The Consistency Verification of Zebra BGP Data Collection

Hongwei Kong

1 Introduction

In spite of the wide deployment of BGP as the inter-domadatocol, the research on the
BGP behavior and its influence on Internet performasiatill undergoing. Due to the complexity
of Internet, it is hard to model and analyze the behafi®@GP. To help understand the behavior
of BGP and to help to monitor the performance of Intebatter, several BGP looking glasses
have been set up to provide useful BGP data collectianinstance, RIPE and Routeviews are
two well-known looking glasses (refer to [13][15] for moreailston what is a looking glass and
how to retrieve BGP data from these looking glasses).yMéamhese looking glasses have been
using Zebra [1] as BGP data collector. These sitegatdiioth BGP update messages and instant
routing tables. BGP updates and instant routing tables eergly written into binary files
periodically. When BGP messages are dumped into thetlidgey are dumped according to some
predefined packet dump format, which generally includesnfioemation fields like time stamp,
message length, from and to IP addresses, from and toAA®nNEmous System) numbers,
message type, etc (refer to Appendix.2 for more details).eThesls are provided both for the
manipulating of dumped messages as well as analyzing Bl¥ibe Since binary file is not
very convenient and intuitive for analyzing, these birideg are generally decoded into readable
ASCII format BGP messages for further analysis. Tlaeeseveral tools able to do such kind
decoding. Among them, Route_BtoA coming along with MRTd [2] toslaad Libbgpdump [11]
on RIPE NCC, are two widely used tools for decoding dumped BGP data.

Currently, much BGP research is based on the BGP data collectipablaniooking glasses.
Here we only list some of them as examples: [16][17][18][19]. Emguthe consistency and
reliability of these data collections is very importémtguarantee the accuracy of these research
results. It has been reported in [3] that some Zebra @ &Pcollections reported different number
of BGP update messages when processed with Route_BtoAinom hnd Solaris platform
separately. It's also mentioned that some BGP messagyestheir message body missed when
decoded with Route_BtoA. This arouses suspicions on tiabitiey of both Zebra data collection
and the processing tools, for example Route_BtoA and LibbgpdumprtUmédtely, besides [3],
little work has been done to give a thorough exploration on tmsistency of Zebra data
collection and the related tools. Thus one main objectithi®ireport is to verify the consistency
of Zebra BGP data collections. To achieve this, we &k approach to verify the consistency by
comparing the data captured and processed with differest tadghis way, we can not only find
out whether Zebra data collection is consistent wid tbéal BGP data, but also verify the
consistency of the observing results obtained by diftet@ols. It has been noticed that some of
the related tools, such as Route_BtoA, behaves differentlinux from on Solaris. Therefore
another purpose of this report is to verify the behavior of thesednaliferent platforms.

Verifying the consistency of Zebra BGP data collectiotuaty includes two different
aspects: one is to verify that the related tools, which akttogarocess Zebra BGP data collection,

Agilent Labs Technical Report 1

behave as expected, and the other is to verify that thésrebtained with different tools agree
with each other in all cases (in some cases, someep&ties are allowed provided these
discrepancies are rational under the specific conditioig).have done a lot of tests to check
whether the tools behave as expected. During these t@sis,baigs of the tools have been found
and solved, but there are still some problems not fixgatesent. After finding the reasons that
cause these problems and being sure that they won't congpréme reliability of the verification
results, we isolate those unfixed problems so that the tools behaxpected.

Two different verification approaches can be adoptegktdy the consistency of Zebra data
collections. One way is to program the BGP speakeernd specific patterns and compare it with
the data dumped with Zebra. The other is to compare thwirencaptured data with that from
Zebra. The former approach is especially useful to pinplébugs of related tools, and the latter
approach has a better adaptability since it can bewisedoth the synthetic BGP source and the
real BGP source. In this report both approaches havedugted and the results show that these
approaches are very effective.

The arrangement of the following sections is: Firstiye verification methodologies and
test-beds are presented. Then short descriptions ael#ted tools in the verification are given.
Next, the experimental results together with the deteatguigms of the tools used in the test are
presented. After the analysis of the experimental resudtsiraw some conclusions of the work in
this report.

2 Verification Approaches and Tools involved

2.1 Verification Approaches

In this report, two different test-beds are usdukifT configurations are shown in Fig.1 and
Fig.2, respectively. The test-bed in Fig.1 is for tests onnLiplatform while the other in Fig.2 is

to test the behaviors of the tools on Solaris platform.

Mars:
Debian Woody

| Jupiter:
Debian Woody

2'L0T'82C' VT

9T LLT'TY'C6T

f

~ Venus:
Debian Woody

—— — BGP sessions with synthesized BGP data traffic
_—— - BGP sessions with real BGP data traffic

