
Authorisation and Notification of Changes

in the RIPE Database

Daniel Karrenberg
RIPE NCC

Mar ten Terpstra
RIPE NCC

Document ID: ripe-120
Obsoletes: ripe-096

ABSTRACT

Tw o new attributes are defined for all objects in the RIPE database in
order to implement a generalised method for authorising changes and to
notify interested parties of any changes made to a specific database object.
Further the maintainer object is defined to represent entities maintaining
database objects.

History
Updates to the RIPE database [ripe-050] are currently done almost exclusively by elec-
tronic mail which is processed automatically. The number of updates processed is sub-
stantial [ripe-106]. Historically there was no authorisation and anyone could change any
object in the database. From the start extensive audit trails of changes have been kept in
order to identify problems with automatic processing or to trace unintended changes. For
more than 4 years of experience with this model we have not encountered any instance of
a malicious change to an object until very recently. The amount of accidental unwanted
changes is also surprisingly low.

In order to help detect unwanted changes the notify attribute was introduced [ripe-096].
It will be described below.

The RIPE community feels a need to introduce authorisation and authentication mecha-
nisms for updates to the RIPE database. The specific need arose when the database
started to be used as a routing registry [ripe-081].

As a simple straightforward measure guarded objects were introduced. All aut-num and
community objects were guarded. Any update to such an object had to be manually
authorised by RIPE NCC staff. While this was easy to implement it obviously does not

ripe-120.ps



- 2 -

scale well.

The data representation schema used for the routing registry also combined allocation and
routing registry information in a single object, the inetnum object. Routing registry
information is not necessarily maintained and controlled by those controlling the corre-
sponding allocation information. In order to solve this the special mechanism of guarded
attributes was introduced [ripe-108]. This has turned out to be unwieldy since it uses a
special mechanism for updates to some attributes of an object and is not well integrated
into the database update model.

For this and other reasons the representation of routing information in the RIPE database
has been changed to clearly separate routing from allocation information by storing them
in different objects. Consequently the authorisation of changes can again be done at the
object level.

The Notify Attribute
Each RIPE database object has an optional attribute called notify. The value of the notify
attribute is one valid RFC822 e-mail address. There can be multiple notify attributes.
Whenever the object concerned is changed in the database a notification message will be
sent to each e-mail addresses appearing in a notify attribute.

This makes it straightforward to keep track of changes to specific objects and prevent
changes from going unnoticed. Multiple notify attributes make it possible to notify a
number of interested parties. This could be used to alert all contact persons for an object
or the local contact persons as well as the relevant service provider. Although it may be
tempting to put many notify attributes on database objects in order to notify everyone
ev en remotely interested, this is not recommended. A very few key addresses should be
sufficient. Prior to entering any mail address here, the explicit or implicit consent of the
person responsible for that particular mailbox needs to be obtained.

Obviously the notify attributes used for notification are those stored in the database
before the update. This also guarantees proper notification about deletes.

Note that there is another, often more easily maintainable, way to effect notification of
changes to the maintainer of an object. See the section about the mntner object for
details.

Authorisation Model
The new model for authorisation of changes to the database is fully integrated into the
database model and applies to any object.

Optionally each database object can be associated with one or more maintainers who are
authorised to make changes. Only those maintainers and the RIPE NCC are then autho-
rised to change or delete the object.

ripe-120.ps



- 3 -

Each maintainer is also represented in the database by its own mntner object which
stores information such as contact persons, authorisation and notification details.

Whenever a change to an object is attempted the mnt-by attribute of the current database
object is examined.

If there is no mnt-by attribute, the update always proceeds causing any notifications spec-
ified in notify attributes of the object. This ensures backward compatibility. It is also a
perfectly legitimate authorisation model for those objects that do not need sophisticated
authorisation. Also we would like to stress that using stronger authorisation requires
timely processing of update requests. An unresponsive maintainer preventing others from
making updates frequently is a worse solution than no authorisation.

If the update is originated by a maintainer referenced in a mnt-by attribute, the update
also proceeds causing the necessary notifications. There are various methods to authenti-
cate the origin of an update request. These can be configured in the mntner object
described below.

