

IPv6 Advanced Lab Guide

Introduction And Topology

You are hired as the new network engineer of ISP Sandbox Inc. where you’ll be deploying
IPv6 soon with your colleagues. As part of the deployment project you are tasked with
preparing a lab environment as a small replica of your live network and testing your
equipment for IPv6 readiness.

Here is the network topology that you are expected to work on.

Luckily lab technicians prepared the physical connections and the IPv4 related
configurations for you.They also assigned the IPv6 addresses to the interfaces.
You’ll need to do the tasks, configure and test the protocols in the list below.

1. Test an IPAM tool for the registration of your IPv6 addressing plan.
2. Configure OSPFv3 in the backbone of the lab network.
3. Configure iBGP inside the backbone of the lab network, and eBGP over the

connection to the transit router.
Configure (PPPoE and???) DHCPv6-PD and SLAAC over the connection to the
residential network.
Configure NAT64 as the transition mechanism for the host behind the residential
gateway.

4. Configure multihomed connection for the CPE in the enterprise network for
simulating the “Multihomed IPv6 connection using provider-assigned addresses”
problem and seeking solution by using your own address space.

5. Configure DNS to support IPv6
Simulating a live network problem and troubleshooting it.

Lab Activity 1: IPv6 addressing plan using
phpIPAM

In this lab activity you’ll create and register your IPv6 addressing plan in one of the most
known and used IPAM tools; phpIPAM.

Activity 1.1: Creating a subnet in phpIPAM for your new
allocation
Your organisation has received a new /40 IPv6 allocation from the RIPE NCC. And, you’ve
been tasked with adding this new allocation into your IPAM tool which is phpIPAM.
Important Note: Please keep in mind that minimum IPv6 allocation size in RIPE NCC region
is /32. We use /40 just for the sake of simplicity here.

Go to the login page using your favorite browser. And enter the credentials.
Username: Your number provided by the trainer
Password: Password will be provided by the trainer

After logging in you’ll see the landing page in the picture below

Click on the “Subnets” button and then click “All Sections”
Here in this page you will see your user name like “User X”. Click on your username to reach
your available resources. The page you see will be similar to the one below.

At this point, you don’t have any registered IP resources yet. Your first task is registering
your allocation here.

1. Click on the “Add Subnet” button.
2. Write the subnet allocated for your user number in the format:

2001:db8:U00::/40
U is your user number. If it is 3 your allocation is 2001:db8:300::/40, and if it is 24
then your allocation is 2001:db8:2400::/40

3. Description is “Allocation for User U”
4. All the other fields can be left as default.
5. After a successful creation you’ll see a screen similar to the one below.
6.

Congratulations! You’ve just registered your allocation in your IPAM tool.

Activity 1.2: Creating nested subnets for different parts of your
network
Now you need to create new subnets under your allocation to be used in different parts of
your network such as: backbone network, fixed broadband network, etc.

Activity 1.2.1: Create a subnet for the backbone network
1. Click on the /40 subnet you’ve created in the previous exercise.
2. Find the “Actions” row and click on the plus sign in the circle. When you hover your

mouse over it, the text appears saying “Add new nested subnet”. See the example
below.

3. In our lab environment, we use /48 subnets for each part of the network. And our

addressing template is:
2001:0db8:UNN::/48
Where “NN” represents different parts of your network. For backbone NN equals 00.

4. Description is “Backbone network”
5. You want to get notifications when this subnet reaches a certain threshold and you

set this “Threshold” as 85%.
6. You also want to check the host status and discover the new hosts in this subnet. For

these features you need to toggle the buttons: “Check hosts status”, “Discover
new hosts”.

7. Lastly, toggle the button “Show as name” to view this subnet with the name instead
of the subnet IP address.
You see an example for User 1 below.

8. After a successful creation you’ll see a screen similar to the one below.

Now, you’ve created your backbone subnet in your IPAM tool.

Activity 1.2.2: Create a subnet for the fixed broadband network
1. Click on the /40 subnet you’ve created in the first exercise.
2. Find the “Actions” row and click on the plus sign in the circle. When you hover your

mouse over it, the text appears saying “Add new nested subnet”.
3. In our lab environment, we use /48 subnets for each part of the network. And our

addressing template is:

2001:0db8:UNN::/48
Where “NN” represents different parts of your network. For the fixed broadband
network NN equals 10.

4. Description is “Fixed broadband customers”
5. You want to mark this subnet as full as you already assigned all of the available /64s

inside this subnet to your broadband customers. For this toggle the button named
“Mark as full”

6. Toggle the button “Show as name” to view this subnet with the name instead of the
subnet IP address.

7. After a successful creation you need to see the “Fixed broadband customers”

subnet in the column on the left side of the page.
Now, you’ve created your fixed broadband customers subnet in your IPAM tool and marked
it as full.

Activity 1.2.3: Create a subnet for one of your customer networks
1. Click on the /40 subnet you’ve created in the first exercise.
2. Find the “Actions” row and click on the plus sign in the circle. When you hover your

mouse over it, the text appears saying “Add new nested subnet”.
3. In our lab environment, we use /48 subnets for each part of the network. And our

addressing template is:
2001:0db8:UNN::/48
Where “NN” represents different parts of your network. For this customer network NN
equals 21.

4. Description is “Customer-1 Network”

5. As you want to assign this subnet to one of your customers you’ll make this
association by selecting your customer which was pre-created for you. In the
“Customer” dropdown box select the customer name created for your user number:
“Customer of User U”

6. Toggle the button “Show as name” to view this subnet with the name instead of the
subnet IP address.

7. After a successful creation you need to see the “Customer-1 Network” subnet in the
column on the left side of the page.

Now, you’ve created your customer’s network in your IPAM tool.

Activity 1.3: Creating IP addresses inside the subnets &
searching them
In this exercise we’ll create an IP address inside the backbone network and search for it.

1. Click on the “Backbone network” from the menu on the left side of the page.
2. Find the “Actions” row and click on the green plus sign. When you hover your mouse

over it, the text appears saying “Add new IP address”. See the example below.

3. Fill in the “IP address” field with the address “2001:db8:U00::1”
4. Fill in the “Hostname” field with the text “BB1_lo0” representing the loopback

interface name of backbone 1 router.
5. Fill in the “Description” field with the text “BB1 Loopback interface”.
6. All the other fields can be left as default.

You see an example for User 1 below.

After a successful creation you need to see this address in the “IP addresses in subnets”
field. And you can check the (offline/online) status of this address.

You can also search this address by its “IP”, “hostname” or “description”.

Now you can try searching it in the “Search bar” on the top right corner of the page using the
search term “BB1”.
After the search, you’ll see the results similar to the one below.

Activity 1.4: Checking the availability of smaller subnets
With the phpIPAM tool you can also easily check the availability of the subnets in your
allocation. Now you’ll check the available /48 subnets in your organization’s allocation with a
few clicks.

1. Click on the “Subnets” button and then click “All Sections”
2. Click on your username to reach your available resources.
3. Click on your parent allocation which is a /40 subnet.
4. Here in this view you can check “Subnet Usage” and see that 99.61% of your

allocation is still free.
You can also check the individual status of /48s available in this /40.