Fig.1 Test-bed on Linux platform

Agilent Labs Technical Report 2

Ferrara:
Debian Woody

Refugio:
Solaris

~ Vicenza:
Debian Woody

—— — BGP sessions with synthesized BGP data traffic

_—— — BGP sessions with real BGP data traffic

Fig.2 Test-bed to test tools on Solaris platform

The verification methods as well as the tools used in theatestarther illustrated in Fig.3.
As shown in Fig.1, Fig.2 and Fig.3, both test-beds are very simple and slimégronly consist
of a BGP source, a BGP router, and a sink of BGP messages. In theGédsn and SBGP are
used to generate and replay BGP source data, and Zebra aas B&P router and BGP
collector. As shown in Fig.3, there are 4 different comparisons. Tipeges of these comparisons
are explained in the following: 1) Comparison C1. It represents the cisopaetween the
on-wire captured data and Zebra dumped data. This approacimig used to verify the
consistency of Zebra dumped data through on-wire captured2)ja@amparison C2. It represents
the comparison between the source data and Zebra dumped dataiitpeirpose of comparison
C2 is to find the problems of Zebra and the related tools. When dahgest, specific source
patterns are used to ease the pinpointing of the problemex&mple, in the tests, the
announcements consist of continuous, monotonically increasing prigfxd24.0.1.0/24,
124.0.2.0/24, 124.0.3.0/24 ... X.X.X.0/24. Thus if Zebra loses some BGP messages, it can be
easily found out when these BGP messages are lost by explorirgftéra pf the received
prefixes. If further using KEEPALIVE messages as the “syncéhation marker” between the
source data and Zebra dumped data, then we can easily findaetbewthere are KEEPALIVE
messages lost by check whether there are some “out of synchimniiraervals. 3) Comparison
C3. It represents the comparison between the source data-amek @aptured data. The same
source patterns mentioned above are used in the tests. Thepmgmse of C3 is to find the
problems of on-wire captured tools. 4) Comparison C4. It is to testher Ethereal and Tcpdump
behave the same and how different versions of Libpcap imftugre capture results.

Agilent Labs Technical Report 3

Cc2

ca
==

| L]]

Route_ Route_
BGP Dissector Bgpsim sbgp BGP Dissector BtoA BtoA BGP Dissector
Zebra Zebra
*pdump ‘ *hereal | ﬂpdump ‘ *herea! + | ¢ *herea! ‘ ﬁ)dump
TCP TCP CP
| Libpcap * | Libpcap | * | | Libpcapl
Kernel Kernel Kernel
Network Interface Network Interface Network Interface
Source Interdomain BGP Router BGP Traffic Sink
. Synthesized BGP
Real BGP traffic — td traffic ———C*—— Data Comparison

Fig.3 lllustration of verification methods

From Fig.3, it can be seen that all these comparisons require tpartson of the data files
obtained from different tools. However, the binary source filataZebra dumped data and the
on-wire captured data are usually in different formatsd BGP messages in these files have
different packet encapsulations. Directly comparingséhfiles is inconvenient and inefficient.
These binary files are usually converted to ASCII fatnand the BGP messages are decoded into
a readable format and then are compared to verifydhsistency of Zebra dumped BGP data. In
this report, to avoid the time complexity of comparing BGFPssage bodies, the number of
announcements and the number of withdrawals are compateadn$he question here is how to
choose the appropriate comparison intervals. Specifyingiriiee intervals and comparing the
number of announcements and withdrawals in those interval$ work in most of the cases.
This is because the processing delay of BGP messagésbim may make the set of BGP
messages in Zebra dumped file in the specified interffat diom that in the source data file and
that in the on-wire captured data file in the sammetinterval. Since the processing delay of BGP
messages in Zebra is unpredictable and varying with respetie traffic load, it is hard to
compensate with a fixed delay. To solve this problem, teboelld be some “synchronization”
mechanism between the two data files to be comparéioliserved that ideally, the number of
BGP messages and the order of these messages between ®esisad€EEPALIVE messages of
one BGP session do not change when these messagesaathieeZebra BGP message queue of
the peer. Thus in this report, KEEPALIVE messages ad as “synchronization markers”. Any
two successive KEEPALIVE messages determine a cosgarinterval. By aligning these
KEEPALIVE messages in the two files to be compared, mtmbers of announcements and
withdrawals in the corresponding interval can be compdreel.rationale is very simple: suppose
that the data dumped with Zebra is compared with on-wiptuca data, and if on-wire captured
data is guaranteed to be consistent with the sowatse dnd the number of announcements and
withdrawals in any comparison interval are the samehtwo files, then based on the errorless
transmission of TCP, we can conclude that the BGP datpethimith Zebra is consistent with
on-wire captured data and thus consistent with thecealata. In this report, we tried to use large
BGP routing tables (both synthesized and real BGP datatomeether Zebra dumped data
collection is consistent.

Agilent Labs Technical Report 4

2.2 Related tools

One purpose of this report is to have a thorough exoraf the tools used by verifying the
consistency of Zebra BGP data. Short descriptions obthle tised in the tests together with their
version information are given in this section.

1) MRTd (Ver. 2.2.2a). MRTd (Multi-threaded Routing Toolks)widely used in the field of
network performance measurement and BGP data processimgluides the following tools:
MRTd daemon, BGPsim, SBGP, Route_AtoB and Route_BtoA. EXd&iid, the other four
tools are all used in the tests. MRTd acts as a rowataggnon, which supports RIPng, RIP1/2,
multiple RIBs (route server) and BGP4+. However, in oststeZebra is used as the routing
daemon instead of MRTd daemon. The tool BGPsim is a BGiffi€ tgenerator and simulator. It
is used to generate BGP data with specific prefitepas. The tool SBGP is a very simple
implementation of BGP speaker and listener. It sends euB&P messages in the data file and
receives the BGP messages from the peer. Howeversndomplement any routing policy and
doesn’t change the kernel's routing table. SBGP only supfiwmtslata file in MRTd format. It
doesn’t support replaying the data file in Zebra format.t&®dBtoA and Route_AtoB are tools
used to convert binary BGP messages to ASCII format andersa. They also support data files
in Zebra format. In [3], it's reported that some BGP sages lose their message bodies and the
missing of BGP message bodies was attributed to the itgaddfilprocessing IPv6 (IP Version 6)
Messages. However, in our tests, we found that the conveesiors come not only from
Route_BtoA but also from Zebra data file. A more thorough samyran the problems and the
reasons for these problems are given later.

