DNSSEC Key
Management and Zone
Signing

Olaf Kolkman
<net-dns@i pe. net >

$Revision: 1.14 $

DNSSEC Key Management and Zone Signing

Table of Contents

ADOUL thiS OCUMENTceeiiii e e e e eeees %
I a1 0T [T i o] o I PSP 1
BACKGIrOUNG et 1

2. Maintaining the KBYS ... e 2
(1 g=T- (] 0o [() 2 T 2
DEIBLING KBYS ..ttt e 3
ROIING KBYS et e e e e e e e e e aaaees 4
Rolling Keys Signing KEYSiiiiiiiiiiii e 4

Rolling Zone Signing KeYSuiiiiiiiiiei e 6

3. Operating the SIGNETcoouuiiiiii ettt e 8
Stand AlONE SIGNEI ...ceee e 8
ClIENUSEIVET ...t 8

AL "COOKDOOK" ...ttt 10
B. Installation and Configurationcccoceiiiiiiiiiii e 12
ATCRITECTUNE ... e 12

T 1S3 = 1= L4 13
Prer@qUISITES ...ttt 13

Installing Net::DNS::SEC::Maint::Key and Net::DNS::SEC::Maint::Zone 14

Installing the zone signer ClIeNtcooouiiiiiiiii e 15

Setting up your UNIX environmentcoooiiiiiiiiiiiiiiineeeeieeee e 15

(O] a1{To 8T r=\ 1o] o IR 15
Configuring the SOAP based zone signer daemoncccoccceveviiiiineennnnns 17

C. Where do your private KeYS lIVEc.uoiiiiiiiii e 18
D. How to make your key store/signer application more secureccoeeveeeenn. 19
BibHOGIaPNY ..o 21

List of Figures

B.1. SSh CONfIQUIAtIONiiiicei e e e e e e e eaes
B.2. ArchiteCture OULIINEcoouiiii i e e e e
D.1. SECUNNG the SIGNEI ...

Ripe

[

About this document

This documentation is under development. Just as the code this documentation came with
is a development release. Please help us catch serious bugs and let us know if you have
any suggestions for improvement.

Ripe

[

Chapter 1. Introduction
Background

Zone Signing is the core of DNSSEC management. During the signing of a zone DNSSIG
resource records are created for all the data in the zone file. Using these signatures and
related public keys security aware DNS clients can verify the validity of DNS data. In addi-
tion to creating signatures the signing process introduces NSEC RRs that can be used to
validate the non-existence of data.

BIND 9.3.0 contains a tool called dnssec-signzone. This tool signs the zone and intro-
duces the NSEC RRs. To use this tool users have to create key pairs, keep track of these
keys and ensure proper usage.

This software suite is intended to ease key management issues. Using this tool people
maintaining signed zones do not have to maintain manual logs of which keys are in use.

The intention is that zone signing is "orthogonal” to the key maintenance. The maintkeydb
command is used to maintain the keys for a given zone while the dnssigner program will
sort out, based on the zone, which keys to use for signing, and which public keys to insert
into the zone. The persons running the dnssigner command is not required to have know-
ledge of which keys are in use, they do not even need "physical" access to the private key
material.

The maintkeydb tool offers some assistance to the key manager with maintaining consist-
ency during the key rollovers.

The key management procedures that are implemented are based on early experience.
See also the Internet Draft 'DNSSEC key operations' draft-kolk-
man-dnssec-operational-practices-01.txt
[http://www.ietf.org/internet-drafts/draft-kolkman-dnssec-operational-practices-01.txt] which
describes the key rollover described herein.

http://www.ietf.org/internet-drafts/draft-kolkman-dnssec-operational-practices-01.txt
http://www.ietf.org/internet-drafts/draft-kolkman-dnssec-operational-practices-01.txt

Chapter 2. Maintaining the Keys

maintkeydb is the tool designed to maintain keys used for DNSSEC operations. This
chapter intends to provide you with a number of examples of the use of maintkeydb while
performing certain key management tasks. (Also see Appendix A, "Cookbook" if you think
this chapter is a little too verbose.)

It is assumed that the software is installed on a machine on which the private key are
stored. We will refer to as the signer box or shorter, the box. Once the box is configured
you can start maintaining your keys. The program maintkeydb is your interface. It can be
used in two different ways. With direct command line arguments or as an interactive shell.

Use perldoc maintkeydb to read the documentation that comes with the tool itself.

Creating keys

> mai nt keydb create help
Pur pose: create new keys
You can choose to generate a ksk, a zsk or both keys.

If keys are first create for a zone then nultiple zone signing keys
are created, thereby bootstrapping the prerequisites for automatic

rol |l overs using the rollovers conmand. The systemw || not create keys
if it thereby might disable automatic rollover. Use "force" to force
creation of keys.

The usage is as foll ows:

create ["force"] <"zsk"|"ksk"|"both"> <RSASHA1l| DSA| RSA| RSAMD5> <si ze> <zone[[zone]...

maintkeydb create will create one key signing key and two zone signing keys will be cre-
ated. One ZKS set as "active" which means it is used for signing, and one set as "pub-
lished" which means it is not used for signing zone data. This particular set of keys is cre-
ated so that the prerequisites for a successful key rollover are met.

bash $ mai nt keydb create both RSASHA1 1024 exanpl e.com
Created 3 keys for exanple.com
bash $ nmai ntkeydb |ist exanpl e.com

exanpl e. com RSASHA1 25379 ZSK publ i shed (0d00h0O0M)
exanpl e. com RSASHA1 25589 ZSK active (0d00h00mM
exanpl e. com RSASHA1 58140 KSK acti ve (0d00h00mM

It could well be that you would like to have the zone signing key and the key signing key of
different length. In that case you will have to specify either zsk or ksk instead of both in the
line above.

