

New Developments in Address Policy and Community Tools

Florian Obser, Vesna Manojlovic

Darmstadt | November 2016 | DENOG8

... also known as ...

... actually

Help community to shape RIPE policies

Use RIS for your BGP monitoring

Measure your reachability with RIPE Atlas

How to Shape RIPE Policies

The Internet Registry System

Regional Internet Registries

- Five RIRs worldwide
 - Not-for-profit organisations
 - Funded by membership fees
 - Distributing Internet resources & coordinating related activities
 - Policies decided by regional communities
 - Neutral, Impartial, Open, Transparent

RIPE != RIPE NCC

Who Does What?

The RIPE community

- Creates & discusses policy proposals
- Seeks consensus and decides on policies
- Has two RIPE meetings per year

The RIPE NCC

- Acts as the secretariat to support the policy process
- Implements the policies & distributes resources
- Helps organise RIPE meetings
- ... and many other activities: training, measurements, gathers statistics, takes part in Internet Governance...

RIPE Consists of Working Groups

RIPE Working Groups

- Address Policy
- Routing
- Database
- Anti-abuse
- Cooperation
- IPv6

- RIPE NCC Services
- Connect
- Open Source
- Measurement,Analysis and Tools

RIPE Forum

Beta RIPE Forum v1.2b

RIPE Forum

Available Lists	
RIPE Forum Test mailing list	>
ACM Task Force	>
Address Policy Working Group	>
Anti-Abuse Working Group	>
Best Current Operational Practices (BCOP) Task Force	>
Connect Working Group	>
Cooperation Working Group	>
Database Working Group	>
DNS Working Group	>

Recent Posts

[db-wg] Faked entries in the RIPE db

Last updated by Ian Dickinson at 2016-05-31 12:44:24

[ipv6-wg] New on RIPE Labs: How are you Deploying IPv6? Take this Survey

Last updated by Mirjam Kühne at 2016-05-31 11:40:50

[dns-wg] New on RIPE Labs: Anycast vs. DDoS - Evaluating the November 2015 Root DNS Event

Last updated by Mirjam Kühne at 2016-05-31 10:01:52

The RIPE Forum is an additional way to participate in RIPE community mailing list discussions using a web-based interface rather than an email client. Everything you post here goes to the mailing list and everything posted to the mailing list is visible here.

RIPE Forum

- Alternative way to participate in discussions
- One place to access all RIPE mailing lists
- Completely web-based; no emails in inbox
- Interacts with existing mailing lists
- Contains threaded view, search function and options to share

https://www.ripe.net/participate/mail/forum/

IPv6 Addresses Distribution

IPv4 Available Pool

Types of Transfers

PA allocations

between RIPE NCC members

Merger or Acquisition

PI assignments

between End Users

From Legacy Space

AS numbers

between End Users

Inter-RIR

Inter-RIR Transfers

- Between RIRs with compatible policies
- ARIN: IPv4 addresses (including legacy space)
- APNIC: IPv4 addresses and AS Numbers (including legacy)
- Send your request to <u>inter-rir@ripe.net</u>

Transfers: How to Request

- IPv4 Listing Service, in LIR Portal account
- Use the "Request Transfer" wizard
- Include the following information & documents:
 - IPv4 / IPv6 / ASN being transferred
 - company names and contact details
 - company registration papers
 - Transfer Agreement
- For PI transfers, sponsoring LIR agreement is needed too

Protect Your Resources

- Maintain your contact info in the RIPE database
- Keep your LIR contacts in the LIR Portal up to date
- Know the policies and procedures
- In case of questions, contact Registration Services

