
RIPE Database Reference Manual
João Luis Silva Damas
Andrei Robachevsky

Document ID: ripe-251
Date: 4 July 2002
Obsoletes: ripe-238

Abstract
This document describes the functionality of version 3.0 of the RIPE Database that uses the
Routing Policy Specification Language (RPSL) [1] to represent all Database objects. It also
implements the Routing Policy System Security (RPSS) [2] to provide authorisation mechanisms to
enable a higher level of security for Internet Routing Registries (IRR). Though this document tends
to be self-contained, the reader is encouraged to read the RPSL [1] and RPSS [2] specifications for
more detailed information, examples of usage and definitions. For a tutorial on RPSL, the reader
should read the RPSL applications document [3].

Table of Contents
Abstract
Introduction

1.0 Database objects and attributes
 1.1 Object representation
 1.2 Object types
 1.2.1 as-block
 1.2.2 as-set
 1.2.3 aut-num
 1.2.4 domain
 1.2.5 filter-set
 1.2.6 inet6num
 1.2.7 inetnum
 1.2.8 inet-rtr
 1.2.9 irt
 1.2.10 key-cert
 1.2.11 limerick
 1.2.12 mntner
 1.2.13 peering-set
 1.2.14 person

 1.2.15 role
 1.2.16 route
 1.2.17 route-set
 1.2.18 rtr-set

2.0 Queries in the RIPE Database
 2.1 Queries using primary and lookup keys
 2.2 IP address lookups
 2.2.1 Default lookup for IP ranges in the RIPE Database
 2.2.2 More and less specific queries
 2.3 Inverse queries
 2.4 Query support for tools
 2.4.1 RAToolset support
 2.4.2 Persistent connections and keeping state
 2.5 Getting all the members of set objects
 2.6 More/less specific lookups for in-addr.arpa and ip6.int domains
 2.7 Referral mechanism for domains
 2.8 Access control for queries
 2.9 Other server features

3.0 Updates in the RIPE Database
 3.1 Format of an update message
 3.2 Creating, modifying and deleting an object
 3.2.1 Object processing
 3.2.2 Creating a new object
 3.2.3 Modifying an existing object
 3.2.4 Deleting an object
 3.3 E-mail updates
 3.3.1 MIME support
 3.3.2 PGP support
 3.3.3 Subject line processing
 3.4 Updates using networkupdate utility
 3.5 Acknowledgements and Notifications
 3.5.1 Acknowledgements
 3.5.2 Notifications
 3.6 Data protection
 3.6.1 Authorisation model
 3.6.2 Protection of individual objects
 3.6.3 Protection of aut-num object space
 3.6.4 Protection of address space
 3.6.5 Protection of route object space
 3.6.6 Protection of objects with hierarchical names
 3.6.7 Protection of domain object space
 3.6.8 Protecting membership of a set

4.0 Mirroring of the RIPE Database
Appendices

 A1. Object attributes
 A2. RIPE Database response codes and messages
 A2.1 Query errors
 A2.2 Access errors
 A2.3 Connection errors
 A2.4 NRTM errors
 A2.5 Referral text
 A3. Copyright information
 3.2 A3.1 RIPE Database Copyright
 3.2 A3.2 RFC Copyright Statement
 3.2 A3.3 RIPE NCC Copyright
Acknowledgements
References

Conventions used in this document

Within this document, the following conventions are used:

<label> indicates a placeholder or syntax specification
[option] indicate an optional text or command argument. Please note that in object templates the
square brackets "[]" are used to specify type of an attribute.
"attribute:" indicates an attribute.

Introduction
The RIPE Network Management Database contains information about IP address space allocations
and assignments, routing policies and reverse delegations in the RIPE region and beyond.

It also contains some information about forward domain names. However, the information about
domain names is there as a convenient reference only; it is not the domain name registry that is run
by the country code Top Level Domain (ccTLD) administrators of Europe and surrounding areas.
Please see the IANA ccTLD Database for a full list of the ccTLD administrators.

The information in the RIPE Database is available to the public for agreed Internet operation
purposes, but is under copyright. Please see Appendix A3 "Copyright information".

The phrase "RIPE Database" is often used to refer to the interface software rather than the
information that is stored in the database. In ambiguous situations, this reference manual will make
clear what is being discussed.

This document describes the functionality of version 3.0 of the RIPE Database software. This
version uses the Routing Policy Specification Language (RPSL) [1], a successor of RIPE-181
language [4], to represent all database objects. It also implements the Routing Policy System

Security(RPSS) [2] to provide authorisation mechanisms to enable a higher level of security for the
routing registry, which is part of the RIPE Database.

This document is self-contained. However, it does not contain examples of usage and illustrations
of principles and concepts related to the RIPE Database functionality and implementation. The
"RIPE Database User’s Manual" [5] and the "RIPE Database Operations Manual" [5] will fill this
gap and provide examples and detailed information on how to interact with the RIPE Database and
how to configure and run RIPE Database server software. The reader is also encouraged to read the
RPSL [1] and RPSS [2] specifications for more detailed information, examples of usage and
definitions. For a tutorial on RPSL, the reader should read the RPSL applications document [3].

1.0 Database objects and attributes
The RIPE Network Management Database (often called the "RIPE Database") contains records of:

allocations and assignments of IP address space (the IP address registry);
domain names (the domain registry);
routing policy information (the routing registry);
contact information (details of people who are responsible for the operation of networks or
routers, and those who are responsible for maintaining information in the RIPE Database).

Note: the information in the domain registry, except for in-addr.arpa domains, has no effect on
operations; it is stored in the RIPE Database as a convenient reference. It should not be considered
complete or authoritative for any purpose.

1.1 Object representation
Records in the RIPE Database are known as "objects". The syntax of the database objects is
defined by RPSL, which is described in [1]. An object belongs to one of the object types, or
classes. These two terms are used interchangeably through the document. The following object
types are stored in the RIPE Database:

Table 1 Object types supported in the RIPE Database

Object type
(Class name)

Abbreviated
name

Description

as-block ak Represents delegation of a range of AS numbers to a
given repository.

as-set as Defines a set of aut-num objects.
aut-num an Represents an Autonomous System (AS) in the

database. Is used to describe external routing policy of
the AS.

domain dn Represents forward or reverse domain registrations.
filter-set fs Defines a set of routes that are matched by its filter.
inet6num i6 Contains information on allocations and assignments of

IPv6 address space.
inetnum in Contains information on allocations and assignments of

IPv4 address space.
inet-rtr ir Represents a router in the database.
irt it Contains contact and authentication information about

a Computer Security Incidence Response Team
(CSIRT).

key-cert kc Represents a public key certificate that is stored on the
server and may be used with a maintainer object for
authentication when performing updates.

limerick li Represents a humorous poem that has five lines and the
rhyme scheme "aabba".

mntner mt Specifies authentication information required to
authorise creation, deletion or modification to the
objects protected by the mntner.

peering-set ps Defines a set of peerings.
person pn Contains information about technical or administrative

contacts.
role ro Contains information about technical or administrative

contacts, but describes a role performed by one or more
human beings.

route rt Represents a route advertised in the Internet.
route-set rs Defines a set of routes.
rtr-set is Defines a set of routers.

A database object is defined as a list of attribute-value pairs in text. Each attribute-value pair is
written on a separate line. The attribute name starts at column 0, followed by the character " : " and
followed by the value of the attribute. The attribute that has the same name as the object’s class
should be specified first. An attribute’s value can be split over multiple lines, by having a space, a
tab or a plus ("+") character as the first character of the continuation lines. The character "+" for
line continuation allows attribute values to contain blank lines. More spaces may optionally be used
after the continuation character to increase readability. The order of attribute-value pairs is
significant. An object’s description may contain comments. A comment can be anywhere in an
object’s definition, it starts at the first "#" character on a line and ends at the first end-of-line
character. A comment cannot start at column 0. White space characters can be used to improve

readability. The object’s representation ends when a blank line is encountered.

Attributes can be mandatory or optional: A mandatory attribute MUST be defined for all objects of
the class; optional attributes can be skipped. Attributes can also be single or multiple-valued.
Multiple-valued attributes may have several attribute-value records in an object, while a single
valued attribute may appear only once. Each object is uniquely identified by a set of attributes,
referred to as the class primary key.

The value of an attribute has a type, which defines the syntax of the attribute value. Please refer to
Appendix A1 "Object attributes" for a detailed description of the attributes supported in the RIPE
Database.

1.2 Object types
This section describes object types (classes) supported in the RIPE Database along with the object
templates. The following definitions are used in the templates:

[mandatory] At least one instance of this attribute must be defined in an object
of the class.

[optional] Attribute is optional in the objects of the class and can be omitted.
[generated] Attribute is automatically generated by the server.
[single] An object MUST NOT contain more than one instance of this

attribute.
[multiple] An object MAY contain more than one instance of this attribute.
[look-up key] Attribute is indexed.
[inverse key] Attribute is in the "reverse" index.
[primary key] Attribute is (part of) the primary key.
[primary/lookup
key]

Attribute is both indexed and is (part of) the primary key.

In an object template the first column represents an attribute, the second and third columns specify
the type of the attribute and the fourth column tells whether the attribute is (part of) a database key
for the object.

1.2.1 as-block

An as-block object is needed to delegate a range of AS numbers to a given repository. This object
may be used for authorisation of the creation of aut-num objects within the range specified by the
"as-block:" attribute. The template of as-block class is shown in Figure 1.2.1.

as-block: [mandatory] [single] [primary/lookup key]
descr: [optional] [multiple] []
remarks: [optional] [multiple] []
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key]

mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.1 as-block template

1.2.2 as-set

An as-set object defines a set of aut-num objects. The attributes of the as-set class are shown in
Figure 1.2.2. The "as-set:" attribute defines the name of the set. It is an RPSL name that starts with
"as-". The "members:" attribute lists the members of the set. The "members:" attribute is a list of
AS numbers, or other as-set names.

as-set: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
members: [optional] [multiple] []
mbrs-by-ref: [optional] [multiple] [inverse key]
remarks: [optional] [multiple] []
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.2 as-set template

1.2.3 aut-num

An object of the aut-num class is a database representation of an Autonomous System (AS), which
is a group of IP networks operated by one or more network operators that has a single and clearly
defined external routing policy.