2) Zebra (Ver. 0.93b). Zebra is a routing software package dhpports a lot of routing
protocols including RIP1/2, RIPng, OSPFv2, OSPFv3 and BG®.Widely used in the field of
inter-domain routing. Its current BGP implementation BGPd suppRFC 1771 (A Border
Gateway Protocol 4 (BGP-4)) [4] and RFC 2858 (Multiplet®tol Extensions for BGP-4) [5].
Many looking glasses have been using Zebra as the BG&tooll A lot of research results are
based on the Zebra BGP data collections from those pualliking glasses. Therefore verifying
the consistency of Zebra BGP data collections is vmportant for ensuring the reliability of
these research results. In the tests, it was foundntamsistency did exist for some BGP data
collections on these looking glasses, and the inconsisteamgs not only from the bugs of Zebra
but also from the bugs of other related tools. These @mablvill be presented in the next section.
We also found that after fixing the bugs of the tools, Zehta dollections were consistent when
there is no session break. That is, it agrees withdtee abllected by other methods, for example,
the on-wire captured data.

3) Ethereal [6] (Ver. 0.9.11 and above) and Tcpdump [7] (Ver. 3.7.2). Btitareal and
Tcpdump can use the packet capture library to capture on-atme ldowever, one main difference
between Ethereal and Tcpdump is that Ethereal provides amatestronger protocol analyzing
features to analyze the captured data than TcpdumpiafpeEthereal provides a full-featured
BGP dissector to decode the captured BGP packetshuni@an readable ASCII format. Both
Ethereal and Tcpdump use the same file format. Thus in theEé&stseal’'s BGP dissector is used
to decode data files captured by Tcpdump. For the capture filetforefer to Appendix.3.

4) Libpcap [7-8] (Ver. 0.7.2). Libpcap is a packet captimeaty, which captures the packets on

Agilent Labs Technical Report 5

the specified interface into the kernel, and providessARpplication Programming Interface) for
other applications to access these captured packetdsdtprovides filtering mechanisms to
capture only those packets that the filtering rulesnaaiched. Phil Wood provided a patch to the
Libpcap library on Linux to improve its performance. Tpatch utilized the configuration option
CONFIG_PACKET_MMAP of the current Linux kernel (above Vens2.2.x). By using the
shared memory ring implementation in MMAP mode (Memory Mappingchv provides 10
mechanisms for the applications to access the deviceorgedirectly. Refer to [9] for more
detail), this new patch of Libpcap can allocate a quafuas many as 32768 frames for the
interface device to directly write the captured pack®ts This greatly reduces the possibility of
capture loss due to buffer overflow and due to busy sy&esides the ring buffer, the new patch
can also provide better live statistics about the numbeiraps, receiving errors, transferring
errors, etc. refer to [9] for more details. The versiorLibpcap patch used in our test is Ver.
0.8.030314.

5) NIST NET [10] (Ver. 2.0.12). NIST NET is a network emuldtat runs on Linux. It allows
a single Linux PC set up as a router to emulate a vadety of network conditions. In the tests,
it's mainly used to generate TCP segment losses to test theidrebf Ethereal BGP dissector.

6) Libbgpdump [11] (Ver. 1.1). Besides Route_BtoA, Libbgpdump is anddio&rwhich was
provided to convert binary BGP messages in Zebra formAtS©OIl messages. In the tests, its
results are compared with Route_BtoA, and the comparisolisregll be presented in the next
section.

3 Experiment results

In above sections, the short introductions on the verifgpgroaches and the related tools
are given. In this section, the test results are presented.

3.1 Statistics on public Zebra BGP data collection

It's reported in [3] that due to the issues of RoBitoA, some BGP messages were not
decoded correctly on Linux platform. Before verifyinge tibonsistency of Zebra BGP data
collections, the composition of incorrectly decoded BGP agesswas firstly analyzed to find out
the problems of the related tools. According to the analysigsetubse incorrectly decoded BGP
messages are classified into several groups. An ovemethe binary dump packet format of
Zebra will help to understand what have caused theseracttly decoded BGP messages. The
dump packet header of BGP messages is show in Fig.4

0 1 2 3
o‘ 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘ o‘ 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘0‘ 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘0‘ 1
Time

Type \ Subtype
Length
Source AS Number Destination AS Number
Interface Index Address Family

Agilent Labs Technical Report 6

Source IP Address
Destination IP Address
Fig.4 Binary dump packet header of BGP message

1) Unsupported attributes. The analysis results show H&atBGP messages that contain
Multiprotocol Reachable NLRI (MP_REACH_NLRI) or Multigtocol Unreachable NLRI
attribute (MP_UNREACH_NLRI) [5] will not be decoded corfgain Linux. For those messages
containing such attributes, some of them can be decoded tbomecSolaris, and some not.
Further exploration shows that if the MP_REACH_NLRI oP MUNREACH_NLRI attribute is
for IPv6 prefixes, then these messages can be cgrrdettoded on Solaris platform but
incorrectly decoded on Linux platform, and that if the MP_RBEANLRI or
MP_UNREACH_NLRI attribute is for the multicast prefixes I&fv4, then they are decoded
incorrectly on both Linux platform and Solaris platforflne messages containing Multiprotocol
Extension attributes differ from other BGP messagesah ttiey don’t have NLRI field in the
message body.

2) NULL AS. When Zebra dumps BGP messages, it will setstherce AS number and
destination AS number fields as shown in Fig.4 correspondikigiwever, it was found that for
some dumped messages, the source AS number and destinatrmmmhgr fields are set to all
zeros and there are no source IP address and destitfataddress fields for these packets. These
messages are decoded as NULL messages when conver®8Cib messages. A further
examination on the body of these BGP message shows thatritessages are actually OPEN
messages.

3) NO IP addresses. Every dumped BGP message shouldheas@ne dump header format as
shown in Fig.4. However, we found some dumped messages didn'theafields of source and
destination IP in their dump headers, and that these nesssmge decoded as NULL message on
both Linux and Solaris.