Instead of using maintkeydb the command line you can also use it as a shell. Below is an
example.

mai nt keydb -i
Command? >create
Force creation?
[skip|force] > skip
Create a KSK, a ZSK or both?
type > ksk
Al gori t hn?
al gorithm > RSASHA1l

Maintaining the Keys

Key Size?

keysi ze > 2048

Enter one or nore zone nanes
zone(s) > exanpl e. net

Created 1 key for exanple. net
Conmmand? >|i st

active, inactive, rollover or published keys?
state > al | states

KSK or ZSK?
type > both

Enter one or nore zone nanes
zone(s) > all

exanpl e. com RSASHA1 25379 ZSK publ i shed (0d00hO1m)
exanpl e. com RSASHA1 25589 ZSK active (0d00h01m
exanpl e. com RSASHA1 58140 KSK acti ve (0d00h01m
exanpl e. net RSASHA1 10320 KSK acti ve (0d00h00mM

Conmand? >create zsk RSASHAL 1048 exanpl e. net
Created 2 keys for exanple. net

Command? >list allstates zsk
Enter one or nobre zone nanes
zone(s) > all

exanpl e. com RSASHA1 25379 ZSK publ i shed (0d00h02m)
exanpl e. com RSASHA1 25589 ZSK active (0d00h02m)
exanpl e. net RSASHA1 08906 ZSK publ i shed (0d0OhOOM)
exanpl e. net RSASHA1 17639 ZSK active (0d00h00m)
Conmand? >exit

bash $

Deleting keys

There are two methods to delete keys. You can either delete keys by providing a zone
name, algorithm and key id or you can, more crudely delete all keys for a specific zone at
once. Use delete_id or delete_name respectively. Below are two examples of deleting
keys with maintkeydb, one in "shell" mode one from the command line.

bash $ nmi nt keydb -i
Command? >del ete_id hel p
Pur pose: Del ete keys by keyid

Zone- Al gorithm Keyl D uni quely defines a key. Use the |ist <zone> to
identify the keys. In shell nbde conmand-|ine conpletion [tab] will show
you the avail abl e Keyl Ds.

del ete_i d <zone> <RSASHA1| DSA| RSA| RSAMD5> <keyl D[[keyl D] ...]>
Command? >del ete_id

Enter a zone nane

zone > exanpl e. net

Al gori t hn?

al gorithm > RSASHA1L

Enter one or nore Keyl Ds?

keyl D > [press TAB]

08906 10320 17639

keyl D > 08906

Del eti ng: exanpl e. net RSASHA1 08906 ZSK published (10d21h02m)
Conmand? >|ist exanpl e. net

al | states both exanpl e. net

exanpl e. net RSASHA1 10320 KSK active (10d21h03m
exanpl e. net RSASHA1 17639 ZSK active (10d21h03m
Command? >exi t

bash $

bash $ nui nt keydb del et e_nane hel p
Pur pose: Del ete keys by nane

To delete the KSK, the ZSK or just all keys for given algorithmand zones. Be careful
you Wi Il not be asked for confirmation.

Specfying at | east one zone is mandatory.

del et e_nane <"zsk"|"ksk"|"bot h"> <RSASHA1| DSA| RSA| RSAMD5> <zone[[zone]...>
bash $ nmi nt keydb del et e_nane both RSASHA1l exanpl e. net

Del eti ng: exanpl e. net RSASHA1 10320 KSK active (10d21h05m

Maintaining the Keys

Del eti ng: exanpl e. net RSASHA1 17639 ZSK active (10d21h04m
bash $ nmi nt keydb |i st
exanpl e. com RSASHA1 25379 ZSK publ i shed (10d21h07m)
exanpl e. com RSASHA1 25589 ZSK active (10d21h07m)
gxagpg;e. com RSASHA1 58140 KSK active (10d21h07m)
as

Rolling keys

Rolling the key pairs is an operation that needs to be done on a regular basis. During a key
rollover one key pair gets replaced by another. During the rollover one has to take care of
the propagation of the key information through the DNS. Please refer to |I-
D-dnsop-dnssec-operational-practices-01 for details of the key rollover scheme that has
been implemented.

There are two types of rollovers to consider. That of zone signing keys, an operation that
does not need 'external’ interaction and can be done relatively frequently. The other type of
rollover is the rollover of keys signing keys. During that type of rollover public key informa-
tion needs to be "uploaded" to DNS parents or configured in verifiers. A key signing key
rollover will typically occur less frequently than a zone signing key rollover.

In general the rollover happens in two stages, during the first stage the preparations are
done. The new keys et has to propagate through the Internet. How fast that happens de-
pends on how fast the changes are applied to your zone (Through the signing operation),
how fast the zone is served by secondary servers and on the TTLs on the data previously
in your zone. That data may still live in distant caches (see |-
D-dnsop-dnssec-operational-practices-01 for the details).

The tools do not provide hooks to test the state of the DNS (yet). You have to verify that all
keys propagated to the Internet and wait for 2 TTLs before you engage in the second
stage.

Rolling Keys Signing Keys

One needs to interact with "external” parties when rolling Key Signing Keys. During the first
stage of the rollover a new Key Signing Key is introduced and the "old" key is marked as
being in "rollover" stage.

bash $ numi ntkeydb |ist exanpl e.com

exanpl e. com RSASHA1 25379 ZSK published (11d00h03m)
exanpl e. com RSASHA1 25589 ZSK active (11d00h03m
exanpl e. com RSASHA1 58140 KSK active (112d00h03m

bash $ numi nt keydb rol |l over ksk-stagel RSASHA1 exanpl e.com
bash $ numi ntkeydb |ist exanple.com

exanpl e. com RSASHA1 25379 ZSK publ i shed (11d00h04m)
exanpl e. com RSASHA1 25589 ZSK active (11d00h04m
exanpl e. com RSASHA1 36252 KSK active (0d00h00mM
exanpl e. com RSASHA1 58140 KSK active (11d00h04m (R

The key marked as being in rollover will be deleted during stage2 of the rollover.