If a new object with a mnt-by attribute is added to the database or a mnt-by attribute is
added to an object that previously had no such attribute, the authorisation step is per-
formed on the maintainer to be added.

If authentication fails the update request is forwarded to the mailbox listed in the upd-to
attribute of the maintainer(s) of the object for processing and the originator of the request
is notified. No other notifications are performed in this case.

If an update is not authorised and no appropriate maintainer can be identified the request
will be forwarded to the RIPE NCC for action.

See the separate section below for details on authentication methods and related matters.

The Maintained-By Attribute
Each RIPE database object has an optional attribute called mnt-by (maintained by). The
value of the mnt-by attribute is a reference to a mntner object in the database which
describes those authorised to make changes to the object. See below for details.

Multiple mntner objects can be referenced by separating them with blanks, which is pre-
ferred, or by using multiple mnt-by attributes per object.

In this case all maintainers referenced are equally authorised to make changes to the
object. For instance this is applicable to person objects maintained by both a toplevel
domain registry and a local address space registry. Because close coordination is
required if an object is to be maintained by multiple maintainers, this is expected to be
the exception rather than the rule.

When responding to queries, the RIPE whois server will not automatically return the

ripe-120.ps



- 4 -

associated mntner object with any matching object as is done with contact persons.

The Maintainer Object
The mntner object represents an entity maintaining objects in the RIPE database. The
maintainer is identified and referred to by a unique maintainer name. The mntner object
is used every time a database object with a mnt-by attribute is added, updated or deleted
to determine whether the originator of the update request is authorised to make the
update.

In addition the mntner object provides the same kind of notification ability that is also
available with the notify attribute. When using the notify attribute, the user must specify
who to notify in every object that he is responsible for. If he wants to change who is noti-
fied, every object must be changed. By putting this notification information in the mnt-
ner object, that information is centralized and can be managed more easily.

Adding a new mntner object has to be authorised manually by RIPE NCC staff. Updates
to mntner objects follow the normal authorisation rules but receive special scrutiny by
NCC staff too.

mntner: [mandatory] [single]
descr: [mandatory] [multiple]
admin-c: [mandatory] [multiple]
tech-c: [optional] [multiple]
upd-to: [mandatory] [multiple]
mnt-nfy: [optional] [multiple]
auth: [mandatory] [multiple]
remarks: [optional] [multiple]
notify: [optional] [multiple]
mnt-by: [optional] [multiple]
changed: [mandatory] [multiple]
source: [mandatory] [single]

Each attribute has the following syntax:

mntner:
Maintainer name.
Format:

An upper case text string consisting of alphanumeric characters and "-" (dash)
which is not the same as any maintainer name already defined. The name has
to be unique with regard to other maintainer names only. It can be the same as
handles, autonomous system or community names.

Examples:

ripe-120.ps



- 5 -

mntner: FOO-NOC

mntner: NN-DOMREG

Status: mandatory, only one line allowed

descr:
A short description of the maintainer entity.
Format:

free text
Examples:

descr: FOO Networking Inc. NOC
descr: Serving all customers of FOO Networking Inc.

descr: Domain Registrar for the NN toplevel domain.

Status: mandatory, multiple lines allowed

admin-c:
Full name or uniquely assigned NIC-handle of an administrative contact person.
This is the one with whom coordination should be done.
Format:

<firstname> <initials> <lastname> or <nic-handle>
Example:

admin-c: Joe T Bloggs
admin-c: JTB1

The handle form is preferred because it is not ambiguous.
Status: mandatory, multiple lines allowed

tech-c:
Full name or uniquely assigned NIC-handle of a technical contact person. If defined
this is someone to be contacted for technical problems such as bounced e-mail etc.
Format:

<firstname> <initials> <lastname> or <nic-handle>
Examples:

tech-c: John E Doe
tech-c: JED31

The handle form is preferred because it is not ambiguous.
Status: optional, multiple lines allowed

upd-to:
Updates to. Any unauthorised update request of an object maintained by this main-
tainer will be forwarded to this address.

ripe-120.ps



- 6 -

Format:
RFC-822 address

Example:
upd-to: noc@foobar.net

upd-to: domreg@nn-nic.nn

Status: mandatory, multiple lines allowed

mnt-nfy:
Maintainer notification. This e-mail address will receive notification messages if any
object maintained by this maintainer is added, changed or deleted. The functionality
is exactly the same as if a notify attribute had been defined in the object. Specifying
it here has the advantage that any changes of the address(es) affect only one object.
For more information see the section about the notify attribute.