4) Incompletely dumped messages. In the tests, there &reostié other incorrectly decoded
messages, which don't belong to the above 3 groups. Thesagegessre all very large BGP
messages. Careful examination on these messages showeskeamessages are not completely
dumped. It's found that the values of length field in the dhwegder are the same for all of these
large messages (4096 bytes), even if the length of thesarigGdages differs. From Fig.4, it can
be seen that the value of length field in the dump hesldeald equal to the length of BGP
message plus 16 bytes. Thus we suspected that some hglsr@fBGP dump program caused
this problem. After some source code debugging, the bugamuasl and fixed. Although this bug
compromised the consistency of Zebra BGP data collectiehivk they won't occur often. This
is because most of the updates are very short messagesvét, when there is burst BGP traffic,
the problem of incompletely dumped BGP messages may oaggcin often. We did find burst
occurrence of such incompletely dumped large BGP messagelsrammB@P data collections.

After classifying the problems of incorrectly decoded B@éssages, we got the statistics of
how frequently these problems occur in some Zebra BGP atdiections. The Zebra BGP data
collections we used are the BGP updates in January, 2003 on rrc@Zyc8 RIPE NCC [13] and
the data collections on Routeview [14] for November and Dbee of 2002. The statistics are
given in the table.1.

Agilent Labs Technical Report 7

Sites #All # State | #NULL_IP #L #Multicast | #NULL_AS #NO_IP
Change | Total #MPAG6 BGP Total #0O Total #0O
rrc00 21773673 | 1391 0 0 86 0 314 314 0 0
rrcO1 9794673 650776 0 0 11 0 0 0 0 0
rrc02 339188 137334 0 0 0 0 983 983 20158 3917
rrc03 19746099 339568 ‘- 279 0 2156 2156 | O 0
rrc04 3201253 129388 0 0 0 0 0 0 95476 2
rrc05 6889976 33616 0 0 54 0 1323 1323 | 0 0
rrc06 1811243 46088 0 0 0 0 162 162 416881 43
rrc07 6726286 71197 0 0 31 0 0 0 0 0
rrc08 52378607 48173 0 0 4 0 1 1 0 0
RV.11 | 34394689 0 0 0 276 661184 0 0 0
RV.12 | 38437887 0 0 0 5631 665198 0 0 0

Table.1 Statistics on the problems of Zebra BGP data collectisorne looking glasses

Where #O represents the number of OPEN messages; #Mpa&ents the number of messages
that contain MP_REACH_NLRI/ MP_UNREACH_NLRI attributesr fIPv6 prefixes. #MPA4
represents the number of messages that contain MARCRENLRI/ MP_UNREACH_NLRI
attributes for IPv4 multicasting prefixes; and #L représ the number of large BGP messages
which can’t be decoded correctly.

Further explanations on the statistic results are given below:

1) From Table.1, we can see that all messages with zemufBers are OPEN messages. We
also found that these messages have no source IP adddedsstination IP address field in the
dump header. This indicates that these OPEN messagest alemped in the format as shown in
Fig.4. This causes Route_BtoA to decode these messagddLasMeéssage. We also noticed
that there are correctly dumped OPEN messages, and RE®& nessages along the session
between two Zebra BGPds are usually dumped correctiythet the OPEN messages along the
session between BGPsim and Zebra or SBGP and Zebra usiéy wdumped incorrectly. This
should be a bug of Zebra BGPd dump program. Thus one suggestiompforing Zebra is to
revise the BGP message dump part and dump OPEN messdbesonmat as shown in Fig.4.
Another suggestion for improving Route_BtoA is to add the sugdporpackets with irregular
dump header (It's observed that BGP message bodies are corrbestoNULL_AS messages).

2) For those messages without source and destination Hesadiields (NO IP), they have
non-zero AS numbers and most of them are not OPEN mes3&gse distinguish them from the
NULL AS messages. These messages are found in the B&Rallections of January, 2003 on
rrc02, rrc04 and rrc06. However, it is strange that for tlatimbefore January, 2003 and the
month after January, 2003, we don't find any such messageesm shes. Thus it is not likely
that this is merely due to a bug of Zebra (Otherwiseh soalformed packets should persist). So
we are interested in what has happened on rrc02, rrcO4c@&lduring January, 2003, and what
has resulted in those messages dumped without sourcestiméiilen IP address fields. Although
these messages don’'t have correct dump headers, thegdieaet BGP messages bodies. Thus
adding the support for such messages in Route_BtoA willrelgeve the problem of incorrectly
decoded BGP messages.

3) For data collections on Routeviews, it's observeddhat of BGP UPDATE messages can't

Agilent Labs Technical Report 8

be correctly decoded. The first glance shows that thessages all have no NLRI fields. Our
statistics further indicates that all of them contah least one MP_REACH_ NLRI
/MP_UNREACH_NLRI attribute and that all of them havereot dump headers. To check
whether these messages are correct BGP message, lae thegse messages with SBGP. Then
on-wire BGP messages are captured with Ethereal. Agepnding them with Ethereal BGP
dissector, we find that these messages are corre& B€ssages, and that they all contain
MP_REACH_NLRI/MPUNREACH_NLRI attribute for multicastingPv4 prefixes. As an
example, a decoded BGP message containing MP_REACH_NLRI/NEMKEH_NLRI
attribute for multicasting IPv4 prefixes is shown in Figihese suggest that Route_BtoA should
be enhanced to support the MP_REACH_NLRI/MPUNREACH_NLRikaite for multicasting
IPv4 prefixes. Messages containing MP_REACH_NLRI /MPUNRBEAQLRI attribute for
Multicast IPv4 prefixes are not found on the looking glasses roc@Q@8.
Frame 16 (113 bytes on wire, 113 bytes captured)......
Ethernet I, Src: 00:90:27:a7:86:b2, Dst: 00:90:27:13:a9:d4......
Internet Protocol, Src Addr: 146.208.240.68 (146.208.240.68), Dst Add2(B1840.70
Transmission Control Protocol, Src Port: bgp (179), Det B2792 (32792), Seq: 49,
Border Gateway Protocol
UPDATE Message