5. Click on the “Space Map” tab and scroll down to /48 subnets.
6. Here you can see the free and used /48 subnets color coded. Greens free, reds

used.
See an example output below.

Activity 1 Summary
In this activity:

● You created different types of subnets in the IPAM tool
● You registered IP addresses and learned to search them
● You learned how to check the availability of a certain size of subnets

Lab Activity 2: Configuring OSPFv3 inside the
backbone network

Activity 2.1: Check existing OSPFv2 configuration

In this lab activity you’ll be configuring OSPFv3 among the backbone routers BB1, BB2, BB3
and BB4. OSPFv2 for IPv4 addresses is already configured and ready for you.

First of all you’ll start by checking the OSPFv2 configuration for IPv4. You’ll do this with the
command “show run ospfd”. OSPFd is the name of the OSPFv2 process running for IPv4
on the FRR routers.
For example, if you type "show run ospfd" on router BB1, you will see a configuration similar
to the one below:
interface lo
 ip ospf area 0
exit
!
interface to_bb2
 ip ospf area 0
 ip ospf network point-to-point
exit
!
interface to_bb3
 ip ospf area 0
 ip ospf network point-to-point
exit
!
interface to_bb4
 ip ospf area 0
 ip ospf network point-to-point

exit
!
interface to_dc
 ip ospf area 0
 ip ospf passive
exit
!
router ospf
 default-information originate
exit

As you can see in the running configuration, you have a very basic configuration for
OSPFv2. The OSPF process is enabled with a single line command “router ospf” and
interfaces are included in the OSPF Area 0 with the commands “ip ospf area 0”.
As we don’t want the routers to elect Designated Router (DR) / Backup Designated Router
(BDR) on the point-to-point links (it is unnecessary for a link connecting two routers only) you
mention the network type with the command “ip ospf network point-to-point”.
You also need to add loopback interfaces into the OSPF topology as we want them to
become reachable from the other routers. You’ll use loopbacks to build the iBGP
neighborship in the next lab activity.

For the interface on the BB1 router that is connected to the data center (which is an interface
only on BB1 router), we configure it as passive. This is because you don't want to send hello
packets out of this interface, as there are no other routers on this segment. However, you
still want to advertise this network segment to all other backbone routers, so that it remains
reachable. You’ll do a similar IPv6 configuration for this interface.

In addition to this, you have the “default-information originate” command under
ospf configuration on routers BB1 and BB2 where you have connections to the upstream
provider. This command enables routers to generate default routes to the OSPF area they
are in if they have a valid default route in their routing table (ie. it might be received via
eBGP).

Note: We don’t use the “always” keyword in the default route origination as we don’t want to
create a routing loop between the BB1 and BB2 routers when we don’t have a default route
originating from the transit router. We do still use default-route origination in OSPF as a
precautionary mechanism to limit the effect of a misoriginated eBGP default route from the
customer networks. In our case, the misoriginated default route from the customer networks
will only affect the router which receives it and will not take effect on the other backbone
routers as OSPF has preferred over iBGP.

Now you can check the neighbors on all of your backbone routers. Here is the example from
User1, Router1 (you should see a similar output when you check this on the other backbone
routers and for the other users):

u0U-bb1# sh ip ospf neighbor

Neighbor ID Pri State Up Time Dead Time Address Interface
10.1.2.2 1 Full/- 5m06s 36.517s 10.1.21.2 to_bb2:10.1.21.1
10.1.3.3 1 Full/- 5m06s 39.226s 10.1.31.3 to_bb3:10.1.31.1
10.1.4.4 1 Full/- 5m06s 33.482s 10.1.41.4 to_bb4:10.1.41.1

Here you see that you have 3 neighbors on BB1 as expected and the state is “FULL”.
Are you sure that you have FULL OSPF neighborship on all of your backbone routers? You
can check it with the same command.

Activity 2.2: Configure OSPFv3

After checking the initial configuration and the status of OSPFv2 you can start with the
configuration of OSPFv3 which you’ll use for IPv6 addresses. You’ll configure OSPFv3 in a
similar way.

As you’ll remember, OSPFv2 and OSPFv3 run in different processes on the routers. First
you need to enable OSPFv3 process on all BB routers with the command:

configure terminal
router ospf6
end

And then you configure the default route origination on the routers connected to the transit
network (BB1 and BB2 only) just like in OSPFv2.

configure terminal
router ospf6
default-information originate
end

The next step is enabling ospfv3 under the interfaces of all the backbone routers. You
need to select only the interfaces facing towards other backbone routers.
X is the router number of which the interface is facing.

configure terminal
interface to_bbX
 ipv6 ospf6 area 0
 ipv6 ospf6 network point-to-point
end

And you’ll also need to configure OSPFv3 under the loopback interfaces on all four
backbone routers (BB1, BB2, BB3 and BB4) as follows:

configure terminal
interface lo
 ipv6 ospf6 area 0

end

Note: We don’t need the “ipv6 ospf6 network point-to-point” command under the
loopback interfaces as the loopback interfaces are logical interfaces and not physically
connected to any other device, so they are inherently considered point-to-point by OSPF.

Finally, only on the BB1 router you need to enable OSPFv3 for IPv6 in passive mode.

configure terminal
interface to_dc
 ipv6 ospf6 area 0
 ipv6 ospf6 passive
end

Remember that you enable this interface under OSPFv2/OSPFv3 in passive mode because
you don't want to send hello packets out of this interface, as there are no other routers on
this segment. However, you still want to advertise this network segment to all other
backbone routers, so that it remains reachable

After configuring the interfaces you should be able to see an output like below on all
backbone routers (BB1, BB2, BB3, BB4) with the command “show ipv6 ospf6
neighbor”.

u0U-bb1# show ipv6 ospf6 neighbor
Neighbor ID Pri DeadTime State/IfState Duration I/F[State]
10.1.2.2 1 00:00:34 Full/PointToPoint 00:04:45 to_bb2[PointToPoint]
10.1.3.3 1 00:00:37 Full/PointToPoint 00:04:35 to_bb3[PointToPoint]
10.1.4.4 1 00:00:30 Full/PointToPoint 00:05:19 to_bb4[PointToPoint]

As you can see, all the backbone routers have OSPFv3 neighborship in “Full” state.
Did you notice that routers are still using IPv4 loopback addresses as the Router IDs? This is
the default behavior of FRR software. And as we’ve learned in the course you can still use
your IPv4 loopback addresses as the Router ID with OSPFv3 protocol.

