urandom

dsakeysizekey Default size for DSA Key Signing Keys
dsakeysizekey is set to 1024
Enter value for dsakeysizekey>1024

dsakeysizezone Default size for DSA Zone Signing Keys
dsakeysizezone is set to 512
Enter value for dsakeysizezone>512

logdir specifies the directory under logfiles are stored
logdir is set to /usr/local/var/dnssec_maint/log
Enter value for logdir>/usr/local/var/dnssec_maint/log

maintgroup Name of group that has R/W access to the dnssecmt
maintgroup is set to dnssecmt
Enter value for maintgroup>dnssecmt

rsakeysizekey Default size for RSA Key Signing Keys
rsakeysizekey is set to 2048
Enter value for rsakeysizekey>2048

rsakeysizezone Default size for RSA Zone Signing Keys
rsakeysizezone is set to 768
Enter value for rsakeysizezone>768

tmpdir Path to the directory in which temporary files are stored
tmpdir is set to /tmp/
Enter value for tmpdir>/tmp/
Save configuration file to:/usr/local/etc/dnssecmaint.conf? (yes|no)>yes
To use this configuration file you have to set DNSSECMAINT_CONFFILE=/usr/local/e
tc/dnssecmaint.conf

The last line is particularly important. You will have to set the DNSSECMAINT_CONFFILE to
point to the relevant configuration file. You are best off if you do this for all users of the sys-
tem.

On a related note. Most configuration parameters can be overwritten by environment vari-
ables. This is essentially what the dnssecmaint-config does internally. At startup it tries to

Installation and Configuration

16

establish the path to BIND's dnssec-keygen program and then sets DNSSEC-
MAINT_DNSSEC_KEYGEN. When the dnssecmaint-config asks for the path for dnssec-key-
gen you see a warning that the default presented is read from the DNSSEC-
MAINT_DNSSEC_KEYGEN environment varialle.

Finally a warning. The system defaults to the use of /dev/urandom as the random num-
ber generator. The reason for doing so is that on a server without mouse and/or keyboard
the ammount of entropy gathered will not be enough to keep /dev/random going. /
dev/urandom are pseudo random and not the best choice for key generation. Also see
truly_random

Configuring the SOAP based zone signer
daemon

We provide dnssigner for signing zones while having direct access to the filesystem on
which the private keys live. This is often not the model under which the system is operated.
Therefore we also provide an dnssigner_daemon and dnssigner_client application that
communicate to each other over a "SOAP" based connection (see Figure B.2,
“Architecture outline” and the section called “Installing the zone signer client”).

You should start the daemon at system initialization. Start with two parameters the IP ad-
dress and the port the daemon should start on.

dnssigner_daemon -h ipaddress -p portnumber

Whenever you run dnssigner_daemon you will have to use the same IP address (or
hostame) and portnumber.

Installation and Configuration

17

Appendix C. Where do your private
keys live

The system has been designed to be used as a frontend to BIND's dnssec-keygen and
dnssec-signzone. Any person with shell access and appropriate permissions will have ac-
cess to the private key material. The maintkeydb tool will obfuscate the private key material
and if maintkeydb is used as a "user shell" than users will not be able to see the private
key material.

The key material is stored in the directory configured in the configuration file under
dns_key_db this directory defaults to /usr/local/var/dnssec_maint/DNS_Key_DB.

For each zone for which keys are maintained there is a sub directory with the name of that
zone. In these zones there is on directory called Expired_keys. This is where keys are
moved to when deleted. So in case of accidental deletion somebody with physical access
can still get to the private key material.

In addition to the Expired_keys directory the zone specific directories contain files called
K<zonenzme>.+<algid>+<keytag>.(adm|attr|key|private). The files with the
extension key and private contain the public and the private key as generated by
dnssec-keygen the file with the extension attr contains "attribute" information needed to
operated the key store, while the file with extension adm contains some administration and
audit information.

You should replicate the database directory on a regular basis. Either by using a mirrored
disk or by making regular backups on tape, floppy or optical media. Note that the backup
media contain private key material and must thus be protected against disclosure or theft.

One of the methods to protect the private key material is to store it on an encrypting file
system (for example CFS [http://www.crypto.com/software/]). When using a encrypting
filesystem backups or replications can be made from the encrypted private keys and the
private keys are better protected against physical theft.