Marker: 16 bytes

Length: 47 bytes

Type: UPDATE Message (2)

Unfeasible routes length: 0 bytes

Total path attribute length: 24 bytes

Path attributes

MP_UNREACH_NLRI (24 bytes)
Flags: 0x90 (Optional, Non-transitiven{ptete, Extended Length)

1. .. = Optional
.0.. = Non-transitive
..0. = Complete

...1 = Extended length
Type code: MP_UNREACH_NLRI (15)
Length: 20 bytes
Address family: IPv4 (1)
Subsequent address family identifier:tidast (2)
Withdrawn routes (17 bytes)
130.184.0.0/16
144.167.0.0/16
150.208.97.0/24
150.208.116.0/24
159.150.0.0/16
Fig.5 Ethereal decoded BGP message containing MP attributewmilticast IPv4 prefixes

Our further exploration on MRTd source reveals that MRTd so#wackage actually has
implemented the support for MP_REACH_NLRI or MP_UNREACH_NLRiiladte for the

Agilent Labs Technical Report 9

multicast prefixes of IPv4. However, when it’s built, the configurepsevill automatically detect
whether the kernel has multicast routing support. If the keloedn't support multicast routing,
this feature is turned off automatically. From this, it can lea $leat the features of Route_BtoA is
entangled with the kernel configurations. This is not reaseratd leads to the difference when
running on different kernels. Thus we suggest improving Route_BydArning on the support
for these attributes.

4) On rrc03, a lot of dumped messages with all-zero sourdedestination IP addresses are
found. These messages are not decoded correctly on Lintiermplabut decoded correctly on
Solaris platform. A further exploration on the messageadsoshows that most of them contains
MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6 prefixeBor the left messages with
all-zero source and destination IP addresses, we fardy raf them are KEEPALIVE messages.
These imply that when Zebra dumps BGP messages fomhieg6ages, it sets the IP fields in the
dump header of these messages to zero. The correct decbdimgmessages on Solaris, which
have MP_REACH_NLRI or MP_UNREACH_NLRI attribute for IPvéefixes, shows that the
support of MP_REACH_NLRI or MP_UNREACH_NLRI attribute for B\prefixes is also
implemented in MRTd package. Further exploration on theéce codes of MRTd reveals that
when it's built, the configuration script automaticallyets whether the kernel has the support for
IPv6. If the kernel has no support for IPv6, then the feathat supports the decoding of
MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6 prefixés turned off automatically.
This has result in the observed different behavior of &@ioA when running on Linux platform
and Solaris platform respectively. One possible impre@rénon Route BtoA to decode these
messages on Linux correctly is to turn on the supportHe6é even when Linux kernel is not
configured to support IPv6. These NULL IP messages are only foundd@n rrc

5) Incompletely dumped large BGP messages are found on setesalasd the number of
incompletely dumped large BGP messages is very small cethpaith the total number of
messages dumped. This is just what we expected. Howhieeddesn't mean the incompletely
dumped large BGP messages have neglectable effect on 8isteocy of Zebra BGP data. We
did find for some data files, the number of incompletely duni@® messages is not neglectable
compared with the total number of messages dumped. Several exarmgegarin table.2.

Site Date Time # Total #L Percent (%)
Routeview 19/12/2002 20:22-20:37 42663 117 0.27
Routeview 19/12/2002 20:37-20:52 27707 11404
Routeview 19/12/2002 20:52-21:07 28336 20| 0.07
Routeview 19/12/2002 21:07-21:22 44393 100 0.23

rrc03 06/01/2003 09:30-09:45 22707 591 0.26

rrc03 31/01/2003 02:30-02:45 28636 103 0.36

Table.2 Some data files that contain incompletely dumped large BGRgess

In table.2, it can be seen that for these data fiesfrequency of incompletely dumped large
BGP messages is about once every thousand BGP message=/ekldaking the number of

prefixes in a large BGP message into account, the numineissing prefixed due to incompletely
dumped large BGP message may compose a large percert wftah number of updates. To

Agilent Labs Technical Report 1C

illustrate this, the correctly dumped parts of these iptetely dumped BGP messages are
decoded and the numbers of prefixes before and afterdeoimg the incompletely dumped
messages are compared in table.3. The results show that thernamprefixes lost due to
incompletely dumped messages may be very large compatethaitotal number of prefixes in
the same file. These incompletely dumped large BGP mesasgssispected to result from some
bug of Zebra BGP dump program. Details on the bug and how to fix itegerped later.

File # Updates # Updates Loss Percent (%)
#A #W | #A #W A w Total
RV-20021219.2022 | 220543 337D 225174 119284 2% 97.2% 35M%
RV-20021219.2037 | 125850 1821 128343 117669 2% 98.5% 48{1%
RV-20021219.2052 | 259489 5806 265288 121775 2% 95.2% 31{5%
I 6
D 8

RV-20021219.2107 | 129341 139 1317y7 19045 2% 92.7% 13]3%

RP-20030106.0930| 10773 327 107730 87850 0% 96.3% 432%

RP-20030131.0230| 13412y 6180 134127 112542 O 945% 43.1%
Table.3 The number of prefixes influenced by incompletely dumpedBGlkets.

In this section, the incorrectly decoded BGP messagedaasified into different groups. It
can be seen that some of these messages are due to the bugs of Zsbragaridthem are due to
the problem of Route_BtoA. The reason of some (NO IP) otigmsages is different from other
incorrectly decoded messages, since we observed diffeebaviors on RRCO02 in Dec. 2002, Jan.
2003, Feb. 2003, respectively. The feedback from RIPE NCC is thgirttblem may be due to
the upgrade of Zebra at that time. For all the problemgound, proposed improvements are
given to solve them. After all the problems being fixédre should be no incorrectly decoded
BGP messages when using Route_BtoA.