What you have to do now is make sure that your parent (the .com zone in this example
creates a new DS record to point to your new key signing key. To find out which keys you
will have to send to your parent you use the maintkeydb parent data command.

bash $ nmi nt keydb parentdata key exanpl e.com

exanpl e.com 0 | N DNSKEY 257 3 5 (
AQPi (®M v9qqgsagxwr ENJY/ EPAvhRPedQzl X5
8p80OKKI pLUNUAdko+9nz3yyJ2YP/ VI6yAZC
SWwdoXf WATSB5| vO4+Eznly CUu8Zi z| D3j K
AG3QYMFyf r 1Aaj t eQbkdyKoCxawRLgVSgdc
J7BT/ xzPHKI KgaJ966010t wWKMLESM_6HbO TP
j w+Dx0YVYhUBF/ Wh8Bf 1vbl 8dr gnX0yxi 9+V

Maintaining the Keys

kMk+Ft vNOBi 1MJ2GVZp7j 5CbACChoSdK22U4
TpWWVGH vul hZ6S6Tj ZFkwpgOxMINecVvE7Yn
W mwgnt h2HITZJ CzbOARM Hz 3XPX0 MCMAWNY
+ef OMPFVI Ey+V8vf unl
) ; Key ID = 36252

bash $

If your parent's registrar only accepts "DS" RRs you can alternatively specify ds instead of
key:

bash $ mai ntkeydb parentdata ds exanpl e. com
exan’pise. com O IN DS 36252 5 1 f2fbl1958f15832749ad25f5e9707abch933a8162
bash

If you want to verify what appears in your zone file you can issue the maintkeydb
showkeys command this will output the key set as it will appear in your zone file.

bash $ mai nt keydb showkeys exanpl e.com

;7. DNSKEY RRs for exanple.com;;;;;:;::;

exanple.com 0O IN DNSKEY 256 3 5 (
AQOz80z5snmbCCu4gCZBCl OURL319aAkr AGUBE
r PYqNg8e3MZ5AaE3NAPWYS ¢ 7RX60U9X LNt
qdnROM bi | D11 XVAACdu5f ml B2xChdx+8Qla
+SFKvMONnd Qe ARWME EBNSI Q2r ANFTNKo T+t kg
6S6QSzdnpvh1ESgHUd91sP1Mby xsUn==
) ; Key ID = 25379 ZSK

exanpl e.com O |N DNSKEY 256 3 5 (
AQO+ a+l Tw4/ aY5BOL7nRaCke FMMYFcodun
r YPhHhmu+2duUP/ Z29mJW MBEuaBCoXpz C7Z
ekaTpFx5t 8MzZ/ 2Msqt j hRi f bE309Zgbo2f LC
VAFB7AAVpvsZdscThQ wiNxS7nB3q4W yDDyh
| yVI KGvQ7eGRf d4GQVN8dhsgBpt y5Q==

; Key ID = 25589 zZSK

exanpl e.com 0 |N DNSKEY 257 3 5 (
AQPi (®M v9qqgsgxwr ENJY/ EP1vhRPedQz| X5
8p8OCKKI pLUNUAdko+9nz3yyJ2YP/ V76yAZC
SWw doXf WATSB5| vO4+Eznly CUu8Zi zI D3j K
AGQYMFyf r 1Aaj t eQ6kdyKoCXawRLgVSgdc
J7BT/ xzPHKI KgaJ966010t WKMLESM_6Hbo TP
j w+Dx0YVYhUBF/ WA8Bf 1vbl 8dr gnX0yxi 9+V
kMk+Ft vNO6i 1MJ2GVZp7j 5CbACChoSdK22U4
TpWWGH vul hZ6S6T] ZFkwpgOxMNecvE7Yn
W nmwgnt h2HITZICzbOWNRM Hz 3XPX0MCMVww
+ef OMIPFVI Ey+V8vf unl
) ; Key ID = 36252 KSK (upload to parent)

exanpl e.com 0 |N DNSKEY 257 3 5 (
AQPZOKdGBV8nT 63pi cc28uNeAY5nwknk MKNT
OEbQsALNACAt | Mkgh7gs2ntlL6z05qTLUI j 9F
t MRO9t pf y 7RTaM2XwHx2n9opLhDJ YEbDApYD
pGe+kt XKrmLaSkj gl FORvQ44sHpl | t eqgakGr
TiLavtj 91 Bl 8V/ Mrvanb5DLXFj t j VBw==
) ; Key ID = 58140 KSK (to be depri cat ed)

bash $

or, if you want to see the KSKs in your keyset only use the ds option, that will only print the
key signing keys, as a bonus the DS RRs will be printed.

bash $ nmi nt keydb showkeys ds exanpl e.com

;733 DNSKEY RRs for exanple.com;;;;;;;:;

exanpl e.com 0 |N DNSKEY 257 3 5 (
AQPi (OM v9qqgsgxwr ENJY/ EP1vhRPedQzI| X5
8p80OKKI pLUNUdko+9nz3yyJ2YP/ VI6yAZC
SWw doXf WATSB5| vO4+Eznly CUu8Zi zI D3j K
AGQYMFyf r 1Aaj t eQ6kdyKoCXawRLgVSgdc
J7BT/ xzPHKI KgaJ966010t WKMLESM_6Hbo TP
j w+Dx0YVYhUBF/ WA8Bf 1vbl 8dr gnX0yxi 9+V
kMk+Ft vNO6i 1MJ2GVZp7j 5CbACChoSdK22U4
TpWWVGH vul hZ6S6Tj ZFkwpgOxMINecVvE7Yn
W nmwgnt h2HITZJCzbOANRM Hz 3XPX0MCMVww
+ef OMIPFVI Ey+V8vf unl
) ; Key ID = 36252 KSK (upl oad to parent)