<u>lir-help@ripe.net</u>

Policy Development Process

Current Policy Discussions

- 2015-04, "RIPE Resource Transfer Policies"
 - Aims to create a single transfer policy with all relevant information on the transfer of Internet number resources, replacing text in several RIPE Policies.
- 2016-04, "IPv6 PI Sub-assignment Clarification"
 - Aims to define sub-assignments in IPv6 PI assignments as subnets of /64 and shorter.
- Upcoming: Assessment criteria for IPv6 additional allocations
 - Aims to align allocation criteria for IPv6 additional allocations to initial allocation (segmentation, security, longevity)

https://www.ripe.net/participate/policies/current-proposals/current-policy-proposals

Everyone is RIPE Community

Using RIS for Your BGP Monitoring

Routing Information Service (RIS)

- Worldwide network of BGP collectors
- Deployed at Internet Exchange Points
- Collects raw BGP data from peers
 - 669 peers at 18 locations
 - 157 IPv4 full tables
 - 147 IPv6 full tables
- 15+ years of history

Collector Locations

Collector History

Collector	Location	IXP	Deployed	Removed
RRC00	Amsterdam	Multi-hop	1999	-
RRC01	London	LINX	2000	-
RRC02	Paris	SFINX	2001	2008
RRC03	Amsterdam	AMS-IX	2001	-
RRC04	Geneva	CIXP	2001	-
RRC05	Vienna	VIX	2001	-
RRC06	Tokyo	DIX-IE	2001	-
RRC07	Stockholm	Netnod	2002	-
RRC08	San Jose	MAE-West	2002	2004
RRC09	Zurich	TIX	2003	2004
RRC10	Milan	MIX	2003	-
RRC11	New York	NYIIX	2004	-
RRC12	Frankfurt	DE-CIX	2004	-
RRC13	Moscow	MSK-IX	2005	-
RRC14	Palo Alto	PAIX	2005	-
RRC15	Sao Paulo	PTT-Metro SP	2006	-
RRC16	Miami	NOTA	2008	-
RRC18	Barcelona	CATNIX	2015	-
RRC19	Johannesburg	NAPAfrica JB	2016	-
RRC20	Zurich	SwissIX	2015	-
RRC21	Paris	FranceIX	2015	-

RIS Data

- RAW data
 - http://data.ris.ripe.net/
- Shiny web interface: RIPEstat
 - https://stat.ripe.net/
- We provide APIs to query all the data
 - https://stat.ripe.net/docs/data_api

RIPE Stat - Routing Overview

RIPE Stat - AS Path Length

RIPE Stat - Visibility

RIPE Stat - Monitor Updates

Real-time Streaming of BGP data

- Public beta available
- Data from newest 4 RRCs only (RRC18-21)
- Client specifies filtering options, streaming service sends BGP
- Messages as they become available

http://stream-dev.ris.ripe.net/demo

Real-time Streaming

Host:	rrc21	0
Peer:		
Prefix:		
Originating ASN:		
Type:		0
More specific:		0
Less specific:	false	0
selector	messag	e
rate limit /s	100	0
Update Params	Play/Pause	١