Besides Route_BtoA, there are also other tools for congdsinary dump BGP messages to
ASCII. Libbgpdump [11] is one of them, for example. We alsogperftests to see whether the
problems mentioned above exist for Libbgpdump and to see whetiteypdump is superior to
Route BtoA. The test results are summarized as follows:

1) For Messages that contain MP_REACH_NLRI/MPUNREACH_NLRttribute for
multicasting IPv4 prefixes, libbgpdump can decode the attslibt it supports, but can’'t decode
MP_REACH_NLRI/MPUNREACH_NLRI attribute for multicasting?¥4 prefixes. An example
is given in Fig.6 to illustrate this.

2) For Messages that contain MP_REACH_NLRI/MPUNREACH_NI=&ribute for IPv6
prefixes, libbgpdump can decode the attributes that it suppditdé can't decode
MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6 prefixedn example is given in
Fig.7 to illustrate this.

3) For the messages with NULL AS (OPEN message), libbgpdusgniialecode and gives no
messages.

4) For the messages without source and destination IP {iRidsIP), libbgpdump doesn't
decode and gives no messages.

5) For the incompletely dumped large BGP messages, libbgpdam decode the part which
was dumped correctly, and decode the missing part asyifafre all zeros. For such messages,
Route_BtoA will not decode at all. So libbgpdump is superiRbute BtoA in this point.

Agilent Labs Technical Report 11

However, we also found that if there are several sueessiompletely dumped BGP messages,
libbgpdump will exit with a segmentation fault. The decoded messhgeompletely dumped
BGP message is given in Fig.7 as an example.

TIME :Fri Nov 108:03:33 2002
LENGTH 1115
TYPE : Zebra BGP
SUBTYPE : Zebra BGP Message
SOURCE_AS 12914
DEST_AS : 6447
INTERFACE :0
SOURCE_IP :129.250.0.11
DEST_IP :198.32.162.102
MESSAGE TYPE : Update/Withdraw
WITHDRAW :
ANNOUNCE
ATTRIBUTES :
ATTR_LEN 176
ORIGIN :0
ASPATH 12914
NEXT_HOP :129.250.0.11
MED : 56

LOCAL_PREF *N/A

ATOMIC_AGREG : N/A

AGGREGATOR *N/A

COMMUNITIES : 2914:410 2914:2000 2914:3000

Fig.6 Decoded message, which contains MP_REACH_NLRI/MPUNREACHRINL
attribute for multicasting IPv4 prefixes

TIME : Tue Jan 28 03:46:26 2003
LENGTH 1100
TYPE : Zebra BGP
SUBTYPE : Zebra BGP Message
SOURCE_AS : 12859
DEST_AS : 12654
INTERFACE :0
SOURCE_IP :0.0.0.0

DEST_IP :0.0.0.0
MESSAGE TYPE : Update/Withdraw
WITHDRAW :
ANNOUNCE
ATTRIBUTES :
ATTR_LEN 161
ORIGIN :0
ASPATH : 12859 3265 2914 4685
NEXT_HOP :N/A
MED 01

LOCAL_PREF *N/A
ATOMIC_AGREG : N/A
AGGREGATOR *N/A
COMMUNITIES : 3265:4001

Fig.7 Decoded message, which contains MP_REACH_NLRI/MPUNREACHRINL
attribute for IPv6 prefixes

TIME : Fri Dec 20 05:23:07 2002
LENGTH : 4096
TYPE : Zebra BGP
SUBTYPE : Zebra BGP Message
SOURCE_AS : 16150
DEST_AS : 6447
INTERFACE :0
SOURCE_IP :217.75.96.60

Agilent Labs Technical Report 12

DEST_IP :198.32.162.102
MESSAGE TYPE : Update/Withdraw
WITHDRAW :

ANNOUNCE :
17.255.240.0/23
24.121.16.0/23
24.121.18.0/23
24.121.20.0/23

204.44.208.0/20
204.52.242.0/24
204.0.0.0/18 Not completely dumped part

0.0.0.0/0 Use Zero to stuff
0.0.0.0/0
0.0.0.0/0
ATTRIBUTES :

ATTR_LEN 139

ORIGIN 12

ASPATH 116150 20757 1239 7018

NEXT_HOP :217.75.96.60

MED T N/A

LOCAL_PREF *N/A

ATOMIC_AGREG : N/A

AGGREGATOR :N/A

COMMUNITIES : 16150:65303 16150:65304 16150:65321

Fig.8 Decoded message, which is incompletely dumped large BGPgmessa

3.2 Inconsistency between Zebra BGP data collection and on-wire

captured data

The statistic results on Zebra BGP data collectf@ip us understand what has caused the
problem of incorrectly decoded messages and how they inBuitie consistency of Zebra BGP
data collection. We can see in the above section tha&xedipt the incompletely dumped BGP
messages can be correctly decoded as long as some improvemerddeum Route_BtoA since
the bodies of these BGP messages are correct. Ferittemmpletely dumped BGP messages, to
ensure a correct decoding, the bug of Zebra must be fixed. Torgas&aeple on how serious this
problem may be, we did tests using synthesized BGPagatlae source. The content of BGPsim
configuration file is given below. The test-bed is shown ig.Jki On-wire captured data is
compared with that dumped with Zebra on the same Linux meckupiter. The numbers of
announcements and withdrawals in corresponding comparisorvailsteare compared. The

comparison results are given in Fig.9 and Fig.10, respectively.