Maintaining the Keys

exanpl e.com 0 IN DNSKEY 257 3 5 (
AQPZOKdEBV8nT 63pi cc28uNeAY5nwknk MKNT
OEbQsALNACAt | Mkgb7gs2ntL6z05qTLUl j 9F
t mMROAt pf y7RTaM2XwHx2n9opLhDJ YEbDApYD
pGe+kt XKnlLaSkj gl FORv@Q44sHpl | t eqgak G
TilLavtj 91 Bl 8V/ Mrvanb5DLXFj t j Vow==
) ; Key ID = 58140 KSK (to be depri cat ed)
75555; DS RRs for exanple.com;;;;;;;;;
exanple.com O IN DS 36252 5 1 f2fb1958f15832749ad25f5e9707abcbh933a8162
; The next DS RRis an old one, it is to di sappear
gxaﬂpge.con1 O INDS 58140 5 1 877d2eebale626066bd8ee5e5099ab9c7ele387d
as

Note the comments that indicate which keys are to be sent to the parent.

You will now have to wait until your parent has published the "new" DS RR and for the "old"
DS RR to expire from all the caches, that live somewhere on the Internet and are not under
your control. It will take at least the TTL value of the "old" DS RR as published by your par-
ent for that to happen. You may want to play safe and wait for the signature over the "old"
DS to be expired before pulling the DNSKEY it points to. Pulling the DNSKEY is done by
"stage2" of the rollover.

bash $ mai ntkeydb roll over ksk-stage2 RSASHAl exanpl e. com
bash $ nmai ntkeydb |ist exanpl e.com

exanpl e. com RSASHA1 25379 ZSK published (11d18h16m)
exanpl e. com RSASHA1 25589 ZSK active (11d18h16m
exanpl e. com RSASHA1 36252 KSK acti ve (0d17h13m

You can verify that the key previously marked to be in "rollover" has now been removed.
Rolling Zone Signing Keys

The prerequisite for a zone signing key rollover is that there are two keys present, one is
set to active and is used for signing, the other is only published i.e. available in the DNS,
but is not used for signing. If you have used the "create" function with the default settings
the two keys should have been created.

Again you have to take into account that it takes a while before data published in the DNS
has reached all the clients. So do not roll to fast. The timing mostly depends on your TTL
settings.

We perform a stage one rollover using the interactive mode:

bash $ mai ntkeydb |ist exanple.com

exanpl e. com RSASHA1 25379 ZSK publ i shed (11d20h03m)
exanpl e. com RSASHA1 25589 ZSK active (11d20h03m
exanpl e. com RSASHA1 36252 KSK acti ve (0d20h00m

Command? >rol | over

Enter rollover stage?
rol |l over stage > zsk-stagel
Al gori t hn?

al gorithm > RSASHA1l

Enter one or nobre zone nanes
zone(s) > exanpl e.com
Command? >l i st

active, inactive, rollover or published keys?
state > allstates

KSK or ZSK?

type > zsk

Enter one or nore zone nanes
zone(s) > exanpl e.com

| &
=

Maintaining the Keys

exanpl e. com RSASHA1 25379 ZSK active (0d00h00mM
exanpl e. com RSASHA1 25589 ZSK publ i shed (0d00h0O0M (R
Command? > exit

bash $

You can tell that the key with key ID 25589, the key that was previously active is set to
"published" and has its rollover attribute set (the "(R)" behind the at the end). There is a
newly created key with ID 25379 that is set to active. The times are both "reset” to 0 as
these indicate the time since the last state change and both keys had a state change.

In the stage2 key rollover the published key with the rollover key will be deleted and a new
key will be published that is ready for introduction as a signing key in the future. We
demonstrate the stage two rollover in the command line mode.

bash $ numi nt keydb rol |l over zsk-stagel RSASHA1 exanpl e. com
There is a key marked as being rolled

You probably want to run zsk-stage2 for exanpl e.com (RSASHA1L)
bash $ echo $?

6

bash $

Oops.. typo... you see the tool provides a warning and returns a non-zero return code.

bash $ nmi nt keydb roll over zsk-stage2 RSASHA1 exanpl e. com
$

bash $ echo $?

0

bash $ nmi ntkeydb |ist exanpl e.com

exanpl e. com RSASHA1 25379 ZSK active (0d00h07m)
exanpl e. com RSASHA1 36252 KSK active (0d21h01m)
exanpl e. com RSASHA1 61760 ZSK publ i shed (0d00h00M)

Chapter 3. Operating the signer
Stand Alone Signer

The dnssigner is the application that uses the key store to sign zones. The intention is that
the "user" is not aware of which keys are currently being marked as "active", "passive" or in
“rollover" but just signs the zone. During the signing operation the appropriate set of public

keys will be added and the zone will be signed with the appropriate private keys.

The dnssigner command takes the following form:

dnssi gner -h
dnssi gner -V

General Fl ags

-h print this help nmessage and exit
-V print version information and exit
-V increase verbosity

Cient

zonefil e nanme of the zonefile.

-0 <origin> origin of the zone. If not supplied the name of the zone
will be used as origin.

-t print statistics of the signing process to stderr.

-s YYYYMVDDHHMVSS| +of f set :
SIG start tinme - absol ute| of fset (now)

-e YYYYMVDDHHMVSS| +of f set | " now' +of f set] :

SIGend tine - absolute|fromstart|fromnow (now + 30 days)

The arguments are similar BIND's dnssec-signzone except that key information is not
needed.

