

What can only be done with IPv6...

Eric Vyncke, evyncke@cisco.com, @evyncke Distinguished Engineer, Cisco Paris Innovation & Research Lab June 2018

What are the difference between IPv4 and IPv6?

- Extension headers
- Way more addresses
- Multiple addresses per interfaces

Extension Headers

Segment Routing Header (SRH)

- A IETF draft using Routing Header
- Where each segment can be used for network programming
 - Making Network Function Virtualization easier
 - Allowing Load Balancing at layer-3
- <u>http://www.segment-routing.net/</u>

In-situ Operation, Administration and Management

- Allow routers on the path to mark packets with timing
- Allows for path verification
 - Important for NFV chaining
- Leveraging SRH
- <u>https://datatracker.ietf.org/wg/ioam/about/</u>

Way more addresses

Containers and IPv6

- In IPv4: containers share 'the' IPv4 address of the host
 - One port per container and usually some ugly NAT
- In IPv6: containers can share a /64 prefix assigned to the host
 - Each container has access to the full range of TCP/UDP port
 - (/64 per host has some security benefits as well)

Coding Content Description in IPv6 Addresses – Example of IPv6 address template for movies

[IPV6 Routing prefix + subnet id		erface identifier				
	Bits 48	48 + 16		64			
Fields	Stream Type Service ID		Content Descrip	2scriptor Chunk Descriptor			
Bits	2	10	26		24		
	Z	12			4	4	16
Comments	= 4 types 00 = linear 01 = non-linear 10 = UGC 11 = corp.	= 4096 services per type	= 70+ millions per s	ervice	 = 16 profiles To combining appropriated AV formats (DASH/HLS most significant bit) and ABR qualities =0 reserved value 	= duration From 1 to 15s =0 can be reserved for none, so a single (big) chunk/file	 = chunk sequence number Allows by iteration to (pre)-fetch/cache over the network Combined with Duration, it references from 6 hours to 4 days per service/content. It also gives direct time stamps for trick modes =0 can be reserved for the DASH/HLS manifest

See by your own: http://6cn.io

6CN Advantages – High Availability, Monitoring

[©] 2018 Cisco and/Leverage. decades of IP layer optimizations

Multiple IPv6 Addresses per Interface

Selecting the Service by Source Address

Network signals the services to the hosts

- draft-ietf-intarea-provisioning-domains
- Identify Provisioning Domains (PvDs)
 - [*RFC7556*] Provisioning Domains (PvDs) are consistent sets of network properties that can be implicit, or advertised explicitly.
- Extend PvD with additional information
 - For the applications: name, captive portal, etc...

IPv6 can do more than IPv4... *... And we are only scratching the surface...*

- Extension headers prevent ossification of the IP stack
- Many addresses allow for micro-services addressing
- Multiple addresses per interface to allow the source to select the network service