network-list 1
range 124.1.1.0/24 126.128.1.0
stability 40
change 40
map 1 2
route-map 1
set origin IGP
set as-path 182 23 23 15
set next-hop 146.208.240.68
route-map 2
set origin IGP
set as-path 1185 112 10
set next-hop 146.208.240.68

Agilent Labs Technical Report 13

[Zebra dumped data
[Ethereal Captured data

T T T
0 1000 2000 3000

BGP Messages in every comparison interval

Time (s)

Fig.9 The numbers of BGP messages in every comparison interval

[Zebra dumped data
[Ethereal Captured data

25000 +

20000

15000

10000

5000

Announcements in every comparison interval

I
0 1000 2000 3000
Time (s)

Fig.10 The numbers of announcements in every comparison interval
In Fig.9 and Fig.10, it can be seen that the number BGP mess#gesanresponding
comparison intervals is the same for both on-wire capturecaddtZebra dumped data. However,
the number of announcements in the corresponding comparison imliiersl a lot. Further
exploration shows that this difference is due to the incompldtetyped BGP messages. To solve

Agilent Labs Technical Report 14

this problem, after debugging BGP dump program of Zebra, we lotetduligy and fixed it.

Incompletely dumped BGP messages are mainly due to the Ilsiaeedf dump buffer. When
initializing, BGP dump module allocates a buffer with fixed spaceuses it to hold the dumped
messages before writing them into the data file. The code is shdovm be

Bgp_dump_obuf = stream_new (BGP_MAX_PACKET_SIZE + BGP_DUMP_HERDHZE);
J*

BGP_MAX_PACKET_SIZE=4096

BGP_DUMP_HEADER_SIZE=12
*/

However, from Fig.4, we can see that the dump header includeslydhe common header,
which occupies 12 bytes, but also the dump message header, whosesldiftgrent for different
message type and subtype. Taking BGP update messages for meeirnia dump message
header will include source and destination as numbers, Interfdeg, lAddress Family, and IP
addresses. This part alone will occupy 16 bytes. However, iecaren the above code doesn't
take the size of this part of dump header. Thus if the BGP messagerjslarge BGP message,
the buffer will overflow and result in incompletely dumped BGRsage. To solve this problem,
allocating a larger buffer is adequate. Taking IPv6 into accodditji@nal 40 bytes are allocated
to the dump buffer and the code turns to be the following:

bgp_dump_obuf = stream_new (BGP_MAX_PACKET_SIZE + BGP_DUMP_MSG_HHAD
BGP_DUMP_HEADER_SIZE);
Iz

BGP_MAX_PACKET_SIZE=4096

BGP_DUMP_HEADER_SIZE=12

BGP_DUMP_MSG_HEADER=40

*/

Atfter fixing this bug of Zebra BGP, we did similar tests tockhehether Zebra BGP data
collection agrees with on-wire captured data. Both syitbdslata and real BGP data from IPMA
[20] are used. The comparison results with synthesized datavan in Fig.11. In Fig.11, it can
be seen that the problem of incompletely dumped BGP messagess a0l that the counts in
many of the comparison intervals are equal. However, there are saipartson intervals, in
which although the counts are very close, the counts of Zebra dumigeard a little bigger than
those of Ethereal captured data. Since the BGP source is codfigugend specific prefix
patterns, an examination on the prefix patterns of Etherpalrea data reveals that there are
some prefixes lost. We further found that the losses appeartimea pariodic way, and that every
time there are prefixes lost, it seems that the prefixes in offerB&€3sages are lost completely.
It's also noticed in the test that one TCP segment usuallyinsnéns of such short BGP
messages. Thus such kind of prefix losses is not possible d@#teegments. It is more possible
that such prefix losses are due to bugs of BGP dissector.

To check whether such prefix losses occur for real B&R dzal BGP data (real BGP data

[20] in January, 2000, on Mae-east) are replayed and on-wire captuadd dampared with
Zebra dumped data. The result is shown in Fig.11. In Fig.11, it can bthaeeren replaying
real BGP data, the counts of Ethereal captured data differ froge ©f Zebra dumped data for the

Agilent Labs Technical Report 1t

same comparison interval due to prefix losses.

[Zebra dumped data
[Ethereal captured data

140000

120000
O counts not match
100000
80000
60000

40000

20000

#Announcements every comparison interval

0 T .-I T T T T
0 500 1000 1500 2000
Time (s)

Fig.11 Comparison results when using synthesized BGP data

14000

[Ethereal captured data
12000 ~ [Zebra dumped data

10000 —-
8000 —-
6000 —-
4000 —-

2000 +

Announcements in every comparison interval

0 T
1000 1500 2000

Time (s)

Fig.12 Comparison when using real BGP data from Mae-east

By debugging Ethereal BGP dissector code, we find thdiuges due to incorrect processing
of BGP messages whose message head is over the edgP eédidents. Ethereal BGP dissector
works in the following way: BGP data in every TCP segnechched according to the sequence
they are captured. Then BGP dissector searches f@®@femessage marker to delimit the BGP
messages and passes the BGP messages to BGP messalge. dée codes, which cause the
problem, are shown in Fig.13. When the BGP message header ih@wsige of TCP segments,
that message won't be processed since the messagecamaete. However, the message header
is not kept for later decoding of this message. This calheemessage missed in the decoded
ASCI file.

| =tvb_reported_length(tvb); /*1 is the length of BGP PDIUCP segments*/

Agilent Labs Technical Report 1€

i=0;
found =-1;
/* run through the TCP packet looking for BGP headers */
while (i + BGP_HEADER_SIZE <=1){

tvb_memcpy(tvb, bgp_marker, i, BGP_MARKER_SIZE);
bgp_len =tvb_get_ntohs(tvb, i + BGP_MARKER_SIZE);
bgp_type = tvb_get_guint8(tvb, i + BGP_MARKER_SIZE + 2);
/* look for bgp header */
if (memcmp(bgp_marker, marker, sizeof(marker)) '= 0) {

i++;
continue;
}
found++;

W*end of while*/

}*end of function dissect_bgp*/

Fig.13 The bug of BGP dissector
We reported this bug to the mail-list of Etheread anbmitted an incomplete patch for this
bug. After our report, the new version of Ethereal (Ver. 0.9.12) hasthietug with a patch.
Atfter fixing the bug of BGP dissector, we do the congmms again and the results are given
in Fig.14 and Fig.15, respectively.

