

RIPE NCC Routing Information Service (RIS)

Overview

Colin Petrie | 14/12/2016 | RON++

What is RIS?

What is RIS?

- Worldwide network of BGP collectors
- Deployed at Internet Exchange Points
 - Including at AMS-IX and NL-IX
- Collects raw BGP data from peers
- Stores BGP routing table dumps
- 15+ years of history
- Used by network operators and researchers every day!

Collector locations

What is RIS?

- A huge archive of useful data about BGP routing activity
- A database where you can look up almost anything you want to know about routing
- We provide APIs to query all the data
- And of course, a nice shiny web interface!
 - RIPEstat
 - https://stat.ripe.net/

Why RIS?

Why are we doing this? A bit of history

Why RIS?

- Original project was defined in RIPE-200
 - in 1999, when the BGP table was 64,000 routes!!
- Looking glasses are instantaneous
- Routing problems are also instantaneous
- BGP needs to be recorded, to track what is happening and what has happened.
- Also to provide statistics and reporting on routing table metrics

Why the RIPE NCC RIS?

- RIPE NCC is a neutral body
- Experience running measurement platforms
 - Test Traffic Measurement project
 - RIPE Atlas
- Supporting our own members
 - who are mainly network operators
- Supporting the community
 - researchers
 - operators

RIS data access

What can you get? And how do you get it?

Raw data!

- 15+ years of data available to download and analyse yourself :)
- <u>https://www.ripe.net/analyse/internet-</u> <u>measurements/routing-information-service-ris/</u> <u>ris-raw-data</u>
- Data stored in MRT (RFC6396) format
- Readable using BGPdump utility
 - Open source, maintained by RIPE NCC
 - <u>https://bitbucket.org/ripencc/bgpdump</u>

Web interfaces and APIs

- Of course, if all we did was store the raw data, we'd just need a bunch of hard disks and an FTP server
- But you want to query all our lovely datasets!

- RIPEstat
 - <u>https://stat.ripe.net/</u>
- Our portal for everything you ever wanted to know!

 RIPEstat is a web-based interface that provides everything you ever wanted to know about IP address space, Autonomous System Numbers (ASNs), and related information for hostnames and countries in one place.

RIPEstat

- What can you search for?
 - ASN (autonomous system number)
 - IPv4 address
 - IPv4 prefix
 - IPv6 address
 - IPv6 prefix
 - country code (ISO e.g. NL, ES, US)

Data resolution: 12 days

I PE stat	Visibility (AS3333)								
	(1) AS	3333 is visible by 100% of 1	53 IPv4 and 100%	of 151 IPV6 RIS full ;	peers.				
Visibility Location Details of AS3333									
RRC 🔺	IXP Location	Location :	iPv4 peers	 IPv6 peers seeing 	 IPv4 Visibility 	o IPv6 ℃Visibility			
RRC00	RIPE-NCC Multihop	Amsterdam, Netherlands	13 of 13	10 of 10	100%	100%			
RRC01	LINX	London, United Kingdom	7 of 7	9 of 9	100%	100%			
RRC03	AMS-IX / NL-IX	Amsterdam, Netherlands	7 of 7	12 of 12	100%	100%			
RRC04	CIXP	Geneva, Switzerland	7 of 7	5 of 5	100%	100%			
RRC05	VIX	Vienna, Austria	4 of 4	6 of 6	100%	100%			
RRC06	DIX-1E	Tokyo, Japan	2 of 2	2 of 2	100%	100%			
RRC07	Netnod	Stockholm, Sweden	4 of 4	5 of 5	100%	100%			
RRC10	MIX	Milan, Italy	10 of 10	8 of 8	100%	100%			
RRC11	NYIIX	New York City, US	9 of 9	9 of 9	100%	100%			
RRC12	DE-CIX	Frankfurt, Germany	14 of 14	21 of 21	100%	100%			
RRC13	MSK-IX	Moscow, Russian Federation	11 of 11	4 of 4	100%	100%			
RRC14	PAIX	Palo Alto, US	7 of 7	8 0 f 8	100%	100%			
RRC15	PTTMetro	Sao Paulo, Brazil	14 of 14	10 of 10	100%	100%			
RRC16	NOTA	Miami, US	3 of 3	3 of 3	100%	100%			
RRC18	Catnix	Barcelona, Spain	1 of 1	1 of 1	100%	100%			
RRC19	NAP Africa JB	Johannesburg, South Africa	3 of 3	2 of 2	100%	100%			
RRC20	SwissIX	Zurich, Switzerland	18 of 18	18 of 18	100%	100%			
RRC21	France-IX	Paris, France	19 of 19	18 of 18	100%	100%			