And in the IPv6 routing table of User-1 BB1 router you’ll see the populated OSPF routes
indicated with the O letter. You’ll have an output similar to the one below:

u0U-bb1# show ipv6 route
Codes: K - kernel route, C - connected, S - static, R - RIPng,
 O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
 v - VNC, V - VNC-Direct, A - Babel, F - PBR,
 f - OpenFabric,
 > - selected route, * - FIB route, q - queued, r - rejected, b - backup
 t - trapped, o - offload failure

O 2001:db8:100::1/128 [110/10] is directly connected, lo, weight 1, 00:07:50
C>* 2001:db8:100::1/128 is directly connected, lo, 2d16h50m
O>* 2001:db8:100::2/128 [110/20] via fe80::a8c1:abff:fe33:5199, to_bb2, weight 1, 00:08:34
O>* 2001:db8:100::3/128 [110/20] via fe80::a8c1:abff:feb5:5c0b, to_bb3, weight 1, 00:08:19
O>* 2001:db8:100::4/128 [110/20] via fe80::a8c1:abff:fe7a:b810, to_bb4, weight 1, 00:08:09
O 2001:db8:100:12::/64 [110/10] is directly connected, to_bb2, weight 1, 00:07:50
C>* 2001:db8:100:12::/64 is directly connected, to_bb2, 2d16h50m
O 2001:db8:100:13::/64 [110/10] is directly connected, to_bb3, weight 1, 00:07:50

C>* 2001:db8:100:13::/64 is directly connected, to_bb3, 2d16h50m
O 2001:db8:100:14::/64 [110/10] is directly connected, to_bb4, weight 1, 00:07:50
C>* 2001:db8:100:14::/64 is directly connected, to_bb4, 2d16h50m
C>* 2001:db8:100:18::/64 is directly connected, to_transit, 2d16h50m
O>* 2001:db8:100:23::/64 [110/20] via fe80::a8c1:abff:fe33:5199, to_bb2, weight 1, 00:08:19
 * via fe80::a8c1:abff:feb5:5c0b, to_bb3, weight 1, 00:08:19
O>* 2001:db8:100:24::/64 [110/20] via fe80::a8c1:abff:fe33:5199, to_bb2, weight 1, 00:08:09
 * via fe80::a8c1:abff:fe7a:b810, to_bb4, weight 1, 00:08:09
O>* 2001:db8:100:34::/64 [110/20] via fe80::a8c1:abff:fe7a:b810, to_bb4, weight 1, 00:08:09
 * via fe80::a8c1:abff:feb5:5c0b, to_bb3, weight 1, 00:08:09
O 2001:db8:103::/64 [110/10] is directly connected, to_dc, weight 1, 00:07:50
C>* 2001:db8:103::/64 is directly connected, to_dc, 2d16h50m
C fe80::/64 is directly connected, to_bb3, 2d16h50m
C * fe80::/64 is directly connected, to_bb4, 2d16h50m
C * fe80::/64 is directly connected, to_bb2, 2d16h50m
C * fe80::/64 is directly connected, to_transit, 2d16h50m
C>* fe80::/64 is directly connected, eth0, 2d16h50m

You can try to ping the other loopback addresses in the topology. Here you see the output of
ping from BB1 to BB2 loopback address using the command ping 2001:db8:U00::2

u0U-bb1# ping 2001:db8:U00::2
PING 2001:db8:U00::2 (2001:db8:U00::2): 56 data bytes
64 bytes from 2001:db8:U00::2: seq=0 ttl=64 time=0.067 ms
64 bytes from 2001:db8:U00::2: seq=1 ttl=64 time=0.096 ms
64 bytes from 2001:db8:U00::2: seq=2 ttl=64 time=0.090 ms
64 bytes from 2001:db8:U00::2: seq=3 ttl=64 time=0.115 ms
^C
--- 2001:db8:100::2 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.067/0.092/0.115 ms

Activity 2.3: Compare OSPFv2 and OSPFv3 Databases

Now, let’s check the details of LSAs advertised. As you’ll remember in IPv6 we have
physical link and IP address information separation. To see this in the database you can
compare the Router LSAs in databases of OSPFv2 and OSPFv3.

You’ll first check the database of OSPFv2 on BB1 for a special type of messages, you’ll
check router LSAs. (These example outputs are taken from user1 routers, so the addresses
might be different from what you see in your own outputs).

u0U-bb1# show ip ospf database router adv-router 10.U.1.1

 OSPF Router with ID (10.1.1.1)

 Router Link States (Area 0.0.0.0)

 LS age: 1034
 Options: 0x2 : *|-|-|-|-|-|E|-
 LS Flags: 0x3
 Flags: 0x2 : ASBR
 LS Type: router-LSA
 Link State ID: 10.1.1.1
 Advertising Router: 10.1.1.1

 LS Seq Number: 80000092
 Checksum: 0xb68e
 Length: 120

 Number of Links: 8

 Link connected to: Stub Network
 (Link ID) Net: 10.1.1.1
 (Link Data) Network Mask: 255.255.255.255
 Number of TOS metrics: 0
 TOS 0 Metric: 0

 Link connected to: another Router (point-to-point)
 (Link ID) Neighboring Router ID: 10.1.2.2
 (Link Data) Router Interface address: 10.1.21.1
 Number of TOS metrics: 0
 TOS 0 Metric: 10

 Link connected to: Stub Network
 (Link ID) Net: 10.1.21.0
 (Link Data) Network Mask: 255.255.255.0
 Number of TOS metrics: 0
 TOS 0 Metric: 10

—---The rest of the output is omitted—-----

As you can see in this output, in the OSPFv2 database, in the Router LSAs you see
information for both physical interfaces connected to this router specified with the keywords
“Router Interface address” and the IP address information specified with the “Net” and “Network
Mask” fields.
Note: The first link information is about the loopback interface and there is no neighboring
router on this logical interface. That’s why we check the second and the third link
information.

When you check the same for IPv6 with the command mentioned below, you don’t see any
IPv6 specific information and addresses. There is only physical information.

u0U-bb1# show ipv6 ospf6 database router adv-router 10.U.1.1 detail

 Area Scoped Link State Database (Area 0)

Age: 811 Type: Router
Link State ID: 0.0.0.0
Advertising Router: 10.1.1.1
LS Sequence Number: 0x80000004
CheckSum: 0xa8aa Length: 72
Duration: 00:13:30
 Bits: -------- Options: --|-|--|-|-|--|R|-|--|E|V6
 Type: Point-To-Point Metric: 10
 Interface ID: 0.0.21.195
 Neighbor Interface ID: 0.0.21.194
 Neighbor Router ID: 10.1.2.2
 Type: Point-To-Point Metric: 10
 Interface ID: 0.0.21.207
 Neighbor Interface ID: 0.0.21.206
 Neighbor Router ID: 10.1.3.3
 Type: Point-To-Point Metric: 10
 Interface ID: 0.0.21.210
 Neighbor Interface ID: 0.0.21.211
 Neighbor Router ID: 10.1.4.4

So how does the router learn IPv6 addresses connected to this router?
We know that this information is available in Intra-Area-Prefix LSAs (Type-9 LSAs). And you
can check this with the command below.

u0U-bb1# show ipv6 ospf6 database intra-prefix adv-router 10.U.1.1 detail

 Area Scoped Link State Database (Area 0)

Age: 1523 Type: Intra-Prefix
Link State ID: 0.0.0.0
Advertising Router: 10.1.1.1
LS Sequence Number: 0x80000008
CheckSum: 0x42ee Length: 100
Duration: 00:25:23
 Number of Prefix: 5
 Reference: Router Id: 0.0.0.0 Adv: 10.1.1.1
 Prefix Options: --|--|--|--|--
 Prefix: 2001:db8:100::1/128
 Metric: 10
 Prefix Options: --|--|--|--|--
 Prefix: 2001:db8:100:12::/64
 Metric: 10
 Prefix Options: --|--|--|--|--
 Prefix: 2001:db8:100:13::/64
 Metric: 10
 Prefix Options: --|--|--|--|--
 Prefix: 2001:db8:100:14::/64
 Metric: 10
 Prefix Options: --|--|--|--|--
 Prefix: 2001:db8:103::/64
 Metric: 10

As you can see we have the IPv6 information next to the “Prefix” attributes of the LSA
Type9s.

