

Introduction to IP Addressing and Regional Internet Registries

Mirjam Kühne Community Builder, RIPE NCC

mir@ripe.net

Content

- The RIPE NCC
 - Who we are and what we do
- The Regional Internet Registry System
 - How IP addresses are distributed
- IP policies
 - Who develops IP distribution policies
- IP address basics
 - IPv4 and IPv6

03:10ff,198. FOF 198.51

The RIPE NCC

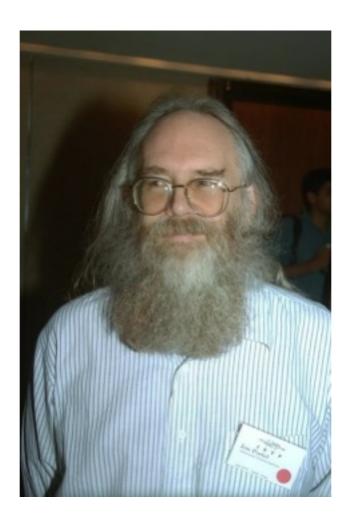
- Established in 1992 by the RIPE community
 - Initially part of the academic network association
 - Since 1997 a membership association under Dutch law
 - Not for profit, independent, neutral, open
 - Main offices in Amsterdam; staff in Dubai and Moscow
- Funded by the membership
 - 11,500 members from 76 countries
 - Initially mostly ISPs and universities
 - Now also traditional industries, small Internet companies
- One of five Regional Internet Registries

- Member services
 - Resourcedistribution (IPv4,IPv6, ASNs)
 - Resource certification
 - Trainings

- Public services
 - -RIPE Database
 - -Reverse DNS
 - Operating K-root server
 - -Operator tools
 - Data sharing
 - -Open meetings