[14:10:45] connection alive

0 messages dropped

	Dolor	
RRC time	Delay (s)	JSON message
14:10:45	0.11	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
14:10:45	0.11	{"timestamp":1479474645.54,"prefix":"205.70.128.0/19","community":[[8218,103],[8218,20000], [8218,20110]],"host":"rrc21","next_hop":"37.49.236.1","peer":"37.49.236.1","path": [8218,6461,209,3910,721,27065,5839],"type":"A"}
14:10:45	0.11	{"timestamp":1479474645.54,"prefix":"177.8.247.0/24","community":[[8218,103],[8218,20000], [8218,20110]],"host":"rrc21","next_hop":"37.49.236.1","peer":"37.49.236.1","path": [8218,6461,3356,3549,28642,263030],"type":"A"}
14:10:45	0.11	{"timestamp":1479474645.54,"prefix":"205.70.128.0/19","community":[[8218,103],[8218,20000], [8218,20210]],"host":"rrc21","next_hop":"37.49.236.1","peer":"37.49.236.1","path": [8218,6461,209,3910,721,27065,5839],"type":"A"}
14:10:45	0.11	{"timestamp":1479474645.54,"prefix":"177.8.247.0/24","community":[[8218,103],[8218,20000], [8218,20220]],"host":"rrc21","next_hop":"37.49.236.1","peer":"37.49.236.1","path": [8218,6461,3356,3549,28642,263030],"type":"A"}
14:10:45	0.11	{"timestamp":1479474645.54,"prefix":"205.70.128.0/19","community":[[8218,103],[8218,20000], [8218,20220]],"host":"rrc21","next_hop":"37.49.236.1","peer":"37.49.236.1","path": [8218,6461,209,3910,721,27065,5839],"type":"A"}
14:10:45	0.14	{"timestamp":1479474645.51,"prefix":"185.26.155.0/24","community":[[34019,5001],[34019,5104],[34019,65000], [34019,65020],[34019,65021],[65512,2003]],"host":"rrc21","next_hop":"37.49.236.71","peer":"37.49.236.71","path": [34019,6939,4826,60725],"type":"A"}
14:10:45	0.81	{"peer":"37.49.236.1","timestamp":1479474644.84,"host":"rrc21","type":"W","prefix":"103.30.79.0/24"}
14:10:45	0.81	{"peer":"37.49.236.1","timestamp":1479474644.84,"host":"rrc21","type":"W","prefix":"103.228.111.0/24"}
14:10:45	0.81	{"peer":"37.49.236.1","timestamp":1479474644.84,"host":"rrc21","type":"W","prefix":"103.195.107.0/24"}
14:10:45	0.81	{"peer":"37.49.236.1","timestamp":1479474644.84,"host":"rrc21","type":"W","prefix":"103.24.219.0/24"}
14:10:45	0.81	{"peer":"37.49.236.1","timestamp":1479474644.84,"host":"rrc21","type":"W","prefix":"103.195.105.0/24"}
14:10:45	0.81	{"peer":"37.49.236.1","timestamp":1479474644.84,"host":"rrc21","type":"W","prefix":"43.254.164.0/24"}
14:10:45	0.12	{"timestamp":1479474645.39,"prefix":"14.140.190.0/23","community":[[6453,50],[6453,2000],[6453,2100], [6453,2104],[6453,10002],[24482,1],[24482,12010],[24482,12011],[24482,21200], [24482,64601]],"host":"rrc21","next_hop":"37.49.236.228","peer":"37.49.236.228","path": [24482,6453,4755],"type":"A"}

Original Architecture (1999)

- Diagram from RIPE-200 (original concept)
- Note 'RIS Server'
 - singular!
- Also, the 'database'
 - this becomes the hardest part!!

Original RIS design (RIPE-200) circa 1999

Classic Architecture (~2003)

"RIS Classic" - Overview

James Aldridge

RIPE 44 , January 2003, Amsterdam

http://www.ripe.net/ris

3

Current Design - Data Collection

Current Design - Back-end

Scaling the Collectors

- Quagga used as BGP collector
- Single-threaded
 - Not as scalable on modern multi-core CPUs
- Locks updates during table-dump process
 - Requires that dump completes before the hold timer expires, or BGP session will drop
- Some data consistency issues
 - Sometimes updates are missing from the update dumps at the time of a table dump
 - This makes it difficult to accurately rebuild BGP state at a intermediate time, if updates are not reliable in-between

Scaling the Collectors Cont'd

- New RRCs use ExaBGP
- Still single threaded
- But doesn't block & 1 (or n) instances per CPU
- Much simpler job
 - keep BGP session alive
 - write one line of JSON to STDOUT per BGP message
- Python 4 liner stores it in DirQ
 - if process dies takes ExaBGP instance with it

Scaling the Collectors Cont'd

- BGP message is safely stored on disk
- Or we tore session down
- → BGP state is consistent