Format:
RFC-822 address

Example:
mnt-nfy: noc@foobar.net

mnt-nfy: domreg@nn-nic.nn

Status: optional, multiple lines allowed

auth:
specifies which scheme will be used identify and authenticate update requests from
this maintainer.
Format:

<scheme-id> <auth-info>

The scheme-ids currently defined are: NONE, MAIL-FROM and CRYPT-PW.
The auth-info is additional information required by a particular scheme. When
more than auth attribute is specified any of them can be used alternatively for
authentication of updates, i.e. specifying NONE and others does not make
much sense. The auth attribute is not protected information in any way; it is
returned normally like any attribute by the whois server and available in stored
copies of the database. The strength of an authentication scheme thus has to lie
in the scheme itself and cannot be based on the obscurity of the auth attribute.
See the section about authentication schemes for more details.

Example:

ripe-120.ps



- 7 -

auth: NONE

auth: CRYPT-PW dhjsdfhruewf

auth: MAIL-FROM .*@ripe.net

Status: mandatory, multiple lines allowed

remarks:
Remarks/comments, to be used only for clarification.
Format:

free text
Example:

remarks: This is a test/example object.

Status: optional, multiple lines allowed
notify:

The notify attribute contains an email address to which notifications of changes to
this object should be send. See also the section "The Notify Attribute" near the end
of this document.
Format:

<email-address>

The <email-address> should be in RFC822 domain syntax wherever pos-
sible.

Example:
notify: Marten.Terpstra@ripe.net

Status: optional, multiple lines allowed
mnt-by:

This attribute specifies who maintains this object in the RIPE database. See also the
section "The Maintained-By Attribute".
Format:

<maintainer name>
Example:

maintainer: FOO-NOC

Status: optional, multiple lines allowed
changed:

Who changed this object last, and when was this change made.
Format:

<email-address> YYMMDD

<email-address> should be the address of the person who made the last
change. YYMMDD denotes the date this change was made.

ripe-120.ps



- 8 -

Example:
changed: johndoe@terabit-labs.nn 900401

Status: mandatory, multiple lines allowed
source:

Source of the information.

This is used to separate information from different sources kept by the same
database software. For RIPE database entries the value is fixed to RIPE.
Format:

RIPE
Status: mandatory, only one line allowed

Authentication Schemes
The authorisation model supports multiple authentication schemes. Currently only rela-
tively weak authentication is defined. It is entirely possible to use stronger authentication
schemes based privacy enhanced mail (PEM, PGP). It is expected that such schemes will
be defined as the need arises.

Please note again that the authentication scheme and the additional <auth-info> is
public information available in the database. The strength of an authentication scheme
must be inherent in that scheme and not be based on keeping this information secret. The
reason for this is that it is very difficult to keep the information confidential and thus the
RIPE NCC cannot take this responsibility.

NONE
This is the simplest authentication scheme which is entirely backwards compatible
with the one currently used. No authentication is provided, i.e. it is assumed that all
update requests originate from an authorised maintainer or are at least coordinated
with one. Anyone in doubt whether it is OK to issue update requests should check
with the maintainer concerned first, preferably at the mailbox specified in the upd-to
attribute. When making any changes the mnt-by attribute should not be changed
without explicit consent from the current maintainer.

This scheme is for those who want to give everyone the possibility to make changes
while at the same time using the mnt-by attribute for its notification and documenta-
tion features. A good reason to use this scheme is that the maintainer cannot guar-
antee timely processing of updates himself.

MAIL-FROM
This authentication method checks the content of the RFC822 From: header of an
update request against the regular expression specified as <auth-info>. If the
regular expression matches the content of the From: header the update request is
authenticated successfully. The regular expressions supported are described in

ripe-120.ps



- 9 -

POSIX 1003.2 section 2.8. As it is expected that most regular expressions will
either be literals or of a form similar to .*@some\.domain\.or\.other an
extensive description of the possibilities will not be given. Note that the matching is
applied to the whole content of the From: header including comments if present. No
attempt is made to isolate the mailbox part.