Client/Server

The same functionality can be provided through a "SOAP" based zone signer server-client
application. The client provides the zones and arguments while the server does all the
work, all communication is over a SOAP channel. Refer to the section called “ Configuring
the SOAP based zone signer daemon ” for how to configure the daemon.

The client has exactly the same arguments as dnssigner but needs the address and port
number of the server.

Usage:
dnssigner _client -H <host> -P <port> [-0 <ORIGA N>] [-s <STARTDATE>] [-e <ENDDATE>] <ZONEFI LE>
dnssi gner _client -H <host> -P <port> -0 <ORIG N> (Zone file is fed through STDI N)
dnssi gner _client -?

dnssi gner _client takes (either from STDIN or fromgiven file nanme) an unsigned
DNS zone file, passes it through DNSSEC Si gner Appliance and puts the signed
zone file to STDOUT.

Opti ons:
-?2 or -h Hel p. Thi s nessage.
-H host Host on whi ch the dnssi gner _daenon process runs
-P port Port on which the dnssi gner_daenon process runs
-0 ORIA N Oigin. if fileis supplied it is optional and

file nane is taken as the origin.

-s STARTDATE Start date

Operating the signer

-e ENDDATE
ZONEFI LE

End date
DNS zone file

Appendix A. "Cookbook"

Here we describe the steps to take when maintaining a zone.

Create keys

bash $ nmi nt keydb create KSK RSASHA1l 2048 exanpl e. net
Created 1 key for exanple. net

bash $ nmi nt keydb create ZSK RSASHA1l 1024 exanpl e. net
Created 2 keys for exanple. net

bash $

Use the signer to sign your zone and publish the signed zone in the DNS.

bash $ dnssigner exanpl e.com
Qutput witten to : exanpl e.com si gned

After some time (say a few months) roll your zone signing keys.

bash $ numi nt keydb rol |l over zsk-stagel RSASHAl exanpl e. net

Use the signer to sign your zone and publish the signed zone in the DNS. Wait until the
change has been picked up by all your secondary servers and then wait at least the the
maximum TTL value over all the records in your zone, then proceed with stage2.

bash $ numi nt keydb rol |l over zsk-stage2 RSASHAl exanpl e. net

Use the signer to sign your zone and publish the signed zone in the DNS.

Once ever so often (say once or twice per year) roll your key-signing keys

bash $ numi nt keydb rol |l over ksk-stagel RSASHAl exanpl e. net

Use the signer to sign your zone and publish the signed zone in the DNS. Remember the
TTL on the DS record currently at your parent. (dig example.net DS) and upload the new
key that you obtain from the database with:

exanple.net. 0 IN DNSKEY 257 3 5 (
AQOv4Wdv2K6z Yhuc20+KdOr 9DbwEZanmi g8
ht hWsd02UF9M W 2KRy YYGTVPf Ckt | we6hy D
gxcvVWKEVMKn1swWIWRT/ | WhUBVA4v TWBa8h60
E5p8undOvp3+67kz2cuZpzEaZl j 4boj 42kmX
SSHCs S2Bcnt w\Ps EvEQ3i KQFFT1Vr Cd Ul 8
pU JJILE+r czNND+9ab3eg4BzB1DThRz Hak Bj
+gi X3KezJ92SVj KOkbnB8BDj / Q kyaaxuJdcj G
g bJynl DL85ywdi 66YYpG ELDuvyi DQ++0s3
Ff Psl ydl f Z6RDQVIJLhr XPb/ wd Onopl f xsR4/
Eqz5dj r 1cCHf ehpLYTRx
) ; Key ID = 2526

exanple.net. O INDS 2526 5 1 5aa9bff246e645776ab9cc3del30978df 82e6090

Wait until your parent has published the new DS in all its authoritative servers and then at
least another TTL of the previous DS (you noted that above). Only then perform stage2 of

10

"Cookbook"

the KSK rollover:

bash $ nmi nt keydb rol | over ksk-stage2 RSASHA1l exanpl e. net

Use the signer to sign your zone and publish the signed zone in the DNS and the rollover
is done.

bash $ dnssigner exanple.com
Qutput witten to : exanpl e.com si gned

Note that the command issued is exactly the same, even after the rollover of the keys. The
whole issue of key maintenance has been seperated from the signing of the zone.

11

Ripe

[

Appendix B. Installation and
Configuration

Architecture

See Figure B.2, “Architecture outline”.

We provide the a perl library(Net : : DNS: : SEC. : Mai nt : : Key) that implements a "key-
store". And a perl library(Net : : DNS: : SEC: : Mai nt : : Zone) that implements the interac-
tions between zonefiles and the keystore. The maintkeydb application implements the
user interface using the first library while dnssigner is the user interface for the
second.These software components can be integrated in the provisioning chain but it is
possible, and preferred, to use these components to build a key store/signer application
server.

The libraries can be used to build additional key management applications.

If the application server is properly set up getting access to the private keys will be non-
trivial for users that do not have physical access to the machine.

Using ssh magic as in Figure B.1, “ssh configuration”, access to the key store/signer ap-
plication can be provided through a dedicated interactive shell. That shell can be used to
perform key pair creation, rollovers and other key management tasks. Users of the shell do
not have access to the private key material.

Figure B.1. ssh configuration

Exanpl e content of ~/.ssh/authorized_keys2
consult the ssh docunentation for details

command="/usr /| ocal / bi n/ mai nt keydb -i", no-port-forwarding,\
no- X11-f or war di ng, no- agent - f or war di ng
ssh-rsa AAAAB3NzaClyc2EAAAABI wWAAA. . . zr PyXc

Zones can be signed through a SOAP based client/server application. The zone signer
uses the information stored in the key store to sort out which zones use which keys.