Objects of this class are used to specify routing policies. The attributes of the aut-num class are
shown in Figure 1.2.3. The value of the "aut-num:" attribute is the AS number of the AS described
by this object. The "as-name:" attribute is a symbolic name (in RPSL name syntax) of the AS. The
import, export and default routing policies of the AS are specified using the "import:", "export:"
and "default:" attributes, respectively.

aut-num: [mandatory] [single] [primary/lookup key]
as-name: [mandatory] [single] []
descr: [mandatory] [multiple] []
member-of: [optional] [multiple] [inverse key]
import: [optional] [multiple] []
export: [optional] [multiple] []
default: [optional] [multiple] []
remarks: [optional] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
cross-mnt: [optional] [multiple] [inverse key]
cross-nfy: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]

mnt-lower: [optional] [multiple] [inverse key]
mnt-routes: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.3 aut-num template

1.2.4 domain

The domain object represents Top Level Domain (TLD) and other domain registrations. It is also
used for Reverse Delegations. The domain name is written in fully qualified format, without a
trailing " . " . The template of this class is shown in Figure 1.2.4

domain: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
zone-c: [mandatory] [multiple] [inverse key]
nserver: [optional] [multiple] [inverse key]
sub-dom: [optional] [multiple] [inverse key]
dom-net: [optional] [multiple] []
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [optional] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key]
refer: [optional] [single] []
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.4 domain template

1.2.5 filter-set

A filter-set object defines a set of routes that are matched by its filter. The "filter-set:" attribute
defines the name of the filter. It is an RPSL name that starts with "fltr-". The "filter:" attribute
defines the set’s policy filter. A policy filter is a logical expression which when applied to a set of
routes returns a subset of these routes. The template of this class is shown in Figure 1.2.5.

filter-set: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
filter: [mandatory] [single] []
remarks: [optional] [multiple] []
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.5 filter-set template

1.2.6 inet6num

An inet6num object contains information on allocations and assignments of IPv6 address space.
The template of this class is shown in Figure 1.2.6.

inet6num: [mandatory] [single] [primary/lookup key]
netname: [mandatory] [single] [lookup key]
descr: [mandatory] [multiple] []
country: [mandatory] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
rev-srv: [optional] [multiple] [inverse key]
status: [generated] [single] []
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key]
mnt-irt: [optional] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.6 inet6num template

1.2.7 inetnum

An inetnum object contains information on allocations and assignments of IPv4 address space. The
template of this class is shown in Figure 1.2.7.

inetnum: [mandatory] [single] [primary/lookup key]
netname: [mandatory] [single] [lookup key]
descr: [mandatory] [multiple] []
country: [mandatory] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
rev-srv: [optional] [multiple] [inverse key]
status: [mandatory] [single] []
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key]
mnt-routes: [optional] [multiple] [inverse key]
mnt-irt: [optional] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.7 inetnum template

1.2.8 inet-rtr

Routers are specified using the inet-rtr class. The attributes of the inet-rtr class are shown in
Figure 1.2.8. The "inet-rtr:" attribute is a valid DNS name of the router described. Each "alias:"
attribute, if present, is a canonical DNS name for the router. The "local-as:" attribute specifies the
AS number of the AS that owns/operates this router. The template of this class is shown in Figure
1.2.8.

inet-rtr: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []

alias: [optional] [multiple] []
local-as: [mandatory] [single] [inverse key]
ifaddr: [mandatory] [multiple] [lookup key]
peer: [optional] [multiple] []
member-of: [optional] [multiple] [inverse key]
remarks: [optional] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.8 inet-rtr template

1.2.9 irt

An irt object represents a Computer Security Incident Response Team (CSIRT) along with contact
and security information. It may be referenced from inetnum or inet6num objects to specify
CSIRT responsible for handling computer and network incidents for the address range. The name
of the irt is an object name that must start with "IRT-". The template of this class is shown in
Figure 1.2.9.

irt: [mandatory] [single] [primary/lookup key]
address: [mandatory] [multiple] []
phone: [optional] [multiple] []
fax-no: [optional] [multiple] []
e-mail: [mandatory] [multiple] [lookup key]
signature: [mandatory] [multiple] []
encryption: [mandatory] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
auth: [mandatory] [multiple] []
remarks: [optional] [multiple] []
irt-nfy: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.9 irt template

1.2.10 key-cert

A key-cert object is a database public key certificate that is stored on the server and may be used
with a mntner object for authentication when performing updates. Currently only keys compliant
with the proposed Open PGP Internet standard [RFC 2440] are supported. The template of this
class is shown in Figure 1.2.10.

key-cert: [mandatory] [single] [primary/lookup key]
method: [generated] [single] []
owner: [generated] [multiple] []
fingerpr: [generated] [single] []
certif: [mandatory] [multiple] []

remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.10 key-cert template

1.2.11 limerick

The limerick object represents a humorous poem that has five lines and the rhyme scheme "aabba".
The template of this class is shown in Figure 1.2.11.

limerick: [mandatory] [single] [primary/lookup key]
descr: [optional] [multiple] []
text: [mandatory] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
author: [mandatory] [multiple] [inverse key]
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.11 limerick template

1.2.12 mntner

Objects in the RIPE Database may be protected using mntner (pronounced "maintainer") objects.
A mntner object specifies authentication information required to authorise creation, deletion or
modification of the objects protected by the mntner. mntner objects are not created automatically,
but are forwarded to the RIPE Database Administration for manual processing. The template of this
class is shown in Figure 1.2.12. ¹

mntner: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [optional] [multiple] [inverse key]
upd-to: [mandatory] [multiple] [inverse key]
mnt-nfy: [optional] [multiple] [inverse key]
auth: [mandatory] [multiple] []
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
referral-by: [mandatory] [single] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.12 mntner template

¹ Routing Policy System Security specification [2] also defines a "auth-override:" attribute in the mntner object
template. Together with "referral-by:" attribute, they allow to modify the mntner in case it becomes unresponsive.
Being part of non-core functionality, this facility is not implemented in the current version of the database system.
Please see [2] for more information.

1.2.13 peering-set

A peering-set object defines a set of peerings that are listed in its "peering:" attributes. The
"peering-set:" attribute defines the name of the set. It is an RPSL name that starts with "PRNG-".
The template of this class is shown in Figure 1.2.13.

peering-set: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
peering: [mandatory] [multiple] []
remarks: [optional] [multiple] []
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.13 peering-set template

1.2.14 person

A person object contains information about technical or administrative contact responsible for the
object where it is referenced. Once the object is created, the value of the "person:" attribute cannot
be changed. The template of this class is shown in Figure 1.2.14.

person: [mandatory] [single] [lookup key]
address: [mandatory] [multiple] []
phone: [mandatory] [multiple] []
fax-no: [optional] [multiple] []
e-mail: [optional] [multiple] [lookup key]
nic-hdl: [mandatory] [single] [primary/lookup key]
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [optional] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.14 person template

1.2.15 role

The role class is similar to the person class. However, instead of describing a human being, it
describes a role performed by one or more human beings. Examples include help desks, network
monitoring centres, system administrators, etc. A role object is particularly useful since often a
person performing a role may change; however the role itself remains. The "nic-hdl:" attributes of
the person and role classes share the same name space. Once the object is created, the value of the
"role:" attribute cannot be changed. The template of this class is shown in Figure 1.2.15.

role: [mandatory] [single] [lookup key]
address: [mandatory] [multiple] []
phone: [optional] [multiple] []
fax-no: [optional] [multiple] []

e-mail: [mandatory] [multiple] [lookup key]
trouble: [optional] [multiple] []
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
nic-hdl: [mandatory] [single] [primary/lookup key]
remarks: [optional] [multiple] []
notify: [optional] [multiple] [inverse key]
mnt-by: [optional] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.15 role template

1.2.16 route

Each interAS route (also referred to as an interdomain route) originated by an AS is specified using
a route object. The "route:" attribute is the address prefix of the route and the "origin:" attribute is
the AS number of the AS that originates the route into the interAS routing system. The "route:"
and "origin:" attribute pair constitutes the primary key. The template of this class is shown in
Figure 1.2.16.

route: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
origin: [mandatory] [single] [primary/inverse key]
holes: [optional] [multiple] []
member-of: [optional] [multiple] [inverse key]
inject: [optional] [multiple] []
aggr-mtd: [optional] [single] []
aggr-bndry: [optional] [single] []
export-comps: [optional] [single] []
components: [optional] [single] []
remarks: [optional] [multiple] []
cross-mnt: [optional] [multiple] [inverse key]
cross-nfy: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key]
mnt-routes: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.16 route template

1.2.17 route-set

A route-set object defines a set of routes that can be represented by route objects or by address
prefixes. In the first case, the set is populated by means of the "mbrs-by-ref:" attribute, in the latter,
the members of the set are explicitly listed in the "members:" attribute. The "members:" attribute is
a list of address prefixes or other route-set names. Note that the route-set class is a set of route
prefixes, not of database route objects. The template of this class is shown in Figure 1.2.17.

route-set: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
members: [optional] [multiple] []
mbrs-by-ref: [optional] [multiple] [inverse key]

remarks: [optional] [multiple] []
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.17 route-set template

1.2.18 rtr-set

A rtr-set object defines a set of routers. A set may be described by the "members:" attribute, which
is a list of inet-rtr names, IPv4 addresses or other rtr-set names. A set may also be populated by
means of the "mbrs-by-ref:" attribute, in which case it is represented by inet-rtr objects. The
template of this class is shown in Figure 1.2.18.

rtr-set: [mandatory] [single] [primary/lookup key]
descr: [mandatory] [multiple] []
members: [optional] [multiple] []
mbrs-by-ref: [optional] [multiple] [inverse key]
remarks: [optional] [multiple] []
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] []
source: [mandatory] [single] []

Fig. 1.2.18 rtr-set template

2.0 Queries in the RIPE Database
This section describes the functionality provided in version 3.0 of the RIPE Database to enable
users to retrieve database objects. Querying the database is done using a client who uses the Whois
protocol [12] to query and get the responses.

The newly incorporated mechanism to enable the whois server to automatically track query
responses and limit the retrieval of contact information from the RIPE Database is also described in
this section. The intention is to limit non-operational uses of the data (such as advertising) while
permitting the operational uses of the database to be carried out.

There is a set of general rules about server responses:

Output starting with the % sign is either a server response code or an informational message.
A comment contains a white space after the % sign, while server messages start right after the
% sign. Please see Appendix A2 "RIPE Database response codes and messages" for more
information.
An empty line ("\n\n") is an object delimiter.
Two empty lines mean the end of a server response.
When using the referral mechanism, the output of the referred server is passed to the client
without modification. See section 2.7 "Referral mechanism for domains" for more

information.

The general format of a query is:

[-query_flags [query argument]] <lookup-key>

2.1 Queries using primary and lookup keys
Normal queries are performed using primary and lookup keys as an argument to a query. These
queries are presented in Table 2. Please refer to section 1.2 "Object types" for primary and lookup
keys definition for a class.

2.2 IP address lookups
Probably, the most important service provided by the RIPE Database is to provide information
about IP networks in the Internet. This information is stored in the database in the form of
inetnum and route objects, among others.

The inetnum, inet6num and route objects store information about ranges of IP addresses.

The route objects use prefix notation to specify the range of IP addresses that they contain
information about. This type of notation specifies ranges using two components: the prefix and its
length.

For IPv4, the prefix is a 32-bit integer written in dotted quad notation and having the value of the
lowest IP address in the range. The prefix length is an integer number in the range 0-32 (e.g.
193.0.0.0/22 specifies the range of 1024 IPv4 addresses starting with, and including, 193.0.0.0).

The inetnum objects represent an IPv4 address space in range notation where the range is
explicitly specified as two 32-bit integers written in dotted quad notation separated by a dash ("-")
(e.g. 193.0.0.0-193.0.3.255, which specifies the same range as above).