It should be stressed that this authentication scheme is very weak. Forging RFC822
headers does not take much effort or ingenuity. The reason for the scheme’s exis-
tence is that it easily prevents accidental updates rather than allowing them first and
fixing them later when notified.

This scheme is for those who want to prevent accidental updates by others and are
able to process update requests in a timely manner.

CRYPT-PW
This scheme uses the Unix crypt(3) routine, which is also used for login passwords
under Unix. This routine provides a so called "trap door" function, the inverse of
which is somewhat hard to calculate. The password provided by the user is
encrypted with this function and stored in its encrypted form only. When the user
later provides the password again for authentication, the encryption is repeated and
the results are compared. Since the original (cleartext) password cannot easily be
computed from the encrypted version the encrypted password does not have to be
kept secret.

The <auth-info> is the encrypted password. This can either be obtained locally
with the appropriate Unix tools or on e-mail request from <ripe-
dbm@ripe.net>. When sending in update requests the cleartext password has to
be provided in the message body by specifying
password: cleartext-password
at the beginning of a line and preceding any update requests to be thus authenti-
cated. The password will remain valid for all requests following it in the same e-
mail message or until another password is specified.

This scheme is slightly stronger than the MAIL-FROM scheme. It is by no means
meant to keep out a determined malicious attacker. The crypt function is vulnerable
to exhaustive search by (lots of) fast machines and programs to do the searching are
widely available. For this reason it is strongly discouraged to use encrypted pass-
words also used for other purposes such as Unix login accounts in this scheme. As
you are publishing the encrypted password in the database it is open to attack. The
usual caveats about crypt passwords apply, so is not very wise to use words or com-
binations of words found in any dictionary of any language. See [R. Morris, K.
Thompson: Password Security: A Case History] for more details about the scheme
and its vulnerabilities.

ripe-120.ps



- 10 -

Multiple authentication methods can be specified in the same mntner object. These will
be used alternatively, i.e. any one of the authenticators is sufficient to authenticate the
update request from the maintainer. If multiple maintainers maintain an object this fea-
ture should not be used. Multiple maintainers should be represented by multiple mntner
objects referenced in the mnt-by attribute. There is no way in the current model to
require a combination of multiple authenticators to authenticate a request.

Special Rules in the Routing Registry
Because routes are originated by autonomous systems the autonomous system concerned
should be the only one maintaining route objects. The maintainer of a route object is
thus expected to be the same as the one of the aut-num object referenced in its origin
attribute. We consciously decided not to enforce this rule until experience shows this to
be necessary. We deem the added flexibility gained by not doing so to be useful in many
cases. If necessary the values of the mnt-by attributes of the new route object and the
referenced mntner objects should be required to be equal at creation time of the route.

In order to support the necessary routing coordination, special notification rules apply to
the route object: Whenever a route object is created or deleted or the comm-list attribute
changes, the guardians of all communities and ASes referenced by the old and new
objects will be notified in addition to the normal notifications. This rule ensures that
community guardians have retroactive control over community membership and that
ASes get notified if someone else adds a route originated by them.

Note that this rule changes the level of membership control exercised by community and
AS guardians have with respect to the "guardian file" method. Control is now by notifica-
tion after the fact.

The second special notification rule concerns creation and deletion of other route objects
for the same route but with different originators: Whenever a route object is created or
deleted, the registry is searched for other route objects covering exactly the same address
space as well as the smallest less specific routes. The guardians of all such route objects
will be notified of the change as well as the existence of all route objects concerned.
This also includes notification of the guardians of the route object just created. This rule
tries to ensure that multiple insertions of the same route into the routing mesh as well as
proxy aggregation are coordinated at least post factum. Due to the technical effort
involved, implementation of this rule may be effected somewhat later than the rest of the
authorisation package. Whether this notification should also include more specific and
additional less specific routes is for experience to determine.