- 2nd process drains DirQ
- Stores messages in Message Queue Cluster in Amsterdam (RabbitMQ / Kafka)

Data Processing

- Apache Hadoop
 - An open-source software framework for distributed storage and distributed processing of very large data sets on computer clusters built from commodity hardware.
- "Big Data" storage and analytics
- Allows us to build a scalable storage and processing cluster
- Currently over 150 servers in the cluster!
 - Although the cluster is not only used for RIS!
 - Also used by RIPE Atlas and other projects

Data Processing - Components

HDFS

- distributed, replicated, cluster filesystem

YARN

- compute resource manager and application scheduler

Map/Reduce

massive batch job processing

HBase

- non-relational distributed database
- large tables billions of rows X millions of columns

Data Processing - Components

Spark

- Cluster computing used for data stream processing
- i.e. non-batch computing

Azkaban

- Batch workflow job scheduler, dependency tracking, etc.

Kafka

- BGP event messaging bus

Data Processing

Raw data inputs:

- BGP updates events everything must start from a BGP message!
- BGP table dumps (which can also be derived from updates)

Derived datasets

- update-counts, first-last-seen, prefixes-transited-by-asn, peers-list, asn-stats, asn-adjacencies
- country-code mapping
- aggregated counts for historical overviews
- distributed looking-glass processing

Measure your Reachability with RIPE Atlas

RIPE Atlas

From Wikipedia, the free encyclopedia

RIPE Atlas ☑ is a global, open, distributed Internet measurement platform, consisting of thousands of measurement devices that measure Internet connectivity in real time.

RIPE Atlas Coverage in Germany

Country	Probes		
Germany	1189		
United States of America	1039		
France	748		
United Kingdom	593		
Netherlands	506		
Russia	498		
Switzerland	283		
Czech Republic	255		
Italy	236		
Ukraine	206		

Most Popular Features

- Six types of measurements: ping, traceroute,
 DNS, SSL/TLS, NTP and HTTP (to anchors)
- APIs to start measurements and get results
- Powerful and informative visualisations
- CLI tools
- Streaming data for real-time results
- New: "Time Travel", LatencyMON, DomainMON
- Roadmap shows what's completed and coming

Global Reachability Check: Traceroute 🎾

Traceroute View: List

General Information		Probes Map		Lat	tencyMON	OpenIPMap Prototype		ototype	Results	Modi	fication
Probe \$	ASN (IPv4)	◆ ASN (IPv6	i)	\$	Time (UTC)	\$	RTT	÷		\$	Hops
2713	60706	60706		۵	2016-11-18	10:52	33.192				14
2941	25394		=	۵	2016-11-18	10:51	50.783				20
3055	6412			۵	2016-11-18	10:53	150.683				15
3222	6829		#	۵	2016-11-18	10:49	36.686				24
4166	50581		=	۵	2016-11-18	10:52	39.533				16
4554	6703			۵	2016-11-18	10:51	82.704				19
4952	3244		=	۵	2016-11-18	10:51	35.700				19
6078	202040	202040		۵	2016-11-18	10:47	9.279				14
6091	5459	5459	210 210	۵	2016-11-18	10:50	9.719				14
6112	197216	197216	_	۵	2016-11-18	10:52	33.767				11
6139	18106	18106	Co-man	۵	2016-11-18	10:47	216.946				19
10166	5379			۵	2016-11-18	10:49	60.850				19
10282	49009	49009		۵	2016-11-18	10:47	32.699				11
10312	11426			۵	2016-11-18	10:49	116.443				29

Traceroute View: LatencyMon

⁴ Traceroute measurement to s3.vodevent1.lvlt.hls.eu.aiv-cdn.net

Traceroute for Checking Reachability (**)