When dealing with IPv6 address ranges, only the standard IPv6 prefix notation is allowed (prefix
length must be in the range 0-128 and the prefix is a 128-bit integer, written in hexadecimal groups
of 2 bytes separated by colons and with the possible use of shorthand notation for strings of
consecutive 0s).

When querying the database for information about a range of IP addresses, the user can use as
search keys the following range notations:

a prefix, which has the same meaning as above;
an explicit range, also as above;
a single IP number, which when used as an argument to a query is interpreted as a range of
exactly 1 address.

These types of queries are presented in Table 3. The remainder of this section describes how a user
can request different types of information to be returned, relative to a particular range of IP

addresses.

Before going into details, it is useful to define three concepts frequently used in this type of queries
and which are defined relative to the user-specified (reference) range:

A less specific range is a range that contains the whole of the reference range and is bigger
(contains more IP addresses) than the reference range.
A more specific range is a range contained within the reference range and contains less IP
addresses than the reference range.
An exact match refers to a range that is identical to the reference range.

2.2.1 Default lookup for IP ranges in the RIPE Database

When no flags are specified and the query key sent to the whois server is a range of IP addresses
(either IPv4 or IPv6, expressed as a single IP address, two IP addresses separated by a hyphen ("-")
or a range of IP addresses in prefix notation), the RIPE whois server will try to find an exact match
for that range.

If an exact match is found, it is returned. If not, a lookup for the smallest less specific range is
performed and this is returned.

2.2.2 More and less specific queries

Sometimes the exact match is not the desired information. In that case there is a set of flags that
modify the response of the whois server.

This set of 4 flags ("-M", "-m", "-L" and "-l") provides two generic types of queries known as
more and less specific queries.

2.2.2.1 Less specific queries

These refer to queries triggered by the use of the "-l" and "-L" flags. These queries will return
information about ranges of IP addresses that fully contain the user-supplied range and may contain
more addresses.

The "-L" flag requests that the server return the exact match, if any, and all the objects containing
information about IP ranges that are bigger than the user-supplied range and fully contain it.

The "-l" flag requests that the server NOT return the exact match but only the smallest of the IP
ranges that is bigger than the user-supplied range and that fully contains it. This is usually referred
to as the one level less specific range.

2.2.2.2 More specific queries

These refer to queries triggered by the use of the "-m" and "-M" flags. These queries will return
information about ranges of IP addresses that are fully contained in the user-supplied range and
contain fewer addresses.

The "-M" flag requests that instead of returning the exact match, the server should return all the
sub-ranges completely contained within the user-provided range no matter what their size is.

The "-m" is the more specific equivalent of the "-l" flag. It requests that instead of returning the
exact match, the server should return sub-ranges that are fully contained within the user-provided
range. But instead of reporting all existing sub-ranges, it will only return the biggest ranges
contained in the user range. These are usually called one level more specific.

2.3 Inverse queries
Inverse queries are performed on inverse keys as defined in the RIPE Database object templates.
For a complete listing of these templates, please refer to section 1.2 "Object types". By issuing this
type of query, the client requests all objects that reference the object with the key specified as a
query argument to be returned by the Database.

One can also request an inverse query for several attributes (e.g. find out which objects reference a
specific mntner object by "mnt-by:", "mnt-lower:" or "mnt-routes:" attributes). In such case, the
query flag should be represented by a comma-separated list of attributes to be searched. No white
space is allowed in the list.

Please refer to Table 4 for a complete list of supported inverse queries.

2.4 Query support for tools
Several query types were implemented in the RIPE Database to support various client tools.
However, they can also be used by normal whois clients.

2.4.1 RAToolset support

The RAToolSet [6] is a suite of routing policy analysis tools created by the Information Sciences
Institute at the University of Southern California. Some of the tools in this set access Routing
Registry servers via a specialised whois interface in order to perform their work.

Support for some of the queries required has not been present in the RIPE whois server up to now.
Version 3.0 of the RIPE whois server includes support for these query types. This section describes
the additions to the RIPE whois user interface that allow it to support the RAToolset. The required
queries are:

Return the prefixes of all route objects with a specified origin.

Return only the primary keys of the route objects, not full objects.

Return the prefixes of all route objects referenced in a given route-set.

Return all the members (aut-num or as-set object) of a specified as-set

Return only the "members:" attributes, not the full object.

Optionally, include support for expansion of the previous query, if the returned value contains
references to as-sets, so that the end result contains only a list of aut-num objects. The RIPE
Database does not support this and it is up to the client to perform the expansion. The
RAToolset currently does the expansion itself.

Return route objects that exactly match a specified prefix.

Return route objects that exactly match a specified prefix (as above), but return only the
"route:" attributes.

The new flags introduced in RIPE whois server v3.0 to support the above-mentioned
functionality are presented in Tables 3 and 5.

2.4.2 Persistent connections and keeping state

To make more efficient use of the server for batched queries, a client can request a persistent
connection, one that will not be closed by the server after the reply to the whois query has been sent
to the client. This avoids having to set up and tear down a new TCP connection for every query.

The client can request this by sending the "-k" flag.

During this type of connection the server will keep state for some internal variables. Currently state
is only kept for the list of sources to query. To exit a persistent connection, send the "-k" flag as the
only query argument to the server or an empty query ("\n").

2.5 Getting all the members of set objects
In RPSL[3] there are two ways in which an object can be a member of a set object.

The first one is by listing objects in a "members:" attribute in the set object. This is the kind of
member relationship present in "Representation of IP Routing Policies in a Routing Registry"[4]
(e.g. "as-list:" attribute in as-macro objects).

The other way of specifying a membership relation is through the use of the "member-of:"
attribute. This attribute can be used in the route, aut-num and inet-rtr classes. The value of the
"member-of:" attribute identifies a set object that this object wants to be a member of.

However, specifying member-of is not enough. The set object must also have a "mbrs-by-ref:"
attribute listing the maintainer of the object wanting to be a member of the set. That is, the set
owner must validate the membership claim of an object with a "member-of:" attribute, and it does
that by matching the mnt-by line of the object with one of the maintainers in the "mbrs-by-ref:"
attribute of the set object.

2.6 More/less specific lookups for in-addr.arpa, ip6.int and
ip6.arpa domains

Version 3.0 of the RIPE Database supports the use of the "-m", "-M", "-l" and "-L" flags for
lookups on reverse delegation domains. To enable this behaviour, use the "-d" flag in your Whois
query.

The use of these flags is similar to that described for IP numbers except that lookup keys have to be
on 8-bit boundaries for IPv4 lookups and 4-bit boundaries for IPv6 lookups.

2.7 Referral mechanism for domains
The referral mechanism provides a way for administrators of domain registries to instruct the whois
server to reply to the user by fetching data from the domain registry database rather than from local
data. Its implementation consists of two different parts:

1. Domain name stripping. When no matching domain object is found in the database with the
name specified in the query, the domain name is stripped towards higher-level domains
(xxx.yyy.zzz becoming yyy.zzz) and the lookup is repeated until a domain object is found or
the search string becomes empty.

For backwards compatibility, if the domain object found by domain stripping does not
contain a "refer:" attribute, then it is considered that no objects are found and an appropriate
message is displayed. Please see Appendix A2 "RIPE Database response codes and
messages" for more information.

2. The "refer:" attribute. The "refer:" attribute gives domain name administrators the possibility
to point the whois server to an authoritative server for information about the domain name.
This attribute specifies the hostname, port and referral type that the server should use to
redirect the query. Please see Appendix A1 "Object attributes" for the syntax of this attribute.

If a query to the whois server results in the retrieval of a local object that contains a "refer:"
attribute, the server will connect to the remote server and issue a whois query for the
requested domain name. Whatever is returned is then sent to the user.

This mechanism is disabled by including the "-R" flag in the original query.

2.8 Access control for queries
This section describes the mechanism for controlling how many database objects a particular whois
client can retrieve from the whois server. The objective is to control and prevent abusive use of the
Database done by systematic queries for contact information potentially used for non-agreed
purposes (e.g. spam).

Therefore, the access control system is limiting only the amount of contact information (number of
person and role objects) that can be retrieved in a certain amount of time. No limitations exist on
the number of other objects.

However, one should keep in mind that many lookups for object types, other than person and role,
also return contact information by default. To avoid being blocked in such cases, it is advisable to

use the "-r" query flag.

Every time a person or role object is retrieved, a counter is decreased. When it reaches zero, the
query execution is aborted and the connection is terminated, displaying an error message to the
client (see "Access errors" in Appendix A2 "RIPE Database response codes and messages"), also a
counter of exceeds (denials) is incremented. The Database may limit the number of denials, after
which the host is permanently blocked from access to the RIPE Database. The Database
Administration may also block a client manually in case any abusive behaviour is discovered.

The counter recovers in time. The host can resume querying contact information after the counter
has recovered so that the host gets a non-zero limit for contacts next time.

Accounting is based on the IP address of a client.

The RIPE Database server provides a facility for proxy clients (for example, web servers running
cgi interfaces to the RIPE Database) that allows accounting to be based not on the IP address of the
proxy, but rather of the clients that use this proxy to query the RIPE Database. The "-V" flag
supports this feature. In such case, the format of the query is as follows:

-V <version>,<ipv4-address>

where

<version> is a client tag that usually represents the software version that the proxy uses;
<ipv4-address> is the IPv4 address of the client that queries the Database using the proxy.

Note that the proxy’s IP address should be registered in the access control list of the RIPE
Database. Please contact RIPE Database Administration if you need this option.

2.9 Other server features
The RIPE Database version 3.0 server supports the retrieval of certain information about itself and
the data sets served using a "-q" query flag.

The "-q " flag takes arguments that make the server reply with information that is not extracted
from the Databases it serves but rather about the system setup. This flag can currently take two
arguments:

version (usage: -q version). Display version information for the server software.
sources (usage: -q sources). List all available sources. The format of the output is:
< source>:<NRTM_protocol_version_#>:<mirroring>:<first>-<last>
Where
<source> - is the string that identifies the Database (e.g. RIPE);
<NRTM_protocol_version_#> identifies the version of the mirroring protocol.
<mirroring> can take one of the following values:
-- Y/N/X - can mirror/cannot mirror/obscured
<first> is the lowest serial number available
<last> is the most recent serial number available.

The following semantics apply:

Y:<first>-<last> mirroring allowed, serials from range first-last available.
N:<first>-<last> mirroring not allowed for administrative reasons. Ask Database Administration
for permission.
N:0-<last> mirroring physically not possible (e.g. static snapshot of serial last).
X:<message> no mirroring allowed. An explanation is given in the <message>.

Tables 2 to 7 contain all query types supported by the RIPE Database:

Table 2 Queries using primary and lookup keys

Flag Lookup Key(s) Effect
 <ip-lookup> (IPv4

address prefix, range or
single address)

Returns inetnum, route objects with exact match on
the specified key. If the exact match does not exist,
the objects with the smallest less specific match are
returned. When a single address is specified, an
inet-rtr object whose "ifaddr:" attribute matches the
query argument is also returned.

