

Internet Governance and the move to IPv6

TU Delft April 2008 Alex Band & Arno Meulenkamp

Internet Governance

Community Policies

Internet Resource Statistics

Internet Governance

ICANN / IANA

The 5 RIRs

RIPE NCC is -a Network Coordination Center -an independent organisation -a not-for-profit membership association -one of the 5 Regional Internet Registries

Registration

Goals of the IR System: Registration

Why?

Ensure uniqueness of IP address space usage Provide contact information for network operators

How? RIPE Database

Results:

IP address space allocated uniquely Contact information available for Internet resources

Aggregation

Goals of the IR System: Aggregation

Why?

Routing table grows fast Provide scalable routing solution for the Internet

How? Encourage announcement of whole allocations (min /21) Introduction of Classless Inter Domain Routing (CIDR)

Results:

Growth of routing table slowed down

Conservation

Goals of the IR System: Conservation

Why?

IP address space is limited resource Ensure efficient usage

How?

Introduction of CIDR Community based policies to ensure fair usage

Results:

IP address space consumption slowed Address space allocated on 'need to use' basis

IP address distribution

Community Policies

Policy Development Cycle

How policy is made

Internet Resource Statistics

IPv4 Address Pool - Now

IPv4 Address Pool - The Future

IPv6

IPv6 address: 128 bits – 32 bits in IPv4 Every subnet should be a /64 Customer assignments (sites) between:

- /64 (1 subnet)
- /48 (65536 subnets)

Minimum allocation size /32

- 65536 /48's

Makes network planning easier Always enough addresses in a subnet DHCP not necessary for address configuration – but still possible Makes scanning subnets useless (botnets) – too many addresses in a subnet

IPv6 and IPv4 compatibility?

IPv6 is a different protocol from IPv4 IPv6 hosts cannot talk to IPv4 hosts directly

Tools like 6to4 and other tunneling options only let IPv6 hosts talk to eachother

IPv6 Transition

IPv6 Allocations

Getting an IPv6 allocation

To qualify, an organisation must:

- Be an LIR
- Advertise the allocation as a single prefix
- Have a plan for making assignments within two years

Who needs IPv6? We have NAT!

We'll move when staying with IPv4 hurts too much

We'll move before IPv4 runs out, smoothly

More information:

www.ripe.net

arno@ripe.net alexb@ripe.net