Activity 2 Summary
In this activity:

● You checked the existing lab setup for OSPFv2 in the backbone network
● You configured OSPFv3 between the backbone routers
● You checked the routing tables for IPv6 to see the populated OSPF routes
● You verified the connectivity with the ping tool
● And you compared the OSPFv2 and OSPFv3 databases to see the difference

between the ways how IP information is distributed.

Lab Activity 3: Configuring BGP in the
backbone network

Activity 3.1: Configuring eBGP with the transit router

In this part of the lab activities, you’ll configure eBGP over IPv6 connections with the transit
router which connects your network to the internet. You’ll do this on the BB1 router (BB2’s
eBGP configuration is pre-loaded already) which is directly connected to the transit network.
The transit router is already configured and you don’t need to do anything for that.

You can check the existing IPv4 eBGP neighbors of BB1 to better understand our lab setup
with the command below:

u0U-bb1# show bgp summary remote-as external

IPv4 Unicast Summary (VRF default):
BGP router identifier 10.1.1.1, local AS number 100 vrf-id 0
BGP table version 2
RIB entries 2, using 384 bytes of memory
Peers 4, using 2868 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
10.1.81.8 4 99 63 63 0 0 0 00:56:57 1 1 N/A

Displayed neighbors 1
Total number of neighbors 4

This output is taken from BB1.
As you can see in the output, we only have one external IPv4 neighbor which is the transit
router.

To begin, you'll need to modify the default BGP behavior of the FRR router. By default, it
treats every configured BGP neighbor, including those with IPv6 addresses, as a neighbor
for exchanging IPv4 unicast routes. We need to disable this on all backbone routers with
the command below.

U is your user number assigned by the trainer.

configure terminal
router bgp U00
 no bgp default ipv4-unicast
end

Now we can start to configure neighbors for BB1 under BGP with the following command:
U is your user number assigned by the trainer and R is the router number you are working
on (R=1 for router BB1).

configure terminal
router bgp U00
 neighbor 2001:db8:U00:R8::8 remote-as 99

After this configuration you’ll enable the IPv6 unicast address family under the BGP
configuration part on routers BB1 with the following commands:

 address-family ipv6 unicast

Now you can activate neighborship with the transit router.

 neighbor 2001:db8:U00:R8::8 activate
end

At this point, you can check the status of neighbors with the command:

show bgp ipv6 summary

u0U-bb1# show bgp ipv6 summary

IPv6 Unicast Summary (VRF default):
BGP router identifier 10.1.1.1, local AS number 100 vrf-id 0
BGP table version 0
RIB entries 0, using 0 bytes of memory
Peers 1, using 717 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
2001:db8:100:18::8 4 99 4 3 0 0 0 00:00:41 (Policy) (Policy) N/A

Total number of neighbors 1

When you look at this specific output you can understand this neighborship is up for only 41
seconds. In addition to this you can understand that there is no prefix sent or received
because of the default policy. As you are connected to the transit network to get access to
the Internet, you need to allow some routes into your network. You’ll do it with the route-
maps.
Firstly, we’ll configure a IPv6 prefix filter to allow IPv6 routes with a prefix length less than
or equal to 48. /48 is the minimum prefix size that will be routed globally in the BGP. (There
is no hard coded limit for this but this is the best-practice followed by most of the operators
around the world)

configure terminal
ipv6 prefix-list ANY_v6 seq 10 permit 2000::/3 le 48

Then, you’ll use this prefix list in your new route-map configuration.

route-map ANY_IN_v6 permit 100
 match ipv6 address prefix-list ANY_v6
 exit

And finally, you’ll apply this newly configured route-map to the transit neighbor for the IN
direction to accept the routes.

router bgp U00
 address-family ipv6 unicast
 neighbor 2001:db8:U00:R8::8 route-map ANY_IN_v6 in
 end

Now you should be able to see a default route in the BGP table. You can check it with the
command:

u0U-bb1# show bgp
BGP table version is 1, local router ID is 10.1.1.1, vrf id 0
Default local pref 100, local AS 100
Status codes: s suppressed, d damped, h history, * valid, > best, = multipath,
 i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

 Network Next Hop Metric LocPrf Weight Path
*> 2000::/3 fe80::a8c1:abff:fe55:c643
 0 0 99 ?

Displayed 1 routes and 1 total paths

With this configuration, you’ll receive the routes from the transit network. However, you still
need to advertise your own network address to the transit and the internet eventually. To
do this you’ll create another route-map to be applied in the OUT direction. Here we’ll do this
for two different prefixes. First for the prefixes belong to 2001:db8::/32 and second prefixes
belong to 3fff:0::/20.
Note: These are both documentation prefixes and we’ll use 3fff:0::/20 range later in the
“Multihoming” exercise.

Without the exact match, this prefix will not be announced in the BGP so we need to create a
Null0 route first.

configure terminal
ipv6 route 2001:0db8:U00::/40 Null0
ipv6 route 3fff:0:U00::/40 Null0

Then we’ll create the prefix list. In our address plan in the lab network we have /40
allocations for each user so we’ll announce these /40s to the transit router.

ipv6 prefix-list USER_U_NETW_v6 seq 10 permit 2001:db8:U00::/40
ipv6 prefix-list USER_U_NETW_v6 seq 20 permit 3fff:0:U00::/40

Then, you’ll use this new prefix list in your new route-map configuration.

route-map USER_U_NETW_OUT_v6 permit 100
 match ipv6 address prefix-list USER_U_NETW_v6
 exit

Finally, you’ll apply this newly configured route-map to the transit neighbor in the OUT
direction and you’ll redistribute the static route you configured for your user network (/40 for
the user) into the BGP.

router bgp U00
 address-family ipv6 unicast
 redistribute static
 neighbor 2001:db8:U00:R8::8 route-map USER_U_NETW_OUT_v6 out
 end

Now you can check the status of IPv6 neighbors again:

u0U-bb1# show bgp ipv6 summary

IPv6 Unicast Summary (VRF default):
BGP router identifier 10.1.1.1, local AS number 100 vrf-id 0
BGP table version 2
RIB entries 2, using 384 bytes of memory
Peers 1, using 717 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
2001:db8:100:18::8 4 99 23 20 0 0 0 00:07:53 1 2 N/A

Total number of neighbors 1

As you can see now you have sent and received prefixes. You send your network prefixes
(including both backbone and customer networks).

Activity 3.2: Configuring iBGP within the backbone

Now you’ll configure BGP within your backbone network which will form iBGP neighborship
between the backbone routers.