FOF 198.51

The Internet Registry System



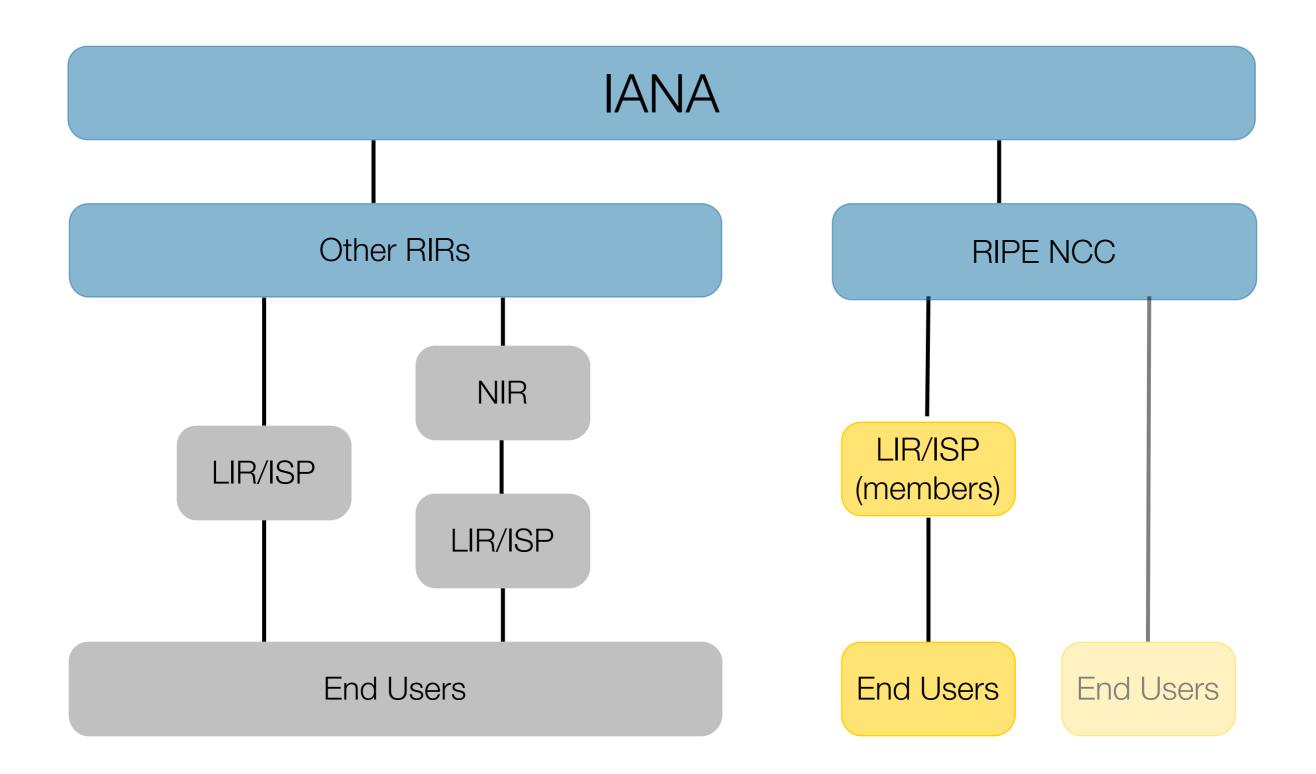
How it all Started: The IETF

- Internet Engineering Task Force
 - Not-for-profit, open to anybody
 - Builds technical Internet standards and protocols
 - BGP, DNS, traceroute, IP, SIP, DNSSEC, IPSEC, ...
- Standards are defined in RFC documents
- The IETF standardised TCP/IP
 - As part of that, need for registration arose
 - Therefore IETF standardised registration model
 - Defined in RFC1466 in May 1993

The IANA

Jon Postel (1943-1998)

"The Internet Assigned Numbers Authority"



The IANA IPv4 Registry

Prefix 🖫	Designation 🖫	Date 🖫	WHOIS 🗵	RDAP 🖫	Status [1]	Note 🗵
000/8	IANA - Local Identification	1981-09			RESERVED	[<u>2</u>]
001/8	APNIC	2010-01	whois.apnic.net		ALLOCATED	
002/8	RIPE NCC	2009-09	whois.ripe.net		ALLOCATED	
003/8	General Electric Company	1994-05	whois.arin.net		LEGACY	
004/8	Level 3 Communications, Inc.	1992-12	whois.arin.net		LEGACY	
005/8	RIPE NCC	2010-11	whois.ripe.net		ALLOCATED	
006/8	Army Information Systems Center	1994-02	whois.arin.net		LEGACY	
088/8	RIPE NCC	200	4-04 whois.rip	e.net	ALLO	CATED
089/8	RIPE NCC	200	5-06 whois.rip	e.net	ALLO	CATED
090/8	RIPE NCC	200	5-06 whois.rip	e.net	ALLO	CATED
091/8	RIPE NCC	200	5-06 whois.rip	e.net	ALLO	CATED
092/8	RIPE NCC	200	7-03 whois.rip	e.net	ALLO	CATED
093/8	RIPE NCC	200	7-03 whois.rip	e.net	ALLO	CATED
094/8	RIPE NCC	200	7-07 whois.rip	e.net	ALLO	CATED
095/8	RIPE NCC	200	7-07 whois.rip	e.net	ALLO	CATED
096/8	ARIN	200	6-10 whois.ari	n.net	ALLO	CATED
097/8	ARIN	200	6-10 whois.ari	n.net	ALLO	CATED
253/8	Future use	198	1-09		RES	ERVED
254/8	Future use	198	1-09		RES	ERVED
255/8	Future use	198	1-09		RES	ERVED

IP Address Distribution

Regional Internet Registries

The Regional Internet Registries (RIRs)

- All five RIRs are not-for-profit associations
- Funded by the membership
- Responsible for allocation and assignment of Internet Number Resources in their service regions
 - IPv4 addresses
 - IPv6 addresses
 - Autonomous System Numbers (ASN)
- Each RIR operates a whois database as a registry for these numbers

Public Registry Data

- Information in the registries is publicly available
 - Which entity uses a particular resource
 - How you can contact them
- Each of the RIRs operates a 'whois database'
 - Commonly accessible via website or whois protocol
 - Use whois.iana.org to find the responsible registry
- Note: IPv4 and IPv6 are distributed in ranges
 - Operators can further distribute them to customers
 - Level of detail on these customer assignments may vary