Showing results for AS3333 as of 2016-06-15 08:00:00 UTC

Live stream - demo

- Prototype!!
- Let's see if it works
- http://stream-dev.ris.ripe.net/demo

- Live stream enables new applications
 - BGP Hijack detection
 - real time anomaly analysis
 - live monitoring of your routes

RIS data access

How else can you get it

RIPEstat Data API

- All these queries are available through an API
- Actually, all those shiny web interfaces use the API anyway
- You can use it too!! Write your own scripts etc

https://stat.ripe.net/docs/data_api

 There are also some extra API calls which are not yet visualised

RIPEstat Data API

- Remember this started because looking glasses are instantaneous?
- BGP State
 - https://stat.ripe.net/docs/data_api#BGPState
- This data call returns the state of BGP routes for a resource at a certain point in time, as observed by all the RIS collectors
- This is derived by applying a computation of state to the RIB dump (granularity=8h) that occurred exactly before that time, using the BGP updates observed between the RIB time and the query time.

RIPEstat Data API - BGP State

- <u>https://stat.ripe.net/data/</u> <u>bgp-state/data.json?</u> <u>resource=193.0.24.0/21&</u> <u>timestamp=2016-05-19T</u> <u>00:33:21</u>
- Show me what this prefix looked like at exactly this time!

State of AS2121 (RIPE meeting) prefix after we plugged in the router at RIPE72 in Copenhagen

```
"data": {
    'bgp_state": [
            "source id": "00-12.0.1.63",
             "path": [
                 7018,
                174,
                 42525,
                 2121
            1.
             "community": [
                 "7018:5000",
                 "7018:37232"
            1,
            "target prefix": "193.0.24.0/21"
        },
        {
             "source id": "00-146.228.1.3",
            "path": [
                1836,
                 2852,
                 21320.
                 2603,
                 42525,
                 2121
            1.
             "community": [
                 "1836:120",
                 "1836:3100",
                 "1836:3110",
                 "2852:2852"
             "target prefix": "193.0.24.0/21"
        },
            "source id": "00-176.12.110.8",
            "path": [
                 50300,
                 3356,
                 42525,
                 2121
             .
             "community": [],
            "target_prefix": "193.0.24.0/21"
```


What else can you do?

Lots of analysis that this data allows

Prefix reachability studies

<u>https://labs.ripe.net/Members/emileaben/has-the-routability-of-longer-than-24-prefixes-changed</u>

Time

Visibility of 23.128/10 prefixes in RIS

Prefix length visibility

https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths

Prefix length visibility

https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths

BGP update propagation

https://labs.ripe.net/Members/vastur/the-shape-of-a-bgp-update

BGP update propagation

• <u>https://labs.ripe.net/Members/vastur/the-shape-of-a-bgp-update</u>

How can you help?

How can you help?

- Peer with us!!!
 - AS12654 @ AMS-IX, NL-IX
 - RRC03
 - http://www.ris.ripe.net/cgi-bin/peerreg.cgi

- Send us your routes
 - If you can send us your full BGP table, please do
 - If not, send us what you can!
 - We will be recording them forever ;-)