You can start to configure neighbors on BB1 and BB3, (BB2 and BB4 are already pre-
configured) under BGP with the following command (X is the number of one of the other
routers in the backbone, for example if you’re configuring BB3, X will be 1, 2 and 4
respectively):

configure terminal
router bgp U00
 neighbor 2001:db8:U00::X remote-as U00
 neighbor 2001:db8:U00::X update-source lo

Here we use the update-source keyword to be able to use the loopback addresses for the
protocol messages.
Now we can activate neighborship under the IPv6 address family.

 address-family ipv6 unicast
 neighbor 2001:db8:U00::X activate
 neighbor 2001:db8:U00::X next-hop-self
end

Now you can check the status of the neighbors again (on router BB1 and BB2 you will see 4
neighbors and on routers BB3 and BB4 you will see 3 neighbors):

u0U-bb1# show bgp ipv6 summary

IPv6 Unicast Summary (VRF default):
BGP router identifier 10.1.1.1, local AS number 100 vrf-id 0
BGP table version 2
RIB entries 2, using 384 bytes of memory
Peers 4, using 2868 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
2001:db8:100::2 4 100 5 6 0 0 0 00:00:56 2 2 N/A
2001:db8:100::3 4 100 3 6 0 0 0 00:00:39 0 2 N/A
2001:db8:100::4 4 100 3 5 0 0 0 00:00:25 0 2 N/A
2001:db8:100:18::8 4 99 28 25 0 0 0 00:12:36 1 1 N/A

Total number of neighbors 4

At this step, you should be able to ping the WEB server behind our transit router from BB3
(or BB4).

u0U-bb3# ping 2001:db8:99:78::7
PING 2001:db8:99:78::7 (2001:db8:99:78::7): 56 data bytes
64 bytes from 2001:db8:99:78::7: seq=0 ttl=62 time=0.196 ms
64 bytes from 2001:db8:99:78::7: seq=1 ttl=62 time=0.129 ms
64 bytes from 2001:db8:99:78::7: seq=2 ttl=62 time=0.125 ms
64 bytes from 2001:db8:99:78::7: seq=3 ttl=62 time=0.153 ms
64 bytes from 2001:db8:99:78::7: seq=4 ttl=62 time=0.157 ms
^C
--- 2001:db8:99:78::7 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.125/0.152/0.196 ms

To identify the individual network layer protocols (such as IPv6), a combination of Address
Family Identifier (AFI) and Subsequent Address Family Identifier (SAFI) is used. While
exchanging capabilities, the same address family identifiers are also advertised within the
OPEN messages. And you can see the address families of the specific routes with the
following commands on router BB4.

u0U-bb4# show ip route 10.U.0.0/16 json | include afi
 "afi":"ipv4",
 "afi":"ipv4",
 "afi":"ipv4",
 "afi":"ipv4",
u0U-bb4#
u0U-bb4# show ipv6 route 2001:db8:U00::/40 json | include afi
 "afi":"ipv6",
 "afi":"ipv6",
 "afi":"ipv6",
 "afi":"ipv6",

Note: We see them four times because they are coming from two different routers (BB1 and
BB2), once for recursive next-hops and once for resolved next-hops.

Activity 3 Summary
In this activity:

● You checked the existing eBGP connections between the transit router and the 2 of
the backbone routers; BB1 and BB2.

● You configured eBGP over IPv6 between the transit router and the 1 of the backbone
routers; BB1

● You configured the required policies to receive and send the routes
● You configured iBGP over IPv6 within the backbone network.
● You compared the address family attributes (AFIs) of IPv4 and IPv6 routes

Lab Activity 4: Multihoming for SOHO
Networks (with and without own address
space)

The multihoming problem in IPv6 SOHO networks arises when a small network connects to
multiple ISPs, each assigning its own IPv6 address prefix. The CPE router advertises these
prefixes on its LAN interface, causing IPv6 hosts to generate addresses from both. This
results in hosts having multiple global IPv6 addresses with different prefixes. When initiating
new sessions, hosts select source addresses based on destination matching rather than
network topology, potentially leading to arbitrary address usage for upstream traffic. This can
cause asymmetrical routing or packet dropping due to ISPs' Reverse Path Forwarding
checks. Link failures further complicate the issue, as revoking invalid prefixes can take up to
two hours due to IPv6 prefix lifetime constraints. During this period, clients may use invalid
addresses without knowing it, resulting in dropped return traffic.

In this exercise, you’ll first simulate this multihoming problem for SOHOs which do not have
their own IPv6 address allocation and use ISPs addresses and then you’ll solve this problem
with one of the most viable methods. Your setup will look like what we’ve seen in the course
slides previously.

Important Note: Generally, assigning prefixes is not a manual process and this is achieved
by the prefix delegation (PD), however our router software, FRR, does not support this and
we simulate it by adding prefixes to be passed to the host manually. The idea is still the
same.

You’ll start with a main uplink scenario (the link to the BB3 router) and you’ll add a backup
link (the link to the BB4 router) to simulate the multihoming for the CPE device. We’ll assign
two different GUA IPv6 addresses, from two different ISPs, to the host behind with the RA
messages from the CPE.

Activity 4.1: Configuring a single homed SOHO network without
own address space

You’ll start by checking the interfaces and the IP addresses on the CPE device to see the
interfaces already configured. As you’ll see, the CPE device is physically connected to the
BB3 and the BB4 routers and also to the host behind. The IPv6 addresses are already
assigned to the interfaces.

u0U-cpe# show interface brief
Interface Status VRF Addresses
--------- ------ --- ---------
eth0 down default 172.20.20.9/24
lo up default
to_bb3 up default + 2001:db8:U02:36::6/64
to_bb4 up default + 2001:db8:U02:46::6/64
to_host2 up default + 2001:db8:U21::1/64

You’ll also see that we have a default route configured on the CPE router and it is pointing to
the BB3 router.

u0U-cpe# show ipv6 route
Codes: K - kernel route, C - connected, S - static, R - RIPng,
 O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
 v - VNC, V - VNC-Direct, A - Babel, F - PBR,
 f - OpenFabric,
 > - selected route, * - FIB route, q - queued, r - rejected,
b - backup
 t - trapped, o - offload failure

S>* ::/0 [1/0] via 2001:db8:102:36::3, to_bb3, weight 1, 3d16h33m
C>* 2001:db8:102:36::/64 is directly connected, to_bb3, 3d16h33m
C>* 2001:db8:102:46::/64 is directly connected, to_bb4, 3d16h33m
C>* 2001:db8:121::/64 is directly connected, to_host2, 00:00:43
C * fe80::/64 is directly connected, to_host2, 00:00:44
C * fe80::/64 is directly connected, eth0, 3d16h33m
C>* fe80::/64 is directly connected, to_bb4, 3d16h33m

Now you are ready to add more configurations to devices to make the host reachable over
the Internet.

You’ll need to add a prefix (we’ll call it enterprise network prefix) to the interface facing the
host together with the command that enables RA messages to be sent. This prefix will be
advertised to the hosts behind the CPE in the RA messages.

On the CPE:

configure terminal
interface to_host2
 ipv6 nd prefix 2001:db8:U21::/64
 no ipv6 nd suppress-ra
end

The host is configured to get its IPv6 address automatically using the prefix in the RA
messages by default. Now, it is time to check the IPv6 address of the host. Later you’ll use
this address in the ping tests. You’ll use the “ip addr show” command to check the
interface IP addresses on the Linux host.

bash-5.0# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
1520: to_cpe@if1519: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9500 qdisc noqueue state UP group
default
 link/ether aa:c1:ab:9c:20:3b brd ff:ff:ff:ff:ff:ff link-netnsid 1
 inet6 2001:db8:121:0:a8c1:abff:fe9c:203b/64 scope global dynamic mngtmpaddr
 valid_lft 2591995sec preferred_lft 604795sec
 inet6 fe80::a8c1:abff:fe9c:203b/64 scope link
 valid_lft forever preferred_lft forever

There is still one more thing to do to make this host reachable over the Internet (or in our
case from the transit network and the hosts there, ie. WWW server). You need to configure a
route on BB3 to let the router know where the enterprise network prefix lies and announce
this in BGP.