- To start traceroute: GUI, API & CLI
- Results available as
 - visualised on the map, as a list of details, LatencyMon
 - download via API
 - Real-time data streaming
- Many visualisations available
 - List of probes: sortable by RTT
 - Map: colour-coded by RTT
 - LatencyMON: compare multiple latency trends

ripe-atlas measure traceroute --probes 2 --target google.ca


```
Looking good! Your measurement was created and details about it can be found here:
 https://atlas.ripe.net/measurements/3499936/
Connecting to stream...
Probe #3837
 1 192,168,8,254
                                           2.748 ms 1.931 ms
                                                                    1.982 ms
 2 77.51.191.254
                                           3.286 ms 3.051 ms
                                                                    3.076 ms
                                           4.421 ms 4.775 ms 4.694 ms
 3 172.27.8.174
                                            5.48 ms 5.363 ms 6.52 ms
 4 77.37.254.129
 5 72.14.209.81
                                            4.37 ms 4.232 ms 4.183 ms
                                                      46.705 ms 41.563 ms
 6 209.85.240.209
                                          47.099 ms
 7 209.85.240.102
                                                       23.001 ms 22.993 ms
                                          23.207 ms
 8 209.85.249.59
                                                      40.454 ms 40.004 ms
                                          40.565 ms
 9 209.85.254.198
                                          62.337 ms 45.201 ms 44.595 ms
10 216.239.49.28
                                          44.999 ms
                                                       44.887 ms
                                                                   44.907 ms
11 *
12 173, 194, 65, 94
                                           77.313 ms
                                                       82.476 ms
                                                                   83.303 ms
Probe #16731
                                           0.582 ms
                                                       0.483 ms
 1 192.168.80.254
                                                                    0.413 ms
 2 188, 134, 205, 225
                                            0.79 ms
                                                       0.683 ms
                                                                    0.684 ms
 3 84.16.101.226
                                            1.13 ms
                                                       1.169 ms
                                                                    1.114 ms
                                                                    5.629 ms
 4 86.61.255.241
                                           5.503 ms
                                                       5.711 ms
 5 91.210.16.211
                                                       5.307 ms
                                           5.753 ms
                                                                    5.579 ms
 6 216.239.56.169
                                                       13.358 ms
                                                                   13.243 ms
                                           13.419 ms
```

RIPE Atlas CLI ToolSet

- Network troubleshooting from command line
- Familiar output (ping, dig, traceroute)
- Installation for <u>Linux/OSX</u> & <u>Windows</u>
 [experimental]
- Included in OpenBSD, FreeBSD, Gentoo, Arch, Debian, Ubuntu, Fedora
- Documentation
- Source code <u>available</u>, contributions welcome!

Who Wants to be a Millionaire?

1000000

AE 7608230

DINARJEV DINARA

"Paying" for your measurements

- Running your own measurements cost credits
 - Ping = 10 credits, traceroute = 20, etc.
- Why? Fairness and to avoid overload
- Limited by daily spending limit and measurement results limits
- Hosting a RIPE Atlas probe earns credits
- Earn extra credits by being RIPE NCC members, hosting an anchor or sponsoring
- Or: don't spend credits use existing data!

Take Part in Hackathons

Any Questions on How to...?

Help community to shape RIPE policies

Use RIS for your BGP monitoring

Measure your reachability with RIPE Atlas

Extra Material

Monitoring Using RIPE Atlas

 Integrate "status checks" with existing monitoring tools (such as Icinga)

- Using real-time data streaming
 - Server monitoring
 - Detecting and visualising outages

 Developed by community: "RIPE Atlas Monitor"

RIPE Academic Cooperation Initiative

Students and researchers:

- Present your Internet-related research at RIPE Meetings
- Complimentary tickets, travel and accommodation
- Topics: network measurement and analysis, security, IPv6 deployment, BGP routing, Internet governance, peering and interconnectivity
- ripe.net/raci

- Publish your research or use case
- Reach out to RIPE Community
- Read about latest analysis or conferences

labs.ripe.net