 <ip-lookup> (IPv6
address or IPv6 prefix)

Returns an inet6num object with exact match on a
specified key. If the exact match does not exist, the
object with the smallest less specific match is
returned.

 <as-number> Returns an aut-num object whose "aut-num:"
attribute matches the query argument and an as-block
object with the range containing the aut-num object,
if it exists.

 <As-number> -
<as-number> (range of
<as-number> separated
by "-")

Returns an as-block object whose primary key
defines a range that matches or fully contains the
range specified in the query argument.

 <domain-name> Returns domain and inet-rtr objects whose primary
keys match the query argument. For domains, a
referral query may be performed. In such case the
actual query is performed by the referred server and
the results are transparently passed to the client. See
section 2.7 "Referral mechanism for domains" for
more information.

 <irt-name> Returns an irt object whose primary key matches the
query argument.

 <Person-name> Returns all person and role objects whose "person:"
or "role:" attributes contain the name specified in the
query argument.

 <set-name> Returns a set whose primary key matches the query
argument.

 <nic-handle> Returns a person or role object whose "nic-hdl:"
attribute matches the query argument.

 <mntner-name> Returns a mntner object whose primary key matches
the query argument.

Table 3 IP address lookups

Flag Lookup Key(s) Effect
-l <ip-lookup> Returns first level less specific inetnum, inet6num or

route objects, excluding exact matches.
-L <ip-lookup> Returns all level less specific inetnum, inet6num or

route objects, including exact matches.
-m <ip-lookup> Returns first level more specific inetnum, inet6num

or route objects, excluding exact matches.
-M <ip-lookup> Returns all level more specific inetnum, inet6num or

route objects, excluding exact matches.
-x <ip-lookup> Requests that only an exact match on a prefix be

performed. If no exact match is found, no objects are
returned.

-d <ip-lookup> Enables use of the "-m", "-M", "-l" and "-L" flags for
lookups on reverse delegation domains.

-c <ip-lookup> Returns the smallest, less specific inetnum or
inet6num object containing the reference to an irt
object. The result of this lookup is an inetnum or
inet6num object and referenced contacts, if name
recursion is not disabled ("-r" flag). It does not
contain the referenced irt object, nor contact
information about the team. Please refer to [11] for
more information about the irt object.

Table 4 Inverse queries

Flag
(alternative
form)

Lookup Key(s) Effect

-i ac
(-i admin-c)

<nic-handle> or
<person-name>

Returns all objects whose "admin-c:" attributes match
the query argument.

-i ah
(-i author)

<nic-handle> or
<person-name>

Returns all limerick objects whose "author-c:"
attribute matches the query argument.

-i pn
(-i person)

<nic-handle> or
<person-name>

Returns all objects whose "admin-c:", "tech-c:",
"zone-c:", "author:" or "cross-nfy:" attribute matches
the query argument.

-i ct
(-I cross-mnt)

<mntner-name> Returns all route and aut-num objects whose
"cross-mnt:" attributes matches the query argument.

-i cn
(-i cross-nfy)

<nic-handle> or
<person-name>

Returns all route and aut-num objects whose
"cross-nfy:" attribute matches the query argument.

-i iy
(-i irt-nfy)

<e-mail> Returns all irt objects whose "irt-nfy:" attribute
matches the query argument.

-i la
(-I local-as)

<as-number> Returns all inet-rtr objects whose "local-as:" attribute
matches the query argument.

-i mi
(-i mnt-irt)

<irt-name> Returns all inetnum and inet6num objects whose
"mnt-irt:" attribute matches the query argument.

-i mr
(-i
mbrs-by-ref)

<mntner-name> Returns all set objects (as-set, route-set and rtr-set)
whose "mbrs-by-ref:" attribute matches the query
argument.

-i mo
(-i member-of)

<set-name> Returns all objects whose "member-of:" attribute
matches the query argument and their membership
claim is validated by the "mbrs-by-ref:" attribute of
the set. Absence of the "mbrs-by-ref:" attribute means
that the membership is only defined by the
"members:" attribute of the set.

-i mb
(-i mnt-by)

<mntner-name> Returns all objects whose "mnt-by:" attribute matches
the query argument.

-i ml
(-i mnt-lower)

<mntner-name> Returns all objects whose "mnt-lower:" attribute
matches the query argument.

-i mn
(-i mnt-nfy)

<e-mail> Returns all mntner objects whose "mnt-nfy:"
attribute matches the query argument.

-i mu
(-i mnt-routes)

<mntner-name> Returns all aut-num, inetnum and route objects
whose "mnt-routes:" attribute matches the query
argument.

-i ny
(-i notify)

<e-mail> Returns all objects whose "notify:" attribute matches
the query argument.

-i ns
(-I nserver)

<domain-name> or
<ip-lookup>
(IPv4/IPv6 address)

Returns all domain objects whose "nserver:" attribute
matches the query argument.

-i or
(-i origin)

<as-name> Returns all route objects whose "origin:" attribute
matches the query argument.

-i rb
(-i referral-by)

<mntner-name> Returns all mntner objects whose "referral-by:"
attribute matches the query argument.

-i rz
(-i rev-srv)

<domain-name> or
<ip-lookup>
(IPv4/IPv6 address)

Returns all inetnum and inet6num objects whose
"rev-srv:" attribute matches the query argument.

-i sd
(-i sub-dom)

<domain-name> Returns all domain objects whose "sub-dom:"
attribute matches the query argument.

-i tc
(-i tech-c)

<nic-handle> or
<person-name>

Returns all objects whose "tech-c:" attribute matches
the query argument.

-i dt
(-i upd-to)

<e-mail> Returns all mntner objects whose "upd-to:" attribute
matches the query argument.

-i zc
(-i zone-c)

<nic-handle> or

<person-name>

Returns all objects whose "zone-c:" attribute matches
the query argument.

Table 5 Query support for tools

Flag Lookup Key(s) Effect
-F Produces output using shorthand notation for attribute

names. Produces slower responses.
-K Requests that only the primary keys of an object be

returned. The exceptions are set objects, where the
"members:" attributes will also be returned. This flag
does not apply to person and role objects.

-k (optional normal query) Requests a persistent connection. After returning the
result, the connection will not be closed by the server
and a client may issue multiple queries on the same
connection. Note that the server implements a
"stop-and-wait" protocol, where no next query can be
sent before receiving a reply for the previous one.
Use RIPE whois client to be able to send queries in
batch mode. Except the first "-k query", "-k" without
an argument closes the persistent connection.

-g (mirroring request) Request a NRTM stream from the server. See section
4.0 "Mirroring of the RIPE Database" for more
information.

Table 6 Miscellaneous queries

Flag Argument Effect
-R Switches off use of the referral mechanism for

domain lookups, so that the database returns an object
in the RIPE database with the exact match with the
lookup argument, rather than doing a referral lookup.

-r Switches off recursion for contact information after
retrieving the objects that match the lookup key.

-T (comma separated list
of object types, no
white space is allowed)

Restricts the types of objects to lookup in the query.

-a Specifies that the server should perform lookups in all
available sources. See also "-q sources" query.

-s (comma separated list
of sources, no white
space is allowed)

Specifies which sources and in which order are to be
looked up when performing a query.

Table 7 Informational queries

Flag Argument Effect
-q sources Returns the current set of sources along with the

information required for mirroring. See section 2.9
"Other server features" for more information.

-q version Displays the current version of the server.
-t <object-type> Requests a template for the specified object type.

-V<client-tag> Sends information about the client to the server.
-v <object-type> Requests a verbose template for the specified object

type.

The following notations are used in this table:
<object-type> means full or abbreviated name of a specific class;
<client-tag> is a string without a white space that usually bears the name of the client’s software.

Please refer to section 2.8 "Access control for queries" for more information about using this flag
for proxy clients.

Other notations are explained in Table A1.

3.0 Updates in the RIPE Database
To create a new object, update an existing one, or delete an object from the RIPE Database, an
update message should be sent to the Database for processing.

Two types of submissions are possible:

Updates via e-mail which is the main public interface, and on-line;
Updates via "networkupdate" interface. This method is internal, and is only used from
authorised nodes; typically, nodes belonging to the internal office LAN of the RIPE NCC.

3.1 Format of an update message
If sending the message via e-mail, the message may also be a MIME encoded message. The update
is normally in plain text. In the former case, each valid MIME part is treated as a separate message.
The update message may contain more than one object. Please see section 3.3.1 "MIME support"
for more information.

In an update message an object should be textually represented as a list of attribute-value pairs.
Each attribute-value pair is written on a separate line. The attribute name starts at column 0,
followed by character ":" and followed by the value of the attribute. The attribute, which has the
same name as the object’s class, should be specified first. An attribute’s value can be split over
multiple lines, by having a space, a tab or a plus ("+") character as the first character of the
continuation lines. The character "+" for line continuation allows attribute values to contain blank
lines. More spaces may optionally be used after the continuation character to increase readability.
The order of attribute-value pairs is significant. No empty attributes (an attribute with empty value)
are allowed, unless the type of an attribute value is <free-form>. Object definition starts with the

class attribute and ends with the first blank line ("\n\n"). No blank lines are allowed within the
object.

An object’s definition may contain comments. A comment can be anywhere in an object’s
definition, it starts at the first "#" character on a line and ends at the first end-of-line character. A
comment cannot start at column 0. White space characters can be used to improve readability.

For more information on the format of the objects, please see section 1.0 "Database objects and
attributes".

Each part of the message that is not recognised as a database object is ignored and the error
message is issued in the acknowledgement.

3.2 Creating, modifying and deleting an object
To create, update or delete objects, a message containing the objects should be prepared following
object templates and sent to the database for processing. One message may contain several objects,
each of them may require different operation: creation, modification or deletion.

3.2.1 Object processing

As a general rule, the order of objects in the message is not changed. The database processes
objects one by one, so it is the user’s responsibility to ensure that all references can be resolved.
The only exception is related to using "AUTO" NIC handles for automatic assignment of a value
for the "nic-hdl:" attribute in the person or role objects. In such cases, objects with "AUTO" NIC
handles are processed before any other object that can reference them is processed.

While processing an object, the server performs the following checks:

Verifies that the syntax of an object is correct.
Verifies that the object passes authorisation checks.
Verifies that all references can be resolved without conflicts.
Verifies that the operation does not compromise referential integrity. This is performed for
the deletion of an object to ensure that it is not referenced from any other object in the RIPE
Database.
Verifies that the requested NIC handle is not in use and can be allocated. This is performed
only for the creation of person or role objects that request a particular NIC handle.

If all checks were passed successfully, the server creates the object in the RIPE Database. If one of
these steps fails, the operation fails for the object. This is reflected in the acknowledgement
message and, under certain conditions, in notification messages.

After the database finishes processing the whole message, an acknowledgement message is
composed and sent to the sender of the original update as specified in the "Reply-to:" field or
"From:" field in the update message, if "Reply-to:" was not specified.