To add this static route and redistribute it over the BGP, on the router BB3 you need to
run the following commands:

configure terminal
ipv6 route 2001:db8:U21::/48 2001:db8:U02:36::6 to_cpe
router bgp U00
 address-family ipv6 unicast
 redistribute static
end

By now you should be able to ping the WWW server (2001:db8:99:78::8) behind our
transit router from the host. To make sure that the host uses the correct source address we’ll
do the ping with the source address parameter as follows;

ping6 -I 2001:db8:U21:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8

The output should look like:
bash-5.0# ping6 -I 2001:db8:U21:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8
PING 2001:db8:99:78::8(2001:db8:99:78::8) from
2001:db8:121:0:a8c1:abff:fe9c:203b : 56 data bytes
64 bytes from 2001:db8:99:78::8: icmp_seq=1 ttl=61 time=0.053 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=2 ttl=61 time=0.066 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=3 ttl=61 time=0.063 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=4 ttl=61 time=0.076 ms
^C
--- 2001:db8:99:78::8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.053/0.064/0.076/0.008 ms

Now you verified that the WWW server is reachable from the host behind the CPE with a
single uplink to the ISPs.

Activity 4.2: Configuring the redundant uplink

After successfully configuring the main uplink of the CPE you’ll add a redundant link into our
SOHO scenario.
To start, you'll check the IPv6 addresses on the link between the router BB4 and the CPE,
and the link between the CPE and the host.
First start with the BB4 interface:

u0U-bb4# show interface brief
Interface Status VRF Addresses
--------- ------ --- ---------
eth0 down default 172.20.20.7/24
lo up default 10.1.4.4/32
 2001:db8:100::4/128
to_bb1 up default 10.1.41.4/24
 + 2001:db8:100:14::4/64
to_bb2 up default 10.1.42.4/24
 + 2001:db8:100:24::4/64
to_bb3 up default 10.1.43.4/24
 + 2001:db8:100:34::4/64
to_cpe up default + 2001:db8:102:46::4/64

And on the CPE you’ll run the same command to check the interface IPv6 addresses.

u0U-cpe# show interface brief
Interface Status VRF Addresses
--------- ------ --- ---------
eth0 down default 172.20.20.8/24
lo up default
to_bb3 up default + 2001:db8:102:36::6/64
to_bb4 up default + 2001:db8:102:46::6/64
to_host2 up default + 2001:db8:121::1/64

Then, on the CPE you’ll add another default route pointing to the BB4 interface.
Note: In real life deployments, depending on the software and the configuration on the CPE
this might be enabling equal-cost multipath feature (ECMP) or the CPE might prioritize any
of the default routes you configured.

configure terminal
ipv6 route ::/0 2001:db8:U02:46::4 to_bb4
end

Now, we assume that another prefix delegation from the second ISP (represented by the
BB4 router) happens and the CPE device needs to pass this prefix to the host behind it.
You’ll configure another IPv6 address on the interface facing the host by using this prefix.
(As we discussed before, in real-life scenarios, this happens automatically after the prefix is
delegated from the ISP). After configuring the CPE’s interface with the new IPv6 address,
you’ll add this new prefix into the RA messages sent by the CPE.

On the CPE device:
configure terminal
interface to_host2
 ipv6 address 2001:db8:U22::1/64
 ipv6 nd prefix 2001:db8:U22::/64
end

Now, it is time again to check the IPv6 addresses configured on the host to see the effect of
the change you made in the CPE configuration.

bash-5.0# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
1520: to_cpe@if1519: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9500 qdisc noqueue state
UP group default
 link/ether aa:c1:ab:9c:20:3b brd ff:ff:ff:ff:ff:ff link-netnsid 1
 inet6 2001:db8:122:0:a8c1:abff:fe9c:203b/64 scope global dynamic mngtmpaddr
 valid_lft 2591992sec preferred_lft 604792sec
 inet6 2001:db8:121:0:a8c1:abff:fe9c:203b/64 scope global dynamic mngtmpaddr
 valid_lft 2591992sec preferred_lft 604792sec
 inet6 fe80::a8c1:abff:fe9c:203b/64 scope link
 valid_lft forever preferred_lft forever

After validating that both IPv6 addresses are present on the host, you need to add and
redistribute another static route into the BB4 router’s configuration to be able to reach this
new prefix from BB4 and from the rest of the network.

On router BB4:

configure terminal
ipv6 route 2001:db8:U22::/48 2001:db8:U02:46::6 to_cpe
router bgp U00
 address-family ipv6 unicast
 redistribute static
end

With this, you should be able to ping the WWW server (2001:db8:99:78::8) behind our transit
router from the host with the new source address by specifying it in the ping command as
shown below.

ping6 -I 2001:db8:U22:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8

The output should look like:
bash-5.0# ping6 -I 2001:db8:U22:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8
PING 2001:db8:99:78::8(2001:db8:99:78::8) from 2001:db8:122:0:a8c1:abff:fe9c:203b :
56 data bytes
64 bytes from 2001:db8:99:78::8: icmp_seq=1 ttl=61 time=0.150 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=2 ttl=61 time=0.073 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=3 ttl=61 time=0.072 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=4 ttl=61 time=0.073 ms
^C
--- 2001:db8:99:78::8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3000ms

rtt min/avg/max/mdev = 0.072/0.092/0.150/0.033 ms

This output indicates that the WWW server is reachable with the new source address as
well. At this point, we are simulating a scenario where you (as the enterprise) are connected
to two different ISPs and have received two different IPv6 address delegations from them.
Your host accepts both prefixes and configures an IPv6 address for each. Both addresses
are valid and usable. It is up to the host and the applications on the host to decide which one
to use. The CPE device uses both ISPs as uplinks, each with a default route.

Activity 4.3: Shutting down the main uplink and simulating the
problem
In this lab setup, we are not applying “reverse path forwarding” feature (RPF/uRPF) on the
routers, but in real scenarios, ISPs are very likely to apply RPF to be able to prevent
spoofing, which means that even in this scenario, there is a high possibility of encountering
problems. Let's consider that your host is using the IP provided by the second ISP as the
source, and the CPE tries to forward this packet through the first ISP. As the first ISP does
not expect this source from the CPE (thanks to RPF), it will perceive this packet as a spoof
and will drop it. Or, in other cases, where RPF is not in use, there might be asymmetrical
routing which means sending and receiving packets of the same session through different
uplinks.

In our lab scenario, we will make the issue more dramatically visible. First, you’ll shut down
the link between the CPE and the BB3 router simulating a failure on this uplink. Then, you’ll
send a ping packet from the host to the WWW server again using the IPv6 address
configured from the prefix received from the first ISP.