18

http://www.crypto.com/software/

Appendix D. How to make your key
store/signer application more secure

The only thing we provide is the software to create the key store and the dnssigner that in-
teracts with it. It is your own responsibility to create an application server that suits your se-
curity needs. Below we provide some hints on what sort of solutions you can apply to make
your server more secure. The assumption is that dnssigning has to be done in an opera-
tional environment and on a regular basis. "Sneakernet" is not an option.

Random Number Generator The system defaults into using /dev/random this choice
was made to prevent the system from blocking while
waiting for entropy to be gathered from a not-present key-
board. We suggest to use hardware random number gen-
erators such as the ones available on USB devices. See
truly_random for details.

Encrypt Private Keys Use an encrypted file system to store the private keys
(see Appendix C, Where do your private keys live)

Root access The root user has access to the private key material

Only allow root access from "the console".

Network security Make sure there are several firewalls between the applic-
ation and the Internet.

Connect the key store/signer application server to a "man-
agement machine" through a cross cable.

Use IPtables to only allow an SSH connection and a con-
nection over the SOAP port from the management ma-
chine.

Only allow the "keymaintainer" to log in via ssh, make the
maintkeydb program the default shell for that user.

Figure D.1. Securing the signer

19

Acknowledgements
Paul Wouters, Miek Gieben and his colleagues at NLnet Labs for testing early beta's of this
work and for giving feedback. Timothy Mc Ginnis and Emma Bretheric for reviewing the
documentation.

20

Bibliography
World Wide Web

[truly_random] Rick van Rein. Copyright © 2002 OpenFortress. How To Generate Truly
Random Bits. http://openfortress.org/cryptodoc/random/ Link verified: April 2005 .

IETF documents
[dnssec-operational-practices] Olaf M. Kolkman and Miek Gieben. Copyright © 2005 ISOC.

DNSSEC Operational Practices. March 2005.
ftp://ftp.ripe.net/internet-drafts/draft-ietf-dnsop-dnssec-operational-practices-03.txt
Link verified: April 2005 .

[rfc1034] Domain names - concepts and facilities. P. Mockapetris. 1 November 1987. ht-
tp://www.ietf.org/rfc/rfc1034.txt [http://www.ietf.org/rfc/rfc1034.txt]

[rfc1035] Domain names - implementation and specification. , P. Mockapetris. , 1 Novem-
ber 1987. http://www.ietf.org/rfc/rfc1035.txt [http://www.ietf.org/rfc/rfc1035.txt]

[rfc4033] DNS Security Introduction and Requirements . R. Arends . R. Austein . M. Larson
. D. Massey . S. Rose . March 2005 . http://www.ietf.org/rfc/rfc4033.txt
[http://www.ietf.org/rfc/rfc4033.txt]

[rfc4034] Domain names - implementation and specification . R. Arends . R. Austein . M.
Larson . D. Massey . S. Rose . March 2005 . http://www.ietf.org/rfc/rfc4034.txt
[http://www.ietf.org/rfc/rfc4034.txt]

[rfc4035] Protocol Modifications for the DNS Security Extensions . R. Arends . R. Austein .
M. Larson . D. Massey . S. Rose . March 2005 . http://www.ietf.org/rfc/rfc4035.txt
[http://www.ietf.org/rfc/rfc4035.txt]

21

http://openfortress.org/cryptodoc/random/
ftp://ftp.ripe.net/internet-drafts/draft-ietf-dnsop-dnssec-operational-practices-03.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4035.txt

	About this document
	Chapter 1. Introduction
	Background

	Chapter 2. Maintaining the Keys
	Creating keys
	Deleting keys
	Rolling keys
	Rolling Keys Signing Keys
	Rolling Zone Signing Keys

	Chapter 3. Operating the signer
	Stand Alone Signer
	Client/Server

	Appendix A. "Cookbook"
	Appendix B. Installation and Configuration
	Architecture
	Installation
	Prerequisites
	Installing Net::DNS::SEC::Maint::Key and Net::DNS::SEC::Maint::Zone
	Installing the zone signer client
	Setting up your UNIX environment

	Configuration
	Configuring the SOAP based zone signer daemon

	Appendix C. Where do your private keys live
	Appendix D. How to make your key store/signer application more secure
	Bibliography