Also in some cases, notification messages are sent. Please see section 3.5.2 "Notifications" for

more information.

3.2.2 Creating a new object

If an object with the same primary keys as the object in the update message does not exist in the
database, the assumed operation is object creation. For person and role objects creation, one can
use "AUTO NIC handles", requesting the server to automatically assign a NIC handle. In such
case, the value of the "nic-hdl:" attribute should be:

nic-hdl: AUTO-1[<initials>]

If the <initials> (2 to 4 characters) are specified, then the server will try to use them for
constructing the NIC handle. If the <initials> are omitted, the server will guess the initials from the
"person:" or "role:" attribute.

3.2.3 Modifying an existing object

If an object with the same primary keys as the object in the update message already exists in the
database, the assumed operation is object modification. The server compares the old and new
versions of the object and reports a no-operation error if they are identical. When comparing the
versions, white space characters are not considered.

3.2.4 Deleting an object

The object deletion is requested by adding a special attribute "delete:" to the object:

delete: <comment>

The deletion is only accepted if the object in the message is exactly the same as the one in the
database about to be deleted. When comparing the versions, white space characters are not
considered. Also, operation cannot succeed if the object is referenced from any other objects in the
Database.

3.3 E-mail updates
A mail message containing an update should be sent to the e-mail address of the RIPE Database
robot: auto-dbm@ripe.net. After processing the message, an acknowledgement is sent back to the
user, containing information about which object updates succeeded and which failed, along with
the reason for failure. In some cases notification messages are sent to relevant users. Please see
section 3.5.2 "Notifications" for more information.

3.3.1 MIME support

The Database software supports MIME. This feature is meant mainly to make the cryptographic
signing of the message easier when using mail agents that place the signature in a separate MIME
part, not included in the body of the message.

It also allows the definition of scopes of authorisation within the message (e.g. parts where
different passwords apply) and nested signing of messages which may be necessary under some
conditions when updating objects whose authorisation must be derived from more than one party.

The following rules apply when submitting updates using MIME encapsulation.

A. The software recognises the following headers and appropriate actions are taken:

multipart/signed
multipart/alternative
multipart/mixed
multipart/unknown
application/pgp-signature
text/plain

All other content-types are treated as text/plain.

B. Each MIME part is treated as a separate message with the following implications:

Authorisation information is valid only within a single part, except for MAIL-FROM type,
which is valid across the entire message.
AUTO NIC handle assignment is made only within a single part (see next section 3.3.2 "PGP
support").

3.3.2 PGP support

The Database supports PGP-signed messages. The following rules apply when submitting updates
using this authorisation scheme.

When using MIME encapsulation a PGP-signed portion of an update message should be submitted
using multipart/signed composite type. In this case the first body part contains the update message
(which may also be a MIME encapsulated message), and the second body contains a PGP-signature
encapsulated with application/pgp-signature MIME discrete type.

Regarding AUTO NIC handle assignment, the PGP-signed portion is treated as a separate message.

If one of the signatures fails in a nested signed portion, the whole portion is rejected.

3.3.3 Subject line processing

The three keywords valid in a subject line of an update message are NEW, HELP and HOWTO.
Use NEW keyword by itself if you want the database to only accept new objects. HOWTO and
HELP keywords can be used to get a help text that contains information about how to query and
update the database (in this case the body of the message is ignored). If there is more than one
keyword or there is a non-keyword in the subject line, then all the subject line is ignored.

3.4 Updates using networkupdate utility

No MIME encapsulation is possible when using networkupdate.
No PGP authentication is possible when using networkupdate.

3.5 Acknowledgements and Notifications
3.5.1 Acknowledgements

Processing of every valid object in the submission message (that is every object in plain text parts,
supported MIME parts and/or valid PGP signed portions) is reflected in the acknowledgement
message. This message contains information about whether the creation, modification or deletion
has been successful or not. When there is a MIME part with an unsupported type in the incoming
message, a warning will be added to the acknowledgement, saying that that MIME part is ignored.
The acknowledgement message is sent back to the sender’s e-mail address ("Reply-To:" or
"From:", if the former is not specified).

The acknowledgement message starts with the header of the original update message as a quotation
followed by the results of the updates performed for every valid object of the message.

The format of a successful operation report is:

<operation_name> OK: [<object_type>] <object_key>

where

<operation_name> may be New, Update, Delete, depending on the operation performed.
<object_type> is the class of the object that was processed.
<object_key> is the primary key of the object.

For example:

Update OK: [person] FOO12770-RIPE

Failed updates are reported as:

<operation_name> FAILED: [<object_type>] <object_key>

followed by the text of the object with more detailed explanation of what caused the failure.

There are several reasons why the operation may fail for the object. They are:

syntax error
The submitted object is syntactically incorrect. Please consult Appendix A1 for the
description of attributes.

referential integrity violation
If an object references objects (by means of "admin-c:", "tech-c:", "zone-c:", "mnt-by:", etc.
attributes) that do not exist in the database, creation or modification operations will fail. For

the deletions, it is not allowed to delete an object that is referenced from any other object.

authorisation failure
When authorisation checks fail, the operation fails. Please refer to section 3.6 "Data
Protection" for more information.

3.5.2 Notifications

There are three types of notifications:

normal notifications
forward messages
cross notifications.

3.5.2.1 Normal notifications

Normal notifications are sent:

when an object with a "notify:" attribute is updated. The "notify:" attribute of the old version
of the object is used if the object was already in the database, and the "notify:" attribute of the
new object is used if the object is a new one.

when an object that is maintained (that is, it has a "mnt-by:" attribute) is updated, and the
maintainer(s) have "mnt-nfy:" attributes. The e-mail boxes mentioned in the "mnt-nfy:"
attributes of the relevant maintainers must be used.

When an inetnum, route or a domain object is created in a space protected by a less specific
object (by "mnt-lower:" attribute of the object).

when a reference to an irt object is added to or removed from an inetnum or inet6num
object (by means of "mnt-irt:" attribute), and the irt object contains an "irt-nfy:" attribute(s).
The e-mail boxes mentioned in the "irt-nfy:" attributes are used.

3.5.2.2 Forward messages

When an update fails to pass authorisation checks, that object in the update message is forwarded to
the e-mail address specified in the "upd-to:" attribute of the relevant maintainer(s).

3.5.2.3 Cross notifications

Cross notifications are sent:

when a new or deleted route object overlaps with another route object. A notification will be
sent to the sender of the route object.

When a new or deleted route object overlaps with another route object that has a
"cross-nfy:" or "cross-mnt:" attribute. Notification must be sent to the "mnt-nfy:" attributes of
the maintainers mentioned in the "cross-mnt:" attribute and to the "e-mail:" attributes of the

person and role objects whose NIC handle is mentioned in the "cross-nfy:" attribute of the
overlapping route objects.

When a new or deleted route object overlaps with another route object whose "origin" is an
aut-num object that has "cross-nfy:" or "cross-mnt:" attributes. Notification must be sent to
the "mnt-nfy:" attributes of the maintainers mentioned in the "cross-mnt:" attribute and to the
"e-mail:" attributes of the person or role objects whose NIC handle is mentioned in the
"cross-nfy:" attribute of the aut-num object.

3.6 Data protection
The RIPE Database provides mechanisms to control who can make changes in the database and
what changes they can make. The distinction of "who" vs. "what" separates authentication from
authorisation.

Authentication is the means to determine who is attempting to make a change.
Authorisation is the determination of whether a transaction passing a specific authentication
check is allowed to perform a given operation.

Different portions of the database require different levels of protection. Some applications require
authentication based on strong encryption. In other cases strong encryption may not be necessary or
may not be legally available. For this reason, multiple authentication methods are supported by the
server.

3.6.1 Authorisation model

The mntner objects serve as a container to hold authentication filters. A reference to a maintainer
within another object defines authorisation to perform operations on the object or on a set of related
objects. Such reference is provided by means of the "mnt-by:", "mnt-lower:", "mnt-routes:" and
"mbrs-by-ref:" attributes.

The maintainer contains one or more "auth:" attributes. Each "auth:" attribute begins with a
keyword identifying the authentication method followed by the authentication information needed
to enforce that method.

When submitting an update that requires authorisation from a mntner, authentication information
valid for that mntner should be supplied. Different methods require different authentication
information, as will be shown below.

Authentication methods currently supported include the following:

Method Description
NONE No authorisation checks are performed.
MAIL-FROM*This is a very weak authentication check and is discouraged. The

authentication information is a regular expression over ASCII
characters. The maintainer is authenticated if the "From:" field in
RFC 822 mail headers are matched by this regular expression. Since
mail header forgery is quite easy, this is a very weak form of
authentication.

CRYPT-PW This is a relatively weak form of authentication. The authentication
information is a fixed encrypted password in UNIX crypt format. The
maintainer is authenticated if the transaction contains the clear text
password of the maintainer. Since the password is in clear text in
transactions, it can be captured by snooping. Since the encrypted form
of the password is exposed, it is subject to password guessing attacks.
Authentication information is supplied using a "password:"
pseudo-attribute. The value of this attribute is a clear-text password. It
can appear anywhere in the body of the message, but not within mail
headers. Line continuation is not allowed for this attribute.

MD5-PW This scheme is based on the MD5 hash algorithm and provides
stronger authentication than CRYP-PW. The authentication
information stored in the database is a passphrase encrypted using
md5-crypt algorithm, which is a concatenation of the "1" string, the
salt, and the 128-bit hash output. Because it uses 8-character salt and
an almost unlimited passphrase, this scheme is more stable against
dictionary attacks. However, since the encrypted form is exposed it
cannot be considered as a strong form of authentication.
Authentication information is supplied using a "password:"
pseudo-attribute. The value of this attribute is a clear-text passphrase.
It can appear anywhere in the body of the message, but not within mail
headers. Line continuation is not allowed for this attribute, the
attribute and the passphrase should fit on one line. If the key gets split
across multiple lines this will be treated as a syntax error.

PGPKEY Strong form of authentication. The authentication information is a
signature identity pointing to a public key certificate, which is stored
in a separate object. The maintainer is authenticated if the transaction
is signed by the corresponding private key. The RIPE NCC does not
guarantee that a key belongs to any specific entity; it is not a
certificate authority. Anyone can supply any public keys with any
ownership information to the database and these keys can be used to
protect other objects by checking that the update comes from someone
who knows the corresponding secret key.

* MAIL-FROM authentication scheme is not valid in the RIPE Database since 11 July 2002.

3.6.2 Protection of individual objects

Individual objects can be protected with a mntner object. The mntner is referenced by the

"mnt-by:" attribute in the object. The attribute type is multiple, so several mntners can protect the
object.

Only those mntners referenced by the "mnt-by:" attributes are authorised to modify or delete the
object. Note that authentication checks are OR-ed, so if at least one mntner is authenticated, the
operation is authorised. That means that object protection is as weak as the weakest authentication
method used in the mntners referenced by the object.

When the "mnt-by:" attribute is added to an object for the first time (as part of object creation or
modification), the operation should pass authentication checks for the mntner(s) referenced by this
attribute.