Figure B.2. Architecture outline

12

Installation and Configuration

——————1
55H
Or tEmin|

55H
or mominal

maintkeydb

BIND's dhssec—keygeh

dnssigner

™

e

CRON controlle

Keystore interface

Tet:: DTS SEC:Baint: : Key

ZOHNE SIGH Interface

Met::DNS: SEC: Maint:: Zone
BINLC s dnssec—sighzohe

N

dnssigner_daemon

Private Keys

Zona Fila j

2

Signad Zona Fila

\SDAP

dnssigner_daemon

Zona Fika

™~

Signad Zona File]

The key store/signer application server can be build using a out of the box components. A
commodity PC with Linux and FreeBSD installed can be used. Some effort should be put in
securing the box. We'll give some suggestions later.

Installation

These are the instruction for setting up the system. If you are setting up a key store/signer
application server these instructions are relevant. See below for how to set up a zone sign-

ing client.

We assume that all installations are done in / usr/ | ocal your mileage may vary if you try
to install the software elsewhere.*

Prerequisites

First you have to make sure you have installed BIND 9.3.0 or more recent. It is important
that during the installation you have configured the package with the - - wi t h- openssl
configuration otherwise DNSSEC functionality will not be available. For example:

cd bi nd9source-dir/

./configure --wth-openssl=/usr/I ocal

make

--prefix=/usr/l ocal

On the key store/signer application server you will need to install a recent perl5 and you
will have to use CPAN to install a number of perl dependencies.

Do not hesitate to contact the developer if you run into problems

13

Installation and Configuration

We have made a "bundle" available together that will allow for "easy" installations of the
dependencies. Download the bundle's tar ball. And perform the following commands.

If you would like to install the perl dependencies manually than you can get a listing of
them by unpacking the bundle and issuing the command perldoc KeystoreSignerPre.

There are at least two non-perl libraries that you have to have installed for all these mod-
ules to be installed succesfully. You will need openssl that is used by the perl crypto librar-
ies Since there is some XML library dependency you will have to have the expat libraries
installed on your system. These are available on sourceforge [expat.sourceforge.net].

tar -xvzf Bundl e-Privat e- KeystoreSi gnerPre-0.001_1.tar.gz

cd Bundl e- Pri vat e- Keyst or eSi gner Pre-0. 001_1

perl Makefile.PL

sudo make install

sudo perl -MCPAN -e 'install Bundle::Private::KeystoreSignerPre'

VVVVYV

Just enter the defaults for any questions asked during the installation process.

During the installation process you may see warnings like:

The nost recent version "2.07" of the nodul e "Fil e:: Copy"
comes with the current version of perl (5.8.4).

(.-.)

Bundl e summary: The following itens in bundle
Bundl e: : Private:: KeystoreSignerPre had installation probl ens:
Fi | e: : Basenane File:: Copy Fil e::Basenane

it is safe to ignore these if you have a recent version of perl.2

Installing Net::DNS::SEC::Maint::Key and
Net::DNS::SEC::Maint::Zone

Once you have the prerequisite bundles installed you can start installing
Net::DNS::SEC::Maint::Key and Net::DNS::SEC::Maint::Zone. You will need to install the
packages in the above order. What follows is an example install session. Except for the
version numbers, which may be different, you can just cut and paste these commands.

tar -xvzf Net-DNS- SEC- Mai nt-Key-0.010_1.tar.gz
cd Net - DNS- SEC- Mai nt - Key- 0. 010_1

perl Makefile.PL PREFI X=/usr/| ocal

make

make test

sudo make install

VVVVVYV

tar -xvzf Net-DNS- SEC- Mai nt - Zone-0.010_2.tar. gz
cd Net - DNS- SEC- Mai nt - Zone- 0. 010_2

perl Makefile.PL PREFI X=/usr/| ocal

make

make test

sudo neke install

VVVVVYV

You should not get complaints about missing dependencies when you run perl Make-

2Other errors than these are an indication that things go wrong. During the tests of this bundle we constantly ran
into a problem with one of the more esotheric dependencies. During the install of the libwww-perl package a few
of the t / r obot tests. After digging around for some time we found that / et c/ host s contained the wrong IP ad-
dress mapping for our hostname.

14

expat.sourceforge.net

Installation and Configuration

| &
=

file.PL. During make test a number of tests are run. They will surely fail if dnssec-keygen
and or openssl are not in your path.

Installing the zone signer client

Since the zone signer client has fewer dependencies the zone signer client script can be
installed as a separate package. This package only depends on 10::Handle,
File::Basename, Getopt::Std and SOAP::Transport::HTTP .

If you are uncertain the following command should get you all set:
perl -MCPAN -e 'install qw(lO::Handle File::Basename SOAP::Transport::HTTP);".
Note that Getopt::Std is excluded. It comes with recent perl versions.

The installation package can be created from the Net-DNS-SEC-Maint-Zone distribution by
running the create-client-dist.sh command.

> tar -xvzf Net-DNS- SEC- Mai nt - Zone- 0. 010_2.tar. gz
> cd Net - DNS- SEC- Mai nt - Zone- 0. 010_2
> ./create-client-dist.sh

This will create a tar ball named
Net - DNS- SEC- Mai nt - ZoneSi gner-0. 00_01. t ar . gz(version number probably dif-
fers). Copy this file to the appropriate machine and install.

tar -xvzf Net-DNS- SEC- Mai nt - ZoneSi gner-0.00_01.tar. gz
cd Net - DNS- SEC- Mai nt - ZoneSi gner - 0. 00_01

per| Makefile.PL PREFI X=/usr/| ocal

make

make test

sudo meke install

VVVVVYV

Setting up your UNIX environment

In order for the tools to work you will have to set up a couple of directories in which the
private key material will be kept.

All users of the key store will need to be member of a specific group we use the group
dnssecm as the example throughout this document. Make sure you edited / et ¢/ gr oup
to include the uid's you want to allow access to private key material.