ripe-120.ps



- 11 -

Examples
Use of the authorisation and notification scheme described in this document is totally op-
tional. So the current object below remains fully valid:

inetnum: 193.0.0.0
netname: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Amsterdam, Netherlands
country: NL
admin-c: Daniel Karrenberg
tech-c: Marten Terpstra
tech-c: Tony Bates
rev-srv: ns.ripe.net
rev-srv: ns.eu.net
notify: ops@ripe.net
changed: tony@ripe.net 940708
source: RIPE

ripe-120.ps



- 12 -

But even if notification is the only feature desired, adding a maintainer object can be use-
ful. It documents who the maintainer is and it puts the e-mail addresses for notification in
one place only:

inetnum: 193.0.0.0
netname: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Amsterdam, Netherlands
country: NL
admin-c: Daniel Karrenberg
tech-c: Marten Terpstra
tech-c: Tony Bates
rev-srv: ns.ripe.net
rev-srv: ns.eu.net
mnt-by: RIPE-NCC
changed: tony@ripe.net 940708
source: RIPE

mntner: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Maintains all objects for NCC resources.
admin-c: DK58
tech-c: MT2
tech-c: TB230
upd-to: ops@ripe.net
mnt-nfy: ops@ripe.net
auth: NONE
mnt-by: RIPE-NCC
changed: dfk@ripe.net 940910
source: RIPE

Note that the mntner object itself is maintained by RIPE-NCC too, so notification will
also happen if the object itself is changed.

ripe-120.ps



- 13 -

Changing the addresses can then be done by changing just the mntner object and not all
objects referring to the address. It is also easy to switch on authentication for all objects
at once if needed:

mntner: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Maintains all objects for NCC resources.
admin-c: DK58
tech-c: MT2
tech-c: TB230
upd-to: ops@ripe.net
mnt-nfy: notifications@ripe.net
auth: MAIL-FROM .*@.ripe.net
notify: mntner-change@ripe.net
mnt-by: RIPE-NCC
changed: dfk@ripe.net 940910
source: RIPE

Note that mntner-change@ripe.net will be notified in addition to notifica-
tions@ripe.net if the mntner object itself changes.

If stronger authorisation is needed it can be switched on with a single update to the mnt-
ner object again.

mntner: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Maintains all objects for NCC resources.
admin-c: DK58
tech-c: MT2
tech-c: TB230
upd-to: ops@ripe.net
mnt-nfy: notifications@ripe.net
mnt-nfy: daniel.karrenberg@ripe.net
auth: CRYPT-PW 949WK1mIRby6c
notify: mntner-change@ripe.net
mnt-by: RIPE-NCC
changed: dfk@ripe.net 940910
source: RIPE

Note that any update of this object must now be preceded by a line of the form
password: NCC-PASS

to be properly authenticated.

ripe-120.ps



- 14 -

Specifying alternative authentication methods is allowed. So if f.i. either of two pass-
words should be used to authenticate update requests this can be represented like this:

mntner: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Maintains all objects for NCC resources.
admin-c: DK58
tech-c: MT2
tech-c: TB230
upd-to: ops@ripe.net
mnt-nfy: notifications@ripe.net
mnt-nfy: daniel.karrenberg@ripe.net
auth: CRYPT-PW 949WK1mIRby6c
auth: CRYPT-PW 95sF/QAyIMtgg
notify: mntner-change@ripe.net
mnt-by: RIPE-NCC
changed: dfk@ripe.net 940910
source: RIPE

If on the other hand one object is maintained by multiple maintainers this should be ex-
pressed by using multiple mntner objects. These will be equivalent in authentication
checking. It speaks for itself that good coordination between the multiple maintainers of
an object is an absolute necessity:

person: Lena F. Karrenberg
address: c/o RIPE NCC
address: Kruislaan 409
address: NL-1098 SJ Amsterdam
phone: +31 20 5925065
e-mail: lena.karrenberg@ripe.net
remarks: Born August 12th 1994
remarks: Assistant to the NCC manager for reality checks.
changed: karrenberg@ripe.net 940812
mnt-by: DANIEL BEATE
source: RIPE

References

All references of the form "ripe-nnn" refer to RIPE documents obtainable from
ftp://ftp.ripe.net/ripe/docs.

ripe-120.ps



- 15 -

Acknowledgments
The authors acknowledge the very useful input from the RIPE database working group as
well as the following individuals: Dale Johnson of MERIT.

ripe-120.ps