Registration of Internet Number Resources

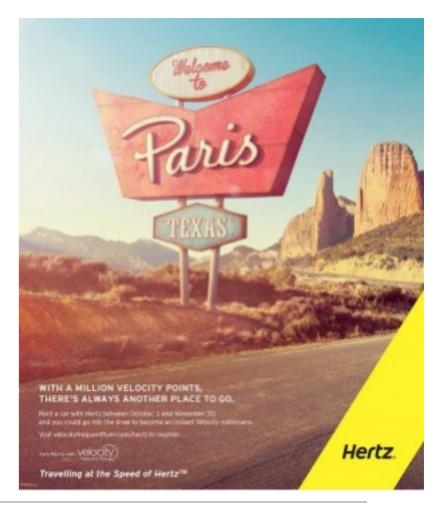
- Ensures global uniqueness of IPs and ASNs
- Provides contact details for network operators
 - In case you need to troubleshoot or arrange connectivity
- Function originally performed by John Postel
 - Became known as the "Internet Assigned Numbers Authority" (IANA)
- IANA functions are now operated by ICANN
 - Under a contract with NTIA (US Government)
 - Maintains the global pool of Internet Number Resources

Regional Address Policies

- Each RIR has its own Policy Development Process
- Regional community decides on regional policies for address allocation, assignment and registration
- Communities are open to everyone to participate
 - You don't have to live in a specific service region
 - You don't have to be a member of an RIR
- Decisions are made by rough consensus
 - No voting
- RIRs implement policy and operate accordingly

RIPE Region Specific

- Réseaux IP Européens was formed in 1989 by a small group of academics in Europe
- Goal was to promote IP
- Not a legal entity
- Two RIPE Meetings per year with WGs
- Open RIPE mailing Lists
- RIPE set up RIPE NCC as a secretariat
- Only later RIPE NCC became RIR

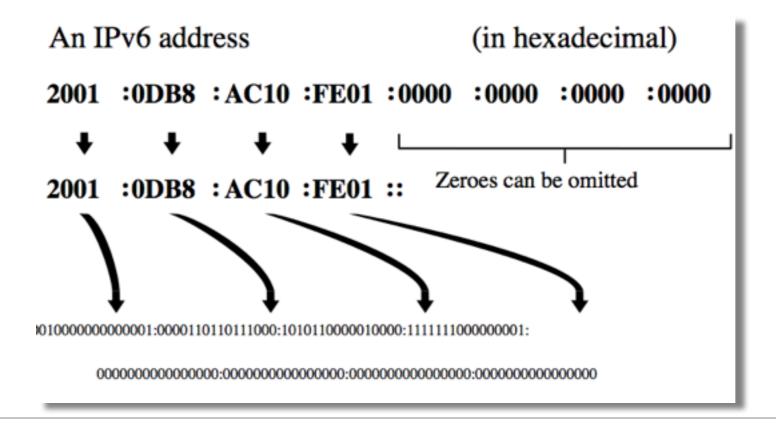

03:10ff 198.

IPv4 & IPv6

(IP) Address Properties

- Every entity handling packets needs to be able to read and understand the address
 - Fixed format
 - Machine readable
- The address has to be unambiguous
 - Globally unique

- Addresses can be used for two things:
 - Identify the sender and recipient
 - Tells where the packet needs to go
- IP address
 - One single number for both functions
- IP address changes when you change network



- IPv4 address is 32 bits long
 - In total 2^32 addresses (4,294,967,296)
 - But some needed for network structure

- Functionally the same as IPv4, just more addresses
- IPv6 address is 128 bits long
 - 2^128 addresses available
 - 340282366920938463463374607431768211456 options
- Incompatible with IPv4 (design decision)