Now, on the BB3 router, shut down the interface to the CPE.

configure terminal
interface to_cpe
 shut
 end

You can check the addresses on the host and you’ll see that both of them are still valid.

bash-5.0# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
1520: to_cpe@if1519: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9500 qdisc noqueue state
UP group default
 link/ether aa:c1:ab:9c:20:3b brd ff:ff:ff:ff:ff:ff link-netnsid 1
 inet6 2001:db8:U22:0:xxxx:xxxx:xxxx:xxxx/64 scope global dynamic mngtmpaddr
 valid_lft 2591993sec preferred_lft 604793sec

 inet6 2001:db8:U21:0:xxxx:xxxx:xxxx:xxxx/64 scope global dynamic mngtmpaddr
 valid_lft 2591993sec preferred_lft 604793sec
 inet6 fe80::a8c1:abff:fe9c:203b/64 scope link
 valid_lft forever preferred_lft forever

Note: This is also true when you use “prefix delegation” in real-life scenarios. if the CPE
router loses an uplink, it can detect the link loss and loss of the delegated prefix, and revoke
the IPv6 prefix from router advertisements sent to the LAN interfaces. However, this process
might be slow. The minimum valid lifetime of an IPv6 prefix in ND messages used for
stateless autoconfiguration is two hours, so it could take up to two hours for IPv6
connectivity to be fully operational after a link loss. Consequently, during this time, one of the
client IPv6 addresses becomes completely invalid without the client realizing it. In this case,
although outbound traffic would be forwarded over the remaining link, the return traffic might
end up in the wrong Autonomous System (AS) associated with the failed link to your site and
be dropped.

And from the host try to ping the WWW server (2001:db8:99:78::8) again with the new
source address by specifying it in the ping command as shown below.

ping6 -I 2001:db8:U21:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8

What do you see? Is it still reachable?

The output should look like this (you can use “Ctrl+C” or “Command+C” key combinations to
stop the command trying)

bash-5.0# ping6 -I 2001:db8:U21:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8
PING 2001:db8:99:78::8(2001:db8:99:78::8) from
2001:db8:121:100:a8c1:abff:fe17:eb42 : 56 data bytes
^C
--- 2001:db8:99:78::8 ping statistics ---
13 packets transmitted, 0 received, 100% packet loss, time 11999ms

You can clearly see that it is not reachable by looking at the packet loss percentage in the
output.
By doing this you simulated the problem in the multihomed networks of SOHOs which use
ISP assigned addresses.

Activity 4.4: Using your own address space
We have observed the problems caused by this setup. Now, let’s concentrate on one of the
most viable solutions. If you have your own address space, it may simplify the issue for you.
You can configure your hosts with your own single address prefix, and you can request your
ISPs to announce this prefix for you to the outside world. You’ll simulate this approach in the
lab topology now, by removing the ISP assigned IPv6 prefixes in the previous steps and
adding a new prefix which is allocated to this enterprise company. After using this new prefix
on the CPE device you’ll also announce this to the outside world by redistributing them in the
BGP on the ISP owned backbone devices (namely BB3 and BB4) In this scenario, your
network topology will look like the one shown below.

First re-enable the interface facing the CPE on the router BB3.

configure terminal
interface to_cpe
 no shut
end

You’ll remove the addresses and the prefixes assigned by the ISPs from the interface facing
the host.

On the CPE device:
configure terminal
interface to_host2
 no ipv6 address 2001:db8:U21::1/64
 no ipv6 address 2001:db8:U22::1/64
 no ipv6 nd prefix 2001:db8:U21::/64
 no ipv6 nd prefix 2001:db8:U22::/64

And configure a new address with a new prefix (this new prefix is reserved for
documentation purposes in 2024 in RFC9637).
 ipv6 address 3fff:0:U23::1/64
 ipv6 nd prefix 3fff:0:U23::/64
end

You need to route this new prefix to the enterprise network on the ISP routers you are
connected to.

On BB3:
configure terminal
no ipv6 route 2001:db8:U21::/48 2001:db8:U02:36::6 to_cpe
ipv6 route 3fff:0:U23::/48 2001:db8:U02:36::6 to_cpe
end

https://datatracker.ietf.org/doc/html/rfc9637

On BB4:
configure terminal
no ipv6 route 2001:db8:U22::/48 2001:db8:U02:46::6 to_cpe
ipv6 route 3fff:0:U23::/48 2001:db8:U02:46::6 to_cpe
end

Finally, you need to reset the interface configuration on the host and trigger the RA on CPE.

On the host:
ip -6 addr flush dev to_cpe scope global

Now check the IPv6 addresses on the host interface (it can take up to 20 seconds as the RA
interval on the CPE is 20 seconds). The output will look like:

bash-5.0# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
1520: to_cpe@if1519: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9500 qdisc
noqueue state UP group default
 link/ether aa:c1:ab:9c:20:3b brd ff:ff:ff:ff:ff:ff link-netnsid 1
 inet6 3fff:0:U23:0:xxxx:xxxx:xxxx:xxxx/64 scope global tentative
dynamic mngtmpaddr
 valid_lft 2592000sec preferred_lft 604800sec
 inet6 fe80::a8c1:abff:fe9c:203b/64 scope link
 valid_lft forever preferred_lft forever

From the host start pinging the WWW server (2001:db8:99:78::8) again with the new
source address by specifying it in the ping command as shown below and leave it on.

ping6 -I 3fff:0:U23:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8

And now you’ll try to test the link failure again. You can shut down the link between the CPE
and the BB3 router.

On the BB3 router:
configure terminal
interface to_cpe
 shut
 end

Check the ping output on the host. Do you see any failed packets? Is the server still
reachable?

u0U-host2 / # ping6 -I 3fff:0:U23:0:xxxx:xxxx:xxxx:xxxx 2001:db8:99:78::8
PING 2001:db8:99:78::8 (2001:db8:99:78::8) from
3fff:0:123:0:xxxx:xxxx:xxxx:xxxx : 56 data bytes
64 bytes from 2001:db8:99:78::8: icmp_seq=1 ttl=61 time=0.108 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=2 ttl=61 time=0.152 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=3 ttl=61 time=0.117 ms
64 bytes from 2001:db8:99:78::8: icmp_seq=4 ttl=61 time=0.083 ms
^C
--- 2001:db8:99:78::8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt min/avg/max/mdev = 0.083/0.115/0.152/0.024 ms

As you’ll see there is no packet loss and the WWW server is still reachable. You can also try
this with the second uplink (don’t forget to enable the link on BB3 first before you shutdown
the BB4 link to the CPE device)

Note: If you were trying to test this on a live network, you’d probably have some active
equipment between the CPE and the ISP routers (BB3 and BB4 in our case). Therefore, a
failure on the link would be harder to detect, as the active equipment would keep the link up.
In such cases, you can employ the bi-directional forward detection (BFD)* feature and
associate it with the static route you configure. This would allow the router to detect a failure
over the link, even if there is active L2 (switch) or L1 (DWDM) equipment between the CPE
and the routers.
*Bi-directional forward detection (BFD): Bidirectional Forwarding Detection (BFD) is a
network protocol designed to quickly detect faults in the communication path between two
routers or switches, often within milliseconds. It works on various types of connections,
including Ethernet, virtual circuits, tunnels, and MPLS paths, even if the underlying media
doesn't inherently support failure detection. BFD establishes a session between two
endpoints and can detect faults in as little as a few milliseconds, enabling rapid response to
network issues.

