Effect of anycast on K-root

Some early results

RIPE NCC
 K root anycast deployment

- 3 global nodes (BGP transit)
- LINX
- ... 54592515225152 i
- AMS-IX
- ... 251522515225152 i
- Tokyo (since 5/2005)
- ... 25152251522515225152 i
- ~10 local nodes (announced with no-export)
- Future nodes will be global
- Miami (live as we speak?)
- India
- West coast?

RIPE NCC

Node structure

- 2 machines running nsd, switches, routers
- Production IP: OSPF load balancing
- K-root IP address: 193.0.14.129
- Service interfaces
- Normally firewalled, don't reply to queries
- LINX: 193.0.16.1, 193.0.16.2
- AMS-IX: 193.0.17.1, 193.0.17.2
- ...
- Management interfaces, ...

Why anycast?

- Reasons for anycasting:
- Provide resiliency and stability
- Reduce latency
- Spread server and network load, contain DOS attacks
- Does it work?

Stability

RIPE NCC
 Instance switches

- Resiliency is pretty much a given
- The more servers there are,
- the more they can withstand
- the more localised the impact of an attack
- What about stability?
- The more routes competing in BGP, the more churn
- Doesn't matter for single-packet exchanges (UDP)
- Does matter for TCP queries
- How frequent are instance switches?

RIPE Detecting instance switches

- Measure at the server
- Look at instance switches that actually occur
- Procedure:
- Look at packet dumps
- At the time, there were only 2 global nodes
- Extract all port 53/UDP traffic
- For each IP address, remember where it was last seen
- If the same IP is seen elsewhere, log a switch
- Caveats:
- K nodes are only NTP synchronized

RIPE
 Time since last switch
 NCC

RIPETime since last switch, log-log

RIPE
 NCC
 Top switching IPs

Stability: conclusions

- Nice power laws, but what do they mean?
- We don't know yet
- Further analysis needed

Latency

RIPE NCC
 Latency comparison

- Ideally, BGP should choose the instance with the lowest RTT.
- Does it?
- Measure RTTs from the Internet to:
- Anycasted IP address (193.0.14.129)
- Service interfaces of global nodes (not anycasted)
- Compare results
- Just to make sure this is apples to apples:
- Are AS-paths to service interfaces the same as to production IP?
- According to the RIS, "mostly yes"

RIPE Probe locations: TTM (bias?)

210°
240°
$240^{\circ} \quad 270^{\circ}$
$330^{\circ} \quad 0^{\circ}$

RIPE

Method

- Send DNS queries from all test-boxes
- For each K-root IP:
- Do a "dig hostname.bind"
- Extract RTT
- Take minimum value of 5 queries
- Compare results of anycast IP with those of service interfaces
- $\alpha=\mathrm{RTT}_{\mathrm{K}} / \min \left(\mathrm{RTT}_{\mathrm{i}}\right)$
$-\alpha \approx 1$: BGP picks the right node
$-\alpha>1$: BGP picks the wrong node
$-\alpha<1$: local node?

RIPE
 NCC
 Latency comparison

RIPE NCC Local worse than global?

```
$ cat tt89
193.0.14.129 k2.denic 29 k2.denic 30 k2.denic 29 k2.denic 30 k2.denic 29
193.0.16.1 k1.linx 4 k1.linx 3 k1.linx 3 k1.linx 3 k1.linx 3
193.0.16.2 k2.linx 3 k2.linx 3 k2.linx 3 k2.linx 3 k2.linx 4
193.0.17.1 k1.ams-ix 12 k1.ams-ix 11 k1.ams-ix 12 k1.ams-ix 13 k1.ams-ix 13
193.0.17.2 k2.ams-ix 12 k2.ams-ix 13 k2.ams-ix 11 k2.ams-ix 12 k2.ams-ix 13
```

(This example has since been fixed)

- What's going on here? Perhaps:
- Local node announcements don't necessarily leak
- But they do get announced to customers
...and customers of customers
...where they compete with announcements from global nodes
...which lose out due to prepending

RIPE Latency comparison (global)

RIPE NCC
 Latency: conclusions

- Local nodes "confuse" the situation due to transit and prepending
- But all in all, BGP does a surprisingly good job
- Even though the AS-paths are of different lengths!
- This contrasts with other work (Ballani \& Francis)
- Perhaps it is because K only has two global nodes
- Will it get worse when more nodes are deployed?

Load balancing

RIPE Usefulness of local nodes NCC

- How much traffic does a local node get?
- Do local nodes take load off the global nodes?
- Where do local queries come from?
- From the global K nodes?
- From the other root servers?

RIPE
 NCC
 Local queries

RIPE
 NCC
 Local queries (cumulative)

Local node queries, cumulative

RIPE
 NCC
 Local vs global

Local vs global queries

RIPE Load balancing: conclusions

- The traffic a local node gets depends on where it is
- Wide variation
- Location must be chosen carefully to maximise usefulness
- Local nodes do take load off the global nodes
- but not much
- Increase in local traffic does not correspond to decrease in global traffic
- Traffic mostly seems to come from the other roots

Questions?