3.6.3 Protection of aut-num object space

Protection of aut-num object space is done using an as-block class. The mntner that authorises the
creation of more specific as-block objects or aut-num objects is specified by the "mnt-lower:"
attribute of the as-block object. When no "mnt-lower:" attribute is specified, the "mnt-by:" attribute
is used.

3.6.4 Protection of address space

Address space allocations and assignments are represented by the inetnum and inet6num objects.
The "mnt-lower:" attribute is used to reference a mntner that authorises the creation of more
specific inetnum or inet6num objects. When no "mnt-lower:" attribute is specified, the address
space is unprotected.

3.6.5 Protection of route object space

The route object creation must satisfy several authentication criteria. It must match the
authentication specified in the aut-num and the authentication specified in either a route object or,
if no applicable route object is found, then an inetnum. Finally the creation must be authorised by
the maintainer of the route object itself referenced by the "mnt-by:" attribute of the object.

When checking for prefix authorisation, an exact route object prefix match is checked for first. If
there is no exact match, then a longest prefix match that is less specific than the prefix is searched
for. If the route prefix search fails, then a search is performed for an inetnum object that exactly
matches the prefix or for the most specific inetnum object that is less specific than the route object
submission. The aut-num object used for authentication checks is referenced by the "origin:"
attribute of the route object.

A route object must pass authorisation from both the referenced aut-num object and the route or
inetnum object. Authorisation shall be tested using the maintainer(s) referenced in the
"mnt-routes:" attribute(s) first. If that check fails, the "mnt-lower:" attributes are checked. If that
check fails, the "mnt-by:" attributes are used for the authorisation check.

3.6.6 Protection of objects with hierarchical names

Many RPSL objects do not have a natural hierarchy of their own but allow hierarchical names.
Some examples are the object types as-set and route-set. An as-set may have a name
corresponding to no naming hierarchy such as "AS-Foo" or it may have a hierarchical name of the
form "AS1:AS-BAR".

When a hierarchical name is not used, authorisation for objects such as as-set and route-set
correspond to the rules for individual objects described in section 3.6.2 "Protection of individual
objects".

If hierarchical names are used, then the addition of an object must be authorised by the aut-num
whose key is named by everything to the left of the rightmost colon in the name of the object being
added.

Authorisation is determined by first using the "mnt-lower:" maintainer reference or, if absent, by
using the "mnt-by:" reference.

3.6.7 Protection of domain object space

Protection of the domain object space is done with the "mnt-lower:" attribute. When used in the
domain object, this attribute references the mntner that authorises the creation of domain objects
directly below in the domain tree registered in the RIPE Database. For example, a top-level
domain object (ccTLD) protects the creation of the second-level domain objects, third-level
domain objects if there is no corresponding second-level domain object, etc. Note that the
top-level domain object (ccTLD or gTLD) cannot be created in the RIPE Database by users, only
by the Database administrator.

3.6.8 Protecting membership of a set

When membership of a set is specified through the use of the "member-of:" attribute, the server
checks the validity of the membership when creating or updating an object-member. This
"member-of:" attribute can be used in the route, aut-num and inet-rtr classes. The value of the
"member-of:" attribute identifies a set object that this object wants to be a member of.

However, specifying "member-of:" is not enough. The set object must also have a "mbrs-by-ref:"
attribute listing the maintainer of the object wanting to be a member of the set. That is, the set
owner must validate the membership claim of an object with a "member-of:" attribute, and it does
that by matching the mnt-by line of the object with one of the maintainers in the "mbrs-by-ref:"
attribute of the set object. If the claim is not valid at the time when the server creates or modifies an
object-member (route, aut-num or inet-rtr), the operation fails. If the "mbrs-by-ref:" attribute is
missing, the set is defined explicitly by the "members:" attribute.

3.6.9 Referencing an irt object

When adding a reference to an irt object, the update of an inetnum or inet6num object should pass
the following authorisation checks:

from the irt object itself as specified in the "auth:" attribute

from any of the mntner objects that protect the inetnum or inet6num object.

4.0 Mirroring of the RIPE Database
Near real time mirroring (NRTM) is a mechanism that enables whois servers, other than the
primary for a given database, to have an up to date copy of all the data in the main server by getting
modifications as they are processed by the main server.

Periodically (defined by configuration, usually around every 15 minutes) the remote server
connects to the main server and requests all the modifications that have been processed since the
last connection. When all the data is retrieved the connection is closed, until it is time for a new
connection.

In RIPE Database version 3.0, the NRTM server listens on a port that is different from the whois
port (43).

The RIPE whois server generates a sequence number every time it processes an update in the
database. For the purpose of generating this serial numbers, the server describes all modifications
to the database in terms of two atomic operations: deletion and addition.

The old (v2.x) database supported a NRTM protocol (Version 1) when a modification of an
existing object was considered to be a deletion followed by a creation of a new object with the
modified data. The two operations for an object modification are not necessary (although still
supported) in v3.0 database as an update is considered as an atomic operation. This behaviour is
defined as Version 2 of the NRTM protocol.

When sending data to a mirror server, the main server will send one of two strings (ADD or
DELETE) followed by two newline characters and the corresponding object (either the object as it
was before deletion or the object as it should be added or modified). If the "ADD" string is
followed by an object already existing in the database, then this operation is considered as a
modification.

Near real time mirroring is requested with the "-g" flag. The arguments to this flag are:

-g < source> :<NRTM_Protocol_version_#>:<first>-<last>

where

<source> is the string that identifies the Database (e.g. RIPE).
<NRTM_protocol_version_#> a version of the mirroring protocol that the <source> supports
(2 for RIPE).
<first> is the lowest serial number requested.
<last> is the most recent serial number requested or the keyword LAST that tells the main
server to send all updates up to the most recent one available at the time of the query. Note
that the server will never yield the last object processed, or display that it is available for
mirroring. This is done to protect secondary servers in case the last update causes database
corruption and server crash.

A client may request a persistent connection by including the "-k" flag with a mirroring request
("-g" query). In this case, the last argument is ignored and the new objects are supplied by the
server as soon as they are processed. The client is responsible for closing the connection.

The "-q sources" flag may be used with the mirror server to retrieve information regarding
available mirroring possibilities. Please see section 2.9 "Other server features" for more details.

Note that the server never returns the latest serial when serving a mirroring request. So, if the latest
serial causes a server crash and database corruption, it never propagates to the secondary servers.
The latest serial is not displayed with the "-q sources" query as well.

At the beginning of the data stream, the main server will send the following string:

%START Version: NRTM_Protocol_version_# source first-last

For example:

%START Version: 2 RIPE:1539595-1539597

After the last piece of data is sent to the mirror server, the main server will send the string:

%END source

to signal the end of transmission.

For example:

%END RIPE

Appendices

A1. Object attributes
Shown below are the syntax definitions of the object attributes supported by the RIPE Database.

The value of an attribute has a type. Some of the most commonly used types are shown in Table
A1. Others are explained in the descriptions of the attributes.

Table A1. Commonly used attribute types

Type Description
<quad> <xdigit>.){1,4}

<dlabel> Domain name label as specified in RFC 1034 [7]. The total
length should not exceed 63 characters (octets)

<alnum>((-|<alnum>)*<alnum>)?

<action> Please see RFC 2622 [1]
<address-prefix> An address prefix is represented as an IPv4 address

followed by the character slash "/" followed by an integer in
the range from 0 to 32. The following are valid address
prefixes: 128.9.128.5/32, 128.9.0.0/16, 0.0.0.0/0; and the
following address prefixes are invalid: 0/0, 128.9/16 since 0
or 128.9 are not strings containing four integers.

<ipv4-address>/<integer>

<address-prefix-range>An address prefix range is an address prefix followed by an
optional range operator. Please see RFC-2622 [1]

<as-expression> Please see RFC 2622 [1]
<as-number> An "AS" string followed by an integer in the range from 1

to 65534

AS<integer>

<condition> Please see RFC 2622 [1]
<domain-name> Domain name as specified in RFC 1034 [7] without trailing

dot ("."). The total length should not exceed 255 characters
(octets)

<dlabel>(\.<dlabel>)*

<e-mail> e-mail address specification as defined in RFC 2822 [8],
<filter> Please see RFC 2622 [1]
<freeform> A sequence of ASCII characters
<inet-rtr-name> Specifies the name of an inet-rtr object.

It is a <domain-name>.
<ipv4-address> An IPv4 address is represented as a sequence of four

integers in the range from 0 to 255 separated by the
character dot ("."). For example, 128.9.128.5 represents a
valid IPv4 address.

[0-9]+(\.[0-9]+){3,3}

<ipv6-address> <quad>(:<quad>){7,7}

<irt-name> Specifies the name of an irt object. It is an <object-name>
starting with "IRT-" prefix reserved for this object class.

<mntner-name> <object-name>

<nic-handle> From 2 to 4 characters optionally followed by up to 5 digits
optionally followed by a source specification. Source
specification starts with "-" followed by source name up to
9-character length.

(<alpha>{2,4}(<digit><digit>{0,5})?(-([a-zA-Z]
{1,9}))?)|(AUTO-<digit>+(<alpha>{2,4})?)

<object-name> Many objects in RPSL have a name. An <object-name> is
made up of letters, digits, the character underscore "_", and
the character hyphen "-"; the first character of a name must
be a letter, and the last character of a name must be a letter
or a digit. The following words are reserved by RPSL, and
they can not be used as names:

any as-any RS-any peeras and or not
atomic from to at action accept announce
except refine networks into inbound outbound

Names starting with certain prefixes are reserved for certain
object types. Names starting with "as-" are reserved for as
set names. Names starting with "RS" are reserved for route
set names. Names starting with "rtrs-" are reserved for
router set names. Names starting with "fltr-" are reserved
for filter set names. Names starting with "prng-" are
reserved for peering set names. Names starting with "irt-"
are reserved for irt object names. This is the RIPE Database
extension.

<peering> Please see RFC 2622 [1]
<person-name> Is a list of at least 2 words separated by white space. The

first and the last word cannot end with dot ("."). The
following words are not allowed: "Dr", "Prof", "Mv", "Ms",
"Mr", no matter whether they end with dot (".") or not. A
word is made up of letters, digits, the character underscore
"_", and the character hyphen "-"; the first character of a
name must be a letter, and the last character of a name must
be a letter or a digit.

<protocol> Please see RFC 2622 [1]
<registry-name> RIPE

<router-expression> Please see RFC 2622 [1]

<telephone-number> Contact telephone number. Can take one of the forms:

’+’ <integer-list>
’+’ <integer-list> "("
<integer-list> ")" <integer-list>
’+’ <integer-list> ext. <integer
list>
’+’ <integer-list> "(" integer
list ")" <integer-list> ext. <integer-list>

<integer> An integer
<alpha> Any alphabetical character.

[A-Za-z]
<alnum> Any alphabetical or numeric character.

[A-Za-z0-9]
list
of

A list of words separated by comma (","). Cannot be empty.

ripe-list
of

A list of words separated by white space. Cannot be empty.