Activity 4 Summary
In this activity:

● You configured a single homed SOHO network with a single host behind a CPE.
● You configured the redundant uplink for the CPE simulating a connection to another

ISP and making CPE multihomed.
● You checked and verified the connectivity from the host over both uplinks of CPE

with two different IPv6 prefixes assumed to be assigned by the ISPs.
● You triggered and verified the problem by shutting down one of the uplinks
● You configured the same physical setup and solved the problem by using a single

IPv6 prefix allocated to SOHO company instead of ISPs.

Lab Activity 5: DNS Configuration

In this lab activity, you will configure the DNS server on Host2 by sending it in the RA
message from the CPE. You’ll check the DNS zone file on the DNS server and then you’ll
configure a AAAA record in the zone file. You’ll test web server reachability with the curl
command on the linux host to verify that DNS server works as expected.

Activity 5.1: Configuring RDNSS option on CPE
First, you need to verify that there is no DNS server configured on the host device. To do this
you’ll use the following command on “host2”.

u0U-host2 / # more etc/resolv.conf
Generated by dhcpcd
/etc/resolv.conf.head can replace this line
/etc/resolv.conf.tail can replace this line

As you can see, in the output, youdon’t have any dns or “nameserver” information.

Now, let’s start to configure the RDNSS option on the CPE. You’ll do it under the interface
facing the host. Your DNS server IP address is:
2001:db8:U03::e

On the CPE router:
configure terminal
interface to_host2
 ipv6 nd rdnss 2001:db8:U03::e
end

Now you can check the DNS server information on the host again. If everything is correct
you should see an output similar to the one below.

u0U-host2 / # more etc/resolv.conf
Generated by dhcpcd from to_cpe.ra
/etc/resolv.conf.head can replace this line
nameserver 2001:db8:U03::e
/etc/resolv.conf.tail can replace this line

Activity 5.2: Configuring DNS Server for AAAA Record
In this activity, first you need to check WEB server reachability.

On Host2 check the assigned GUA address again and try pinging the WEB server with that
GUA IPv6 address.

u0U-host2 / # ping -I 3fff:0:U23:0:85b7:9452:3aaa:f84f 2001:db8:U03::b
PING 2001:db8:U03::b (2001:db8:203::b) from
3fff:0:U23:0:xxxx:xxxx:xxxx:xxxx : 56 data bytes
64 bytes from 2001:db8:U03::b: icmp_seq=1 ttl=61 time=0.928 ms
64 bytes from 2001:db8:U03::b: icmp_seq=2 ttl=61 time=0.147 ms
64 bytes from 2001:db8:U03::b: icmp_seq=3 ttl=61 time=0.147 ms
64 bytes from 2001:db8:U03::b: icmp_seq=4 ttl=61 time=0.144 ms
64 bytes from 2001:db8:U03::b: icmp_seq=5 ttl=61 time=0.148 ms
^C
--- 2001:db8:203::b ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4002ms
rtt min/avg/max/mdev = 0.144/0.302/0.928/0.312 ms

As you’ll see, the WEB server is reachable with its IPv6 address. Now try to see if there is
any DNS record for “localweb.example”. This is a domain that should be pointing to the
same WEB server.

You can use host and dig commands for this. Try both as shown below.

First try “host”.
u0U-host2 / # host localweb.example
Host localweb.example not found: 3(NXDOMAIN)

Now with “dig”.

u0U-host2 / # dig AAAA localweb.example

; <<>> DiG 9.18.27 <<>> AAAA localweb.example
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 46754
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; COOKIE: fecbaffe1359858301000000671f6cd8fec5bba6f82c7cbc (good)
;; QUESTION SECTION:
;localweb.example. IN AAAA

;; AUTHORITY SECTION:
example. 300 IN SOA ns.example. admin.example.
2024090100 7200 3600 1209600 3600

;; Query time: 1 msec
;; SERVER: 2001:db8:U03::e#53(2001:db8:203::e) (UDP)
;; WHEN: Mon Oct 28 10:52:08 UTC 2024
;; MSG SIZE rcvd: 118

As you can see, there are no AAAA records for this domain. Let’s create it on the DNS
server!

On the DNS server, first check the zone file for the domain “example”. You can use “more”
command.

u0U-dns / # more etc/bind/example.zone
$ORIGIN example.
$TTL 300

@ 300 IN SOA ns.example. admin.example. (
 2024090100 ; serial
 7200 ; refresh (2 hours)
 3600 ; retry (1 hour)
 1209600 ; expire (2 weeks)
 3600 ; minimum (1 hour)
)

@ 300 IN NS ns.example.
ns 300 IN A 127.0.0.1

www 300 IN A 10.0.87.7

Here we verify again that there is no AAAA record for this domain.

To be able to create it, you’ll use vi text editor on this linux server.

1. Run the command “vi /etc/bind/example.zone”
2. Hit the key “G” on your keyboard. This should bring your cursor to the last line of the

file.
3. Hit “yy” on your keyboard. This will copy the last line of the file.
4. Hit “p” on the keyboard. This will paste the copied line below the current line.
5. Now hit “i” to enable the insert mode and change the last line (which you created

recently) according to the example entry below. The IPv6 address in the entry is the
IPv6 address of your web server. You can check it with the command “ip addr” on
the WEB server.

localweb 300 IN AAAA 2001:db8:U03::b
6. Now hit the “Esc” character on your keyboard to exit insert mode.
7. Write :wq! characters to save and exit the file.
8. You can check the zone file again by the command “more etc/bind/example.zone” to

verify your new record.
9. As the last step, you need to reload the dns service on the server for the changes to

take effect. Use the command below.
u0U-dns / # rndc reload
server reload successful

After creating and verifying your new domain record on the DNS server, you can check this
on Host2 again.

On Host2, run the commands “dig” and “host” again.

First try “host”.
u0U-host2 / # host localweb.example
localweb.example has IPv6 address 2001:db8:U03::b

Now try “dig”.

u0U-host2 / # dig AAAA localweb.example

; <<>> DiG 9.18.27 <<>> AAAA localweb.example
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7124
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; COOKIE: 11bfcca8191f31f001000000671f6c6484823fe3d3f81c6d (good)
;; QUESTION SECTION:
;localweb.example. IN AAAA

;; ANSWER SECTION:
localweb.example. 300 IN AAAA 2001:db8:U03::b

;; Query time: 0 msec
;; SERVER: 2001:db8:203::e#53(2001:db8:203::e) (UDP)
;; WHEN: Mon Oct 28 10:50:12 UTC 2024
;; MSG SIZE rcvd: 101

And finally you can try to reach the WEB server over the http protocol by using the “curl”
command. You should see your IPv6 address as a response.

u0U-host2 / # curl localweb.example
Your IP address is: 3fff:0:U23:0:xxxx:xxxx:xxxx:xxxx

Activity 5 Summary
In this activity:

● You configured RDNSS option on the CPE device and passed the DNS information
to the host via RA messages

● You checked the DNS records for a specific domain
● You configured the AAAA record on the DNS server
● You verified the same DNS information on the host and was able to reach the WEB

server with this DNS record available.