Deploying IPv6: The Plan

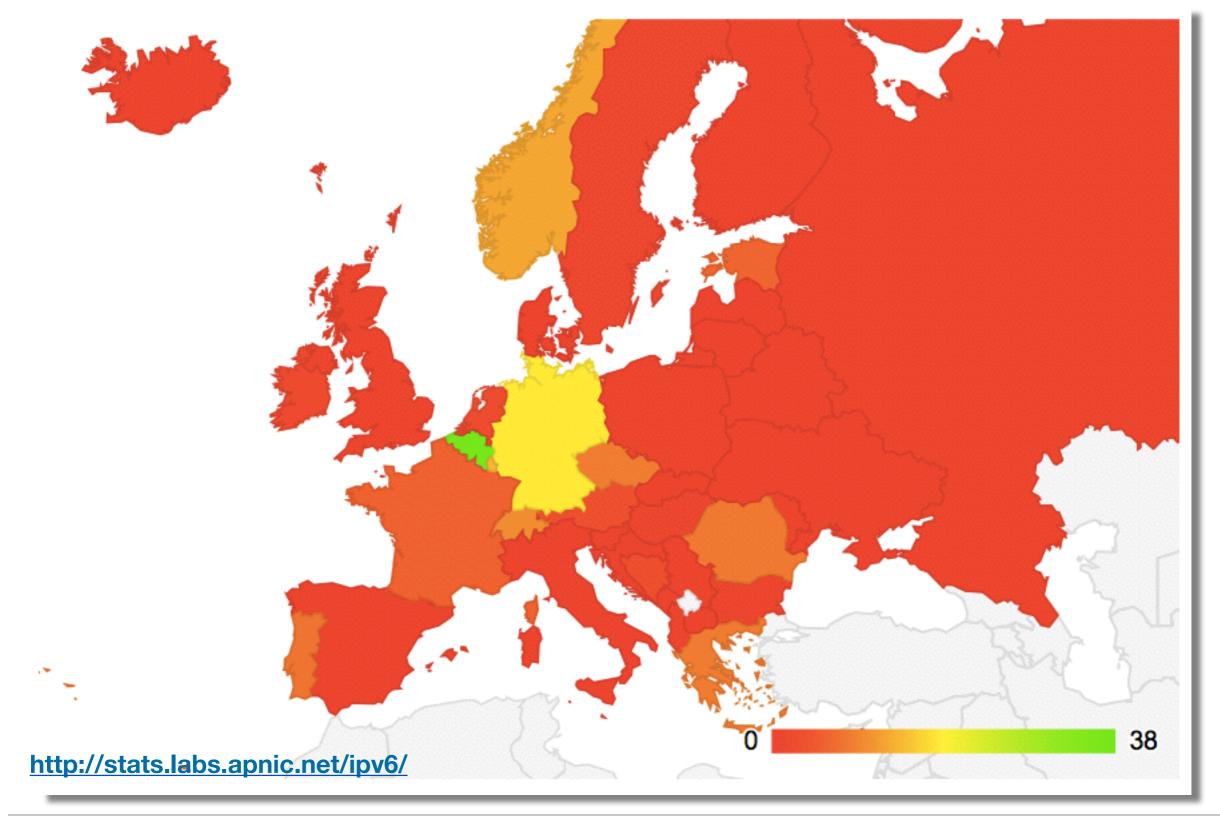
- Standard work on IPv6 finished in 1998
- IPv6 and IPv4 are not compatible
 - You can use both protocols at the same time on the same network without interference
 - You can "retrofit" IPv6 onto existing networks
- Computers which have both can choose wether to use IPv4 or IPv6
 - Depending on the peers capability
- When both are available: use IPv6
 - This will gradually phase out IPv4

Chickens and Eggs

IPv6 suffers from a classic bootstrapping problem

- For applications to support IPv6 you need the network to deliver packets
 - Networks don't supply IPv6 connectivity because there are not that many applications that support it
- Content and Services need to adopt IPv6, but there are no users who can access using IPv6
 - There are no users, because there is no content

- Encouraging the adoption of IPv6 for over 10 years
 - IPv6 resource allocation started late nineties
- Capacity building at different levels
 - High level information for decision makers
 - Hands-on training for engineers
 - Online, in situ, brochures, webinairs, conferences
- Cooperation with ISOC, IETF, ICANN, ITU-D, industry and governments



IPv6 is Taking Off

- APNIC, LACNIC and RIPE NCC have exhausted their pools of IPv4 addresses (starting in 2012)
 - ARIN has 0.29 of a /8 left (4,5 million addresses)
- Networks now have to deploy IPv6 to grow
 - Sustaining IPv4 becomes expensive

IPv6 Deployment in Europe