Create the needed directories and set the appropriate permissions by issuing the following
commands.

nkdir /usr/local/var/dnssec_maint/

nkdi r /usr/|ocal /var/dnssec_nai nt/ DNS_KEY_DB
nkdir /usr/local/var/dnssec_maint/| og

mkdi r /usr/|ocal /var/dnssec_maint/tnp

chnod -R o-rwx /usr/|ocal/var/dnssec_mai nt
chgrp -R dnssecnt /usr/local/var/dnssec_maint
chnod -R g+rwX /usr/| ocal /var/dnssec_mai nt

Configuration

15

Installation and Configuration

Once you have installed the software you have to configure your key store/signer. Both the
key store and and the signer depend on the same configuration settings.

The Net::DNS::SEC::Maint::Key package came with dnssecmaint-config. You can use this
program to install a configuration file. At a later stage you can use this program to modify
your configuration.

dnssecmaint-config is called without arguments. It will ask for a few configuration settings.
In most cases the defaults make sense. What follows is a example session. The program
must be run with write permissions for the directory where you want to store the configura-
tion file (default location for this file will be / usr /| ocal / et ¢/ dnssecnai nt . conf)

This is a programto wite Net::DNS::SEC. : Maint configuration files.

It is typically used at install time or to create alternative configurations.
Type 'exit' to | eave the program

conffile specifies where the configuration file can be found

conffile is set to /usr/local/etc/dnssecmaint. conf

Enter value for conffile>/usr/local/etc/dnssecnaint.conf

dns_key_db Path to the directory in which the key database is kept
dns_key_db is set to /usr/local/var/dnssec_mai nt/ DNS_Key_ DB

Enter val ue for dns_key_db>/usr/| ocal /var/dnssec_mai nt/ DNS_Key_ DB
dnssec_keygen full path to BIND s dnssec-keygen command wi th opti onal argunents
This vallue is currently set using the DNSSECVAI NT_DNSSEC KEYGEN
dnssec_keygen is set to /usr/local/sbin/dnssec-keygen -r /dev/urandom

Enter val ue for dnssec_keygen>/usr/| ocal /shi n/dnssec-keygen -r /dev/urandom
dnssec_signzone full path to BIND s dnssec-si gnzone conmand with optional argune
nts

This vallue is currently set using the DNSSECMAI NT_DNSSEC S| GNZONE
dnssec_signzone is set to /usr/local/shin/dnssec-signzone -r /dev/urandom
Enter val ue for dnssec_si gnzone>/usr/| ocal / shi n/ dnssec-si gnzone -r /dev/urandom
dsakeysi zekey Default size for DSA Key Signing Keys

dsakeysi zekey is set to 1024

Enter val ue for dsakeysi zekey>1024

dsakeysi zezone Default size for DSA Zone Signing Keys

dsakeysi zezone is set to 512

Enter val ue for dsakeysizezone>512

| ogdir specifies the directory under logfiles are stored

logdir is set to /usr/local/var/dnssec_maint/| og

Enter val ue for |ogdir>/usr/local/var/dnssec_nmaint/| og

mai nt group Name of group that has R/'Waccess to the dnssecnt

mai ntgroup is set to dnssecnt

Ent er val ue for maintgroup>dnssecnt

rsakeysi zekey Default size for RSA Key Signing Keys

rsakeysi zekey is set to 2048

Enter val ue for rsakeysi zekey>2048

rsakeysi zezone Default size for RSA Zone Signi ng Keys

rsakeysi zezone is set to 768

Enter val ue for rsakeysi zezone>768

tnpdir Path to the directory in which tenporary files are stored

tnpdir is set to /tnp/

Enter value for tnpdir>/tnp/

Save configuration file to:/usr/local/etc/dnssecmaint.conf? (yes|no)>yes

To use this configuration file you have to set DNSSECMAI NT_CONFFI LE=/ usr/ | ocal / e
tc/ dnssecnai nt . conf

The last line is particularly important. You will have to set the DNSSECMAI NT _CONFFI LE to
point to the relevant configuration file. You are best off if you do this for all users of the sys-
tem.

On a related note. Most configuration parameters can be overwritten by environment vari-
ables. This is essentially what the dnssecmaint-config does internally. At startup it tries to

16

Installation and Configuration

| &
=

establish the path to BIND's dnssec-keygen program and then sets DNSSEC-
MAI NT_DNSSEC KEYGEN. When the dnssecmaint-config asks for the path for dnssec-key-
gen you see a warning that the default presented is read from the DNSSEC-
MAI NT_DNSSEC KEYCGEN environment varialle.

Finally a warning. The system defaults to the use of / dev/ ur andomas the random num-
ber generator. The reason for doing so is that on a server without mouse and/or keyboard
the ammount of entropy gathered will not be enough to keep / dev/random going. /
dev/ urandomare pseudo random and not the best choice for key generation. Also see
truly_random

Configuring the SOAP based zone signer
daemon

We provide dnssigner for signing zones while having direct access to the filesystem on
which the private keys live. This is often not the model under which the system is operated.
Therefore we also provide an dnssigner_daemon and dnssigner_client application that
communicate to each other over a "SOAP" based connection (see Figure B.2,
“Architecture outline” and the section called “Installing the zone signer client”).

You should start the daemon at system initialization. Start with two parameters the IP ad-
dress and the port the daemon should start on.

dnssigner_daemon -h i paddr ess -p port nunber

Whenever you run dnssigner_daemon you will have to use the same IP address (or
hostame) and portnumber.

17

Ripe

[

Appendix C. Where do your private
keys live

The system has been designed to be used as a frontend to BIND's dnssec-keygen and
dnssec-signzone. Any person with shell access and appropriate permissions will have ac-
cess to the private key material. The maintkeydb tool will obfuscate the private key material
and if maintkeydb is used as a "user shell" than users will not be able to see the private
key material.