RIS growth

Because the internet keeps growing

Collector history

Collector	Location	IXP	Deployed	Removed
RRC00	Amsterdam	Multi-hop	1999	-
RRC01	London	LINX	2000	-
RRC02	Paris	SFINX	2001	2008
RRC03	Amsterdam	AMS-IX	2001	-
RRC04	Geneva	CIXP	2001	_
RRC05	Vienna	VIX	2001	-
RRC06	Tokyo	DIX-IE	2001	-
RRC07	Stockholm	Netnod	2002	-
RRC08	San Jose	MAE-West	2002	2004
RRC09	Zurich	TIX	2003	2004
RRC10	Milan	MIX	2003	_
RRC11	New York	NYIIX	2004	-
RRC12	Frankfurt	DE-CIX	2004	-
RRC13	Moscow	MSK-IX	2005	-
RRC14	Palo Alto	PAIX	2005	-
RRC15	Sao Paulo	PTT-Metro SP	2006	-
RRC16	Miami	NOTA	2008	-
RRC18	Barcelona	CATNIX	2015	-
RRC19	Johannesburg	NAPAfrica JB	2016	-
RRC20	Zurich	SwissIX	2015	_
RRC21	Paris	FranceIX	2015	-

Colin Petrie | RON++ | 14/12/2016

RRC01 data production rate

RRC01 cumulative data

Data growth

- More BGP routes
 - BGP table has grown from 60,000 to 600,000 routes
 - more BGP updates
 - larger RIB (table) dumps
- More RIS collectors
- More peers at each collector

Non-linear growth curve ;)

RIS Operations

As the system has evolved

Original architecture (1999)

- Diagram from RIPE-200 (original concept)
- Note 'RIS Server'
 - singular!
- Also, the 'database'
 - this becomes the hardest part!!

Original RIS design (RIPE-200) circa 1999

Classic architecture (~2003)

Classic architecture

- MySQL database
 - many millions of BGP updates
 - hundreds of thousands of BGP routes, seen by hundreds of peers
 - route attributes (communities, AS_PATH, origin, med, etc)
 - ASN adjacencies
 - more/less specific matching
 - complex data schema

Scaling MySQL

- Splitting and sharding
 - 8 MySQL servers
 - some collectors were so big they needed their own MySQL server!
- Data retention
 - database was only query-able for 3 months worth of data
 - the references grew too large, that every 3 months we basically had to drop all the data, and let it start again!!

Scaling the collectors

- Quagga used as BGP collector
- Single-threaded
 - Not as scalable on modern multi-core CPUs
- Locks updates during table-dump process
 - Requires that dump completes before the hold timer expires, or BGP session will drop
- Some data consistency issues
 - Sometimes updates are missing from the update dumps at the time of a table dump
 - This makes it difficult to accurately rebuild BGP state at a intermediate time, if updates are not reliable in-between

RIS and Atlas Operations

Time for a redesign (and this is the current design!)

Data collection

Back-end data distribution

Data processing

- Apache Hadoop
 - An open-source software framework for distributed storage and distributed processing of very large data sets on computer clusters built from commodity hardware.
- "Big Data" storage and analytics
- Allows us to build a scalable storage and processing cluster
- Currently over 150 servers in the cluster!
 - Although the cluster is not only used for RIS!
 - Also used by RIPE Atlas and other projects

Data processing - components

• HDFS

- distributed, replicated, cluster filesystem
- YARN
 - compute resource manager and application scheduler
- Map/Reduce
 - massive batch job processing
- HBase
 - non-relational distributed database
 - large tables billions of rows X millions of columns

Data processing - components

Spark

- Cluster computing used for data stream processing
- i.e. non-batch computing
- Azkaban
 - batch workflow job scheduler, dependency tracking etc
- Kafka
 - BGP/Atlas messaging bus

Data processing - RIS

- Raw data inputs:
 - BGP updates events everything must start from a BGP message!
 - BGP table dumps (which can also be derived from updates)
- Derived datasets
 - update-counts, first-last-seen, prefixes-transited-by-asn, peers-list, asn-stats, asn-adjacencies
 - country-code mapping
 - aggregated counts for historical overviews
 - distributed looking-glass processing

Data processing - Atlas

- Raw data inputs:
 - Atlas measurement messages!
- Derived datasets
 - Mainly aggregated counters for different zoom levels
 - Probe traffic stats
 - Ping measurement stats (loss %, min, max, med etc)
 - DNS query stats (loss %, latency, etc)

Questions

cpetrie@ripe.net