<integer-list> A list of <integer> with white space or dash ("-") as
separators.

Descriptions of the attributes are listed below in the following format:

<attribute_name> <attribute_value(type)>
<description>

address: <freeform>
Full postal address of a contact.

admin-c: <nic-handle>
References an on-site administrative contact.

aggr-bndry: <as-expression>
Defines a set of ASes, which form the aggregation boundary.

aggr-mtd: inbound | outbound [<as-expression>]
Specifies how the aggregate is generated. Please see [1] for more information.

alias: <domain-name>
Specifies a canonical DNS name for the router.

as-block: <as-number> - <as-number>
Specifies the range of ASNs that the as-block object represents. Please see [2] for more
information.

as-name: <object-name>
A descriptive name associated with an AS.

as-set: <object-name>
Defines the name of the set.

auth: <auth-scheme> <scheme-info>
Defines an authentication scheme to be used.
<auth-scheme> and <scheme-info> can take the following values:

<auth-scheme> <scheme-info> Description
NONE No authentication is required to make

changes to the object protected with such
authentication scheme.

MAIL-FROM regular expression
that matches e-mail
addresses

This authentication method checks the
content of the RFC 822 "From:" header of an
update request against the regular expression
specified as <scheme-info>. If the regular
expression matches the content of the
"From:" header, the update request is
authenticated successfully. The regular
expressions supported are described in
POSIX 1003.2 section 2.8. As it is expected
that most regular expressions will either be
literals or of a form similar to
.*@some.domain.or.other an extensive
description of the possibilities will not be
given. Note that the matching is applied to
the whole content of the "From:" header
including comments if present. No attempt is
made to isolate the mailbox part.

This authentication scheme is very weak.
Forging RFC 822 headers does not take
much effort or ingenuity. The reason for the
scheme’s existence is that it easily prevents
accidental updates rather than allowing them
first and fixing them later when notified.

CRYPT-PW encrypted password,
produced by UNIX
crypt(3) routine

This scheme is slightly stronger than the
MAIL-FROM scheme. It is by no means
meant to keep out a determined malicious
attacker. The crypt function is vulnerable to
exhaustive search by (lots of) fast machines
and programs to do the searching are widely
available. For this reason it is strongly
discouraged to use encrypted passwords also
used for other purposes such as UNIX login
accounts in this scheme. As you are
publishing the encrypted password in the
database, it is open to attack. The usual
caveats about crypt passwords apply, so it is
not very wise to use words or combinations
of words found in any dictionary of any
language.

PGPKEY-<id> Strong scheme of authentication. <id> is the
PGP key ID to be used for authentication.
This string is the same one that is used in the
corresponding key-cert object’s "key-cert:"
attribute.

author: <nic-handle>
References a limerick author.

aut-num: <as-number>
The autonomous system number.

certif: <public-key>
Contains the public key. The value of the public key should be supplied either using
multiple "certif:" attributes, or in one "certif:" attribute. In the first case, this is easily
done by exporting the key from your local key ring in ASCII armored format and
prepending each line of the key with the string "certif:". In the second case, line
continuation should be used to represent an ASCII armored format of the key. All the
lines of the exported key must be included; also the begin and end markers and the
empty line which separates the header from the key body.

changed: <e-mail> [<date>]
Specifies who submitted the update, and when the object was updated. The format of
the date is YYYYMMDD; dates in the future are not allowed. If the date is not
specified, the database will put the date when the update was actually processed.

components: [ATOMIC] [[<filter>] [protocol <protocol> <filter> ...]]
The "components:" attribute defines what component routes are used to form the
aggregate.
<Protocol> is a routing protocol name such as BGP4, OSPF or RIP and <filter> is a
policy expression.
Please refer to RFC 2622 [1] for more information.

country: <country-code>
Identifies the country. <Country-code> must be a valid two-letter ISO 3166 country
code.

cross-mnt: list of <mntner-name>
references mntner(s) to be notified. The "cross-mnt:" attribute may be used in:

route object - to get a notification for any overlaps with the prefix specified in
that route object;
aut-num object - to get a notification for overlaps with any of the prefixes
announced in route objects in which the given AS number is specified in the
"origin:" attribute.

A notification will be sent to mailbox(es) listed in cross-nfy and mailbox(Es) listed in
the "mnt-nfy:" attributes of the maintainers referenced by the cross-mnt whenever an
overlapping route is added or removed.

cross-nfy: <nic-handle>
The cross-nfy attribute contains a NIC-handle pointing to a person or role object, the
email address of which will be used for notification about the addition or removal of
route objects, which overlap the prefixes of the already registered route objects. The
"cross-nfy:" attributes may be used in:

route object - to get a notification for any overlaps with the prefix specified in
that route object;
aut-num object - to get a notification for overlaps with any of the prefixes
announced in route objects in which the given AS number is specified in the
"origin:" attribute.

See also "cross-mnt:" attribute.

default: to <peering> [action <action>] [networks <filter>]
Specifies default routing policies. Please refer to RFC 2622 [1] for more information.

descr: <freeform>
A short description related to the object

domain: <domain-name>
DNS name. <Domain-name> is a fully qualified domain name without trailing ".".

dom-net: ripe-list of <ipv4-address>
List of IP networks in a domain.

e-mail: <e-mail>
Specifies an e-mail address of a person or role.

encryption: PGPKEY-<id>

References a key-cert object representing a CSIRT public key used to encrypt
correspondence sent to the CSIRT. <Id> is the D of the PGP public key in 8-digit
hexadecimal format without "0x" prefix.

export: to <peering-1> [action <action-1>]
 . . .
 to <peering-N> [action <action-N>]
 announce <filter>
Specifies an export policy expression. Please refer to RFC 2622 for more information.

export-comps: <filter>
Specifies an RPSL filter that matches the more specifics that need to be exported
outside the aggregation boundary. Please refer to RFC 2622 [1] for more information.

fax-no: <telephone-number>
The fax number of a contact.

filter: <filter>
Defines the set’s policy filter, a logical expression which when applied to a set of routes
returns a subset of these routes. Please refer to RFC 2622 [1] for more information.

filter-set: <object-name>
Defines the name of the filter. Please refer to RFC 2622 [1] for more information.

fingerpr: <generated>
A fingerprint of a key certificate generated by the database. Please refer to RFC 2726
[9] for detailed description of this attribute.

holes: list of <address-prefix>
Lists the component address prefixes that are not reachable through the aggregate route
(perhaps that part of the address space is unallocated). Please refer to RFC 2622 [1] for
more information.

ifaddr: <ipv4-address> masklen <integer> [action <action>]
Specifies an interface address within an Internet router. Please refer to RFC 2622 [1] for
more information.

import: [protocol <protocol-1>] [into <protocol-2>]
 from <peering-1> [action <action-1>]
 . . .
 from <peering-N> [action <action-N>]
 accept <filter>
Specifies import policy expression. Please refer to RFC 2622 [1] for more information.

inetnum: <ipv4-address> - <ipv4-address>
Specifies a range of IPv4 that inetnum object presents. The ending address should be
greater than the starting one.

inet6num: <ipv6-address>/<prefix-length>
Specifies a range of IPv6 addresses in prefix notation. The <prefix length> is an integer
in the range from 0 to 128.

inet-rtr: <domain-name>
Fully qualified DNS name of the inet-rtr without trailing ".". Please refer to RFC 2622
[1] for more information.

inject: [at <router-expression>]
 [action <action>]
 [upon <condition>]
Specifies which routers perform the aggregation and when they perform it. Please refer
to RFC 2622 [1] for more information.

irt: <irt-name>
A unique identifier of an irt object. The name should start with the prefix "IRT-",
reserved for this type of object.

irt-nfy: <e-mail>
Specifies the e-mail address to be notified when a reference to the irt object is added or
removed.

key-cert: PGPKEY-<id>
Defines the public key stored in the database. <Id> is the ID of the PGP public key in
8-digit hexadecimal format without "0x" prefix.

local-as: <as-number>
Specifies the autonomous system that operates the router. Please refer to RFC 2622 [1]
for more information.

limerick: LIM-<string>
Specifies the title of the limerick. <string> can include alphanumeric characters, "-"
character.

method: <generated>
Defines the type of the public key. Currently the only method that is supported is
"PGP". Please refer to RFC 2726 [9] for detailed description of this attribute.

member-of: list of <set-name>
This attribute can be used in the route, aut-num and inet-rtr classes. The value of the
"member-of:" attribute identifies a set object that this object wants to be a member of.
This claim, however, should be acknowledged by a respective "mbrs-by-ref:" attribute
in the referenced object. Please refer to RFC 2622 [1] for more information.

members: list of <as-number> or <as-set-name>

or

members: list of <address-prefix-range>or
 <route-set-name><range-operator>

or

members: list of <inet-rtr-name> or <rtr-set-name> or
 <ipv4 address>

Lists the members of the set. The first form appears in the as-set object. The syntax of
<as-set-name> is the same as the syntax of <object-name>. The second form appears in
the route-set object. The syntax of <route-set-name> is the same as the syntax of
<object-name>. The third form appears in the rtr-set object. The syntax of
<intet-rtr-name> is the same as the syntax of <object-name>. Please refer to RFC-2622
[1] for more information.

mbrs-by-ref: list of <mntner-name> | ANY
This attribute can be used in all "set" objects; it allows indirect population of a set. If
this attribute is used, the set also includes objects of the corresponding type (aut-num
objects for as-set, for example) that are protected by one of these maintainers and
whose "member-of:" attributes refer to the name of the set. If the value of a
"mbrs-by-ref:" attribute is ANY, any object of the corresponding type referring to the
set is a member of the set. If the "mbrs-by-ref:" attribute is missing, the set is defined
explicitly by the "members:" attribute.

mntner: <object-name>
A unique identifier of the mntner object.

mnt-by: list of <mntner-name>
Specifies the identifier of a registered mntner object used for authorisation of
operations performed with the object that contains this attribute.

mnt-irt: list of <irt-name>
May appear in an inetnum or inet6num object. It points to an existing irt object
representing CSIRT that handles security incidents for the address space specified by
the inetnum or inet6num object.

mnt-lower: list of <mntner-name>
Specifies the identifier of a registered mntner object used for hierarchical
authorisation. Protects creation of objects directly (one level) below in the hierarchy of
an object type (only for inetnum, inet6num, as-block, aut-num, route or domain
objects). The authentication method of this maintainer object will then be used upon
creation of any object directly below the object that contains the "mnt-lower:" attribute.

mnt-nfy: <e-mail>
Specifies the e-mail address to be notified when an object protected by a mntner is
successfully updated.

mnt-routes: <mnt-name> [{ list of <address-prefix-range> } | ANY]
May appear in an aut-num, inetnum or route object. This attribute references a
maintainer object which is used in determining authorisation for the creation of route
objects. After the reference to the maintainer, an optional list of prefix ranges inside of
curly braces or the keyword "ANY" may follow. The default, when no additional set
items are specified, is "ANY" or all more specifics. Please refer to RFC-2622 [1] for
more information.