The key material is stored in the directory configured in the configuration file under
dns_key_db this directory defaults to / usr/ 1 ocal / var/ dnssec_nai nt / DNS_Key_ DB.

For each zone for which keys are maintained there is a sub directory with the name of that
zone. In these zones there is on directory called Expi r ed_keys. This is where keys are
moved to when deleted. So in case of accidental deletion somebody with physical access
can still get to the private key material.

In addition to the Expi r ed_keys directory the zone specific directories contain files called
K<zonenzne>. +<al gi d>+<keytag>. (adnj attr| key| private). The files with the
extension key and privat e contain the public and the private key as generated by
dnssec-keygen the file with the extension at t r contains "attribute" information needed to
operated the key store, while the file with extension admcontains some administration and
audit information.

You should replicate the database directory on a regular basis. Either by using a mirrored
disk or by making regular backups on tape, floppy or optical media. Note that the backup
media contain private key material and must thus be protected against disclosure or theft.

One of the methods to protect the private key material is to store it on an encrypting file
system (for example CFS [http://www.crypto.com/software/]). When using a encrypting
filesystem backups or replications can be made from the encrypted private keys and the
private keys are better protected against physical theft.

18

http://www.crypto.com/software/

Ripe

[

Appendix D. How to make your key
store/signer application more secure

The only thing we provide is the software to create the key store and the dnssigner that in-
teracts with it. It is your own responsibility to create an application server that suits your se-
curity needs. Below we provide some hints on what sort of solutions you can apply to make
your server more secure. The assumption is that dnssigning has to be done in an opera-
tional environment and on a regular basis. "Sneakernet" is not an option.

Random Number Generator

Encrypt Private Keys

Root access

Network security

The system defaults into using / dev/ r andomthis choice
was made to prevent the system from blocking while
waiting for entropy to be gathered from a not-present key-
board. We suggest to use hardware random number gen-
erators such as the ones available on USB devices. See
truly_random for details.

Use an encrypted file system to store the private keys
(see Appendix C, Where do your private keys live)

The root user has access to the private key material
Only allow root access from "the console".

Make sure there are several firewalls between the applic-
ation and the Internet.

Connect the key store/signer application server to a "man-
agement machine" through a cross cable.

Use IPtables to only allow an SSH connection and a con-
nection over the SOAP port from the management ma-
chine.

Only allow the "keymaintainer" to log in via ssh, make the
maintkeydb program the default shell for that user.

Figure D.1. Securing the signer

ZONE DATA REALM

Wiaagetoe nt B
Contains the SOAP zohesigning sliznt

S0AE only

KEY MASTER, REALW

PRIV ATE KEY FEALM

Anthotitive DNS Setwet

]

Tmyatoaie/Sighet dpllication

19

Ripe

[

Acknowledgements

Paul Wouters, Miek Gieben and his colleagues at NLnet Labs for testing early beta's of this
work and for giving feedback. Timothy Mc Ginnis and Emma Bretheric for reviewing the
documentation.

20

Ripe

[

Bibliography
World Wide Web

[truly_random] Rick van Rein. Copyright © 2002 OpenFortress. How To Generate Truly
Random Bits. http://openfortress.org/cryptodoc/random/ Link verified: April 2005 .

IETF documents

[dnssec-operational-practices] Olaf M. Kolkman and Miek Gieben. Copyright © 2005 ISOC.
DNSSEC Operational Practices. March 2005.
ftp://ftp.ripe.net/internet-drafts/draft-ietf-dnsop-dnssec-operational-practices-03.txt
Link verified: April 2005 .

[rfc1034] Domain names - concepts and facilities. P. Mockapetris. 1 November 1987. ht-
tp:/iwww.ietf.org/rfc/rfc1034.txt [http://www.ietf.org/rfc/rfc1034.txt]

[rfc1035] Domain names - implementation and specification. , P. Mockapetris. , 1 Novem-
ber 1987. http://www.ietf.org/rfc/rfc1035.txt [http://www.ietf.org/rfc/rfc1035.txt]

[rfc4033] DNS Security Introduction and Requirements . R. Arends . R. Austein . M. Larson
. D. Massey . S. Rose . March 2005 . http://www.ietf.org/rfc/rfc4033.txt
[http://www.ietf.org/rfc/rfc4033.txt]

[rfc4034] Domain names - implementation and specification . R. Arends . R. Austein . M.
Larson . D. Massey . S. Rose . March 2005 . http://www.ietf.org/rfc/rfc4034.txt
[http://www.ietf.org/rfc/rfc4034.txt]

[rfc4035] Protocol Modifications for the DNS Security Extensions . R. Arends . R. Austein .
M. Larson . D. Massey . S. Rose . March 2005 . http://www.ietf.org/rfc/rfc4035.txt
[http://www.ietf.org/rfc/rfc4035.txt]

21

http://openfortress.org/cryptodoc/random/
ftp://ftp.ripe.net/internet-drafts/draft-ietf-dnsop-dnssec-operational-practices-03.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4035.txt

	About this document
	Chapter 1. Introduction
	Background

	Chapter 2. Maintaining the Keys
	Creating keys
	Deleting keys
	Rolling keys
	Rolling Keys Signing Keys
	Rolling Zone Signing Keys

	Chapter 3. Operating the signer
	Stand Alone Signer
	Client/Server

	Appendix A. "Cookbook"
	Appendix B. Installation and Configuration
	Architecture
	Installation
	Prerequisites
	Installing Net::DNS::SEC::Maint::Key and Net::DNS::SEC::Maint::Zone
	Installing the zone signer client
	Setting up your UNIX environment

	Configuration
	Configuring the SOAP based zone signer daemon

	Appendix C. Where do your private keys live
	Appendix D. How to make your key store/signer application more secure
	Bibliography