netname: <netname>
Specifies the name of a range of IP address space. The syntax of the <netname>
attribute is the same as the syntax of the <object-name> attribute, but it does not have a
restriction on RPSL reserved prefixes.

nic-hdl: <nic-handle>
Specifies the NIC handle of a role or person object. When creating an object, one can
also specify an "AUTO" NIC handle by setting the value of the attribute to "AUTO-1"
or AUTO-1 <Initials>. In such case the database will assign the NIC handle
automatically.

notify: <e-mail>
Specifies the e-mail address to which notifications of changes to an object should be
sent.

nserver: ripe-list of (<domain-name> | <ipv4-address>)
Specifies the nameservers of the domain.

origin: <as-number>
Specifies the AS that originates the route. The corresponding aut-num object should be
registered in the database.

owner: <generated>
Specifies the owner of the public key. Please refer to RFC 2726 [9] for detailed
description of this attribute.

peer: <protocol><ipv4-address><options>
<protocol><inet-rtr-name><options>
<protocol><rtr-set-name><options>

 <protocol><peering-set-name><options>

May appear in an inet-rtr object. Specifies a protocol peering with another router.
Please refer to RFC 2622 [1] for more information.

peering: <peering>
Defines a peering that can be used for importing or exporting routes. Please refer to
RFC 2622 [1] for more information.

peering-set: <object-name>

Specifies the name of the peering-set. Please refer to RFC 2622 [1] for more
information.

person: <person-name>
Specifies the full name of an administrative, technical or zone contact person for other
objects in the database. <Person name> cannot contain titles such as "Dr.", "Prof.",
"MV", "Ms.", "Mr.", etc. It is composed of alphabetic characters.

peering-set: <object-name>
Specifies the name of the peering-set. Please refer to RFC 2622 [1] for more
information.

phone: <telephone-number>
Specifies a telephone number of the contact.

refer: <type> <hostname> [<port>]
Specifies the referral type, hostname and port that the server should use to redirect the
query when using referral mechanism for lookups for domain objects. Please see
section 2.7 "Referral mechanism for domains" for more information.

<type> specifies the type of referral to be used. Please see the table below for the
supported types.
<hostname> is the DNS name or <ipv4 address> of the referred host.
<port> is an integer specifying TCP port number at which queries are accepted by the
referred host. If <port> is omitted, the default number of 43 is used.

Referral type Description
SIMPLE Only lookup key (domain name) is passed to the referred server.

All query flags are stripped.
INTERNIC Same as SIMPLE. Supported for backward compatibility.
RIPE Used when the referred server understands RIPE query flags.

With this type of referral, all query flags specified by the client
will be passed to the referred server unmodified.

CLIENTADDRESS Same as SIMPLE, but the server will add "-V <version>, <ipv4
address>" flag to the query, where <version> is the version
number of the server and <ipv4 address> is the IP address of the
client that made this query. This referral type allows the referred
host to perform accounting and implement an access control for
clients using the RIPE Database server as a proxy.

referral-by: <mntner-name>
This attribute is required in the mntnr object. It may never be altered after the addition
of the maintainer. This attribute refers to the maintainer that created this maintainer.
Currently, all mntner objects are created manually by the Database Administration, so
the value of the "referral-by:" attribute should be "RIPE-DBM-MNT"

remarks: <freeform>

Contains remarks.

role: <person-name>
Specifies the full name of a role entity, e.g. RIPE DBM.

rev-srv: ripe-list of <domain-name>
Specifies a DNS nameserver for a range of IP addresses represented by the inetnum
object that contains this attribute.

route: <address-prefix>
Specifies the prefix of the interAS route. Together with the "origin:" attribute,
constitutes a primary key of the route object.

route-set: <object-name>
Specifies the name of the route set. It is a primary key for the route-set object. Please
refer to RFC 2622 [1] for more information.

rtr-set: <object-name>
Defines the name of the rtr-set. Please refer to RFC 2622 [1] for more information.

signature: PGPKEY-<id>
References a key-cert object representing a CSIRT public key used by the team to sign
their correspondence. <Id> is the ID of the PGP public key in 8-digit hexadecimal
format without "0x" prefix.

source: <registry-name>
Specifies the registry where the object is registered. Should be "RIPE" for the RIPE
Database.

status: <status>
Specifies the status of the address range represented by inetnum or inet6num object.
For an inetnum object <status> can have one of these values:

ALLOCATED PA
ALLOCATED PI
ALLOCATED UNSPECIFIED
ASSIGNED PA
ASSIGNED PI
LIR-PARTITIONED PA
LIR-PARTITIONED PI

Please refer to the RIPE document "European Internet Registry Policies and
Procedures" for further information. Please refer to [10] regarding usage of the
LIR-PARTITIONED status value.
For inet6num, <status> is automatically generated by the database based on the range
size specified by the "inet6num:" attribute.

sub-dom: ripe-list of <domain-name>

Specifies list of sub-domains of a domain. Domain names are relative to the domain
represented by the domain object that contains this attribute.

tech-c: <nic-handle>
References a technical contact.

text: <freeform>
Contains text of the limerick. Must be humorous, but not malicious or insulting.

trouble: <freeform>
Contains information on who to contact when there are problems.

upd-to: <e-mail>
Specifies the e-mail address to be notified when an object protected by a mntner is
unsuccessfully updated. See also section 3.5.2. "Notifications".

zone-c: <nic-handle>
References a zone contact.

A2. RIPE Database response codes and messages
If the server encounters a problem, an error message is returned as a query result. The format of an
error message is as follows:

%ERROR:#:<message>,

where # is the error code and <message> is a short description of the problem, possibly followed by
a more descriptive message, each line of which starts with % followed by a white space and a text.

Example:

% This is the RIPE Whois server v3.0 beta.
% This server mirrors the RIPE Database in RPSL format.
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

%ERROR:101: no entries found
%
% No entries found in the selected source(s).

A2.1 Query errors

%ERROR:101: no entries found

No entries were found in the selected source(s).

%ERROR:102: unknown source

Unknown source is requested (-s flag). Use -q sources for a list of available sources.

%ERROR:103: unknown object type

Unknown object type is specified in the filter expression (-T flag)

%ERROR:104: unknown attribute

Unknown attribute is specified in the inverse query (-i flag). See section 2.0 "Queries in the RIPE
Database" for more information.

%ERROR:105: attribute is not searchable

The attribute specified in the inverse query is not searchable (-i flag). See section 2.0 "Queries in
the RIPE Database" for more information.

%ERROR:106: no search key specified

No search key has been specified in the query.

A2.2 Access errors

%ERROR:201: access denied

Access from the host has been permanently denied because of excessive querying. You need to
contact Database Administration; (ripe-dbm@ripe.net) to discuss this problem.

%ERROR:202: access control limit reached

Limit of returned objects has been reached. The connection is terminated. Continued attempts to
excessively query the database will result in permanent denial of service. See section 2.8 "Access
control for queries" for more information.

%ERROR:203: address passing not allowed

The host is not registered as a proxy, thus it is not allowed to pass addresses on the query line ("-V"

flag). See section 2.8 "Access control for queries" for more information.

%ERROR:204: maximum referral lines exceeded

The referral query result exceeded maximum number of lines. Only maximum lines are output and
connection is closed by the server.

A2.3 Connection errors

%ERROR:301: connection has been closed

The connection is administratively closed.

%ERROR:302: referral timeout

The connection was closed due to referral timeout.

%ERROR:303: no referral host

Referral host cannot be found.

%ERROR:304: referral host not responding

The connection to the referral host cannot be established.

A2.4 NRTM errors

%ERROR:401: invalid range: Not within <first>-<last>

This happens when the requested range or part of it is outside the serial numbers available at the
server. <first> is the lowest serial number available. <Last> is the most recent serial number
available.

%ERROR:402: not authorised to mirror the database

See section 2.8 "Access control for queries" for more information. One may use "-q sources" query
to get more information about the NRTM source.

%ERROR:403: unknown source

The database identified by the <source> is not served by the server. Use "-q sources" for a list of
available sources.

A2.5 Referral text

%REFERRAL START

After this line, output of the referred host starts.

% The object shown below is NOT in the %s database.
% It has been obtained by querying a remote server:
% cctld.dom.int at port 43.
% To see the object stored in the %s database
% use the -R flag in your query
%
%REFERRAL START

%REFERRAL END

Referral trailer, which frames the output of the referred host.

A3. Copyright information
A3.1 RIPE Database copyright

The information in the RIPE Database is available to the public for agreed Internet operation
purposes, but is under copyright. The copyright statement is:

"Except for agreed Internet operational purposes, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without prior permission of the RIPE NCC on behalf of the copyright
holders. Any use of this material to target advertising or similar activities is explicitly forbidden
and may be prosecuted. The RIPE NCC requests to be notified of any such activities or suspicions
thereof."

A3.2 RFC copyright statement

A RFC document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the Internet Society or other Internet organizations, except as needed for the
purpose of developing Internet standards in which case the procedures for copyrights defined in the
Internet Standards process must be followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be revoked by the Internet
Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

A3.3 RIPE NCC copyright

© RIPE NCC 2001

Acknowledgements
The authors wish to acknowledge the effort done by the developers of the version 3.0 of the RIPE
Database at the RIPE NCC: Daniele Arena, Marek Bukowy, Engin Gunduz, Roman Karpiuk,
Shane Kerr, A.M.R. Magee Chris Ottrey and Filippo Portera.

References
[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg and
M. Terpstra, "Routing Policy Specification Language (RPSL)", RFC 2622, June 1999.

[2] C. Villamizar, C. Alaettinoglu, D. Meyer and S. Murphy, "Routing Policy System Security",
RFC 2725, December 1999.

[3] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, "Using RPSL in Practice",
RFC 2650, August 1999.

[4] T. Bates, E. Gerich, L. Joncheray, J.M. Jouanigot, D. Karrenberg, M. Terpstra and J. Yu,
"Representation of IP Routing Policies in a Routing Registry", ripe-181, October 1994. See
http://www.ripe.net/docs/ripe-181.html

[5] The "RIPE Database User’s Manual" and the "RIPE Database Operations Manual" are
scheduled to be written.

[6] RAToolset. See http://www.isi.edu/ra/RAToolSet/

[7] P. Mockapetris, "Domain names - Concepts and Facilities", RFC 1034, November1987.

[8] P. Resnick, ed., "Internet Message Format", RFC 2822, April 2001.

[9] J. Zsako, "PGP Authentication for RIPE Database Updates", RFC 2726, December 1999.

[10]) N. Nimpuno, A.Robachevsky, "New Value of the "status:" Attribute for Inetnum Objects
(LIR-PARTITIONED)", ripe-239, June 2002.

[11] Andrew Cormack, Don Stikvoort, Wilfried Woeber, Andrei Robachevsky "IRT object in the
RIPE Database" ripe-254, July 2002

[12] K. Harrenstien, M.K. Stahl, E.J. Feinler."NICNAME/WHOIS", RFC 954, October 1985.