[Zebra dumped data
[Before patching Ethereal BGP Disector

140000 [After patching Ethereal BGP Disector

120000

100000
o i
]
£ 80000
[
8 |
5
2 60000
c
c
<
3 40000 -

20000
0- T T T m T T T T
0 500 1000 1500 2000
Time (s)

Fig.14 Comparison result before and after patching the bug of Ethereal

Agilent Labs Technical Report 17

[Zebra dumped data

1 [Before patching BGP dissector
14000 [After patching BGP dissector
12000
£ 10000
c
Q 4
£
@ 8000
c -
>
2 6000
c
< 4
#4000
2000
0 ; .
1000 1500 2000
Time (s)

Fig.15 Comparison result before and after patching the bug of Ethereal

As shown In Fig.14, after patching the bug of BGP disgdtt® discrepancies between Zebra
dumped data and Ethereal captured data disappears. Hpwewsg.15, it can be seen that
although patching the bug of Ethereal BGP dissector eltesnaome discrepancies between
Zebra dumped data and Ethereal captured data (’fheanZi & bar), there are still some
discrepancies remaining (th& and K4 bar). These remaining discrepancies make us susjpéct th
there may be some capture losses for the Etherearedmtata due to the heavy processing load,
since we run Zebra dump and Ethereal on the same Linux machine.

To verify our suspicion, the synthesized BGP dath laitge BGP table (about 160k prefixes)
is used. The prefixes are sent with the pattern mentionedtiars2do help to find when there are
capture losses. Data captured with Ethereal and diatgped with Zebra are compared. The
comparison results are given in Fig.16. It can be seen that thbeprocessing load is heavy,
Ethereal loses some captures. To see the correlatimedre processing load and Ethereal capture
losses, the numbers of updates every 15 minutes are shown in Fig.17.

180000 [Zebra dumped data
160000] [Ethereal captured data

140000 - /

capture losses

120000
100000
80000 +

60000

40000 +
KEEPALIVE lost

#Announcements in every comparison interval

0 1000 2000 3000 4000
Time (s)

Agilent Labs Technical Report 18

Fig.16 Capture losses of Ethereal

400000 +

300000 +

200000 +

100000

Updates in every 15 minutes

0 1000 2000 3000 4000
Time (s)

Fig.17 Number of updates in every 15 minutes
From Fig.16 and Fig.17, we can see that when there are a huge number of updates and
processing load is very heavy, Ethereal will lose some capturetosehef KEEPALIVE message
even causes some troubles when aligning the comparison intervdisyasis Fig.16.

Observing the results show in Fig.16 and Fig.17 together, we can fincceolation
between the capture losses and the processing load. Thus wetepbeaitlthe capture losses
happen in Libpcap (ver.0.7.2) library. Maybe heavy processing load rtieekkernel have
insufficient time to fetch the captured packet from the cepjueue of Libpcap, and thus the
overflow of the capture queue of Libpcap leads to capturesodsanentioned in section.2, Phil
Wood provided a patch of Libpcap that utilizes the meshaiof MMAP. MMAP can allow the
network adapter to directly capture the packets into syatemory. With a large ring queue in
system memory, this mechanism can greatly reduce the piibpbabiueue overflow and capture
losses. In the tests, Tcpdump (Mer. 3.7.2) is rebuilt and linked with theatet of Libpcap (MVer
0.8.030314). Then the new Tcpdump is used to capture on-wire data. ¥¢erdidests and found
that the new Libpcap library does eliminate the problem of cajusseof Ethereal. The hardware
configurations of the PC, on which we run both Zebra and Tcpdump, ttohai®entium I1i
800Mhz CPU, 256 MB memory. In the tests, we switched the speed of thetérfece between
10Mb/s and 100Mb/s, used heavy BGP traffic, and turned on Zebra BGP dump onvthereC
Tcpdump ran. All the results showed that there were no capture #ds=eapplying the patch of
Libpcap. As an example, the same real BGP data from mae-eastligs the source. The results
are given in Fig.18. For the same source data, the results in Figdi§erent from those shown
in Fig.15. The discrepancies due to capture losses are eliminated

Agilent Labs Technical Report 1¢

[Zebra dumped data
[Tcpdump Captured data

10000

8000 +

6000 —

4000 +

Announcements

2000 +

: : T : T
1000 1500 2000 2500
Time (s)

Fig.18 Comparison results when using new Libpcap library

Since Ethereal and Tcpdump capture data without being awarebtive possible protocol is
used for the captured session while correctly decodipicad BGP packets requires the correct
reconstruction of the BGP session. Thus we are curious about thedbetid&thereal BGP
dissector when there are TCP segment losses and retranssi$sigimulate TCP segment losses
and retransmissions more efficiently, NIST Net [10] is useddp the TCP segments at preset
drop probability. Then BGP dissector is used to decode the orcaptared BGP packets to see
whether BGP dissector can correctly reconstruct the BGibosesnd decode the BGP messages
correctly when there are lots of losses and retransmisSibaBGP dissector has taken the
session reconstruction into account. To enable the sessiostrection option, Ethereal should
be used with the following options on:

Tethereal —o bgp.desegment:true —o tcp.desegment_tcp_streams:tr

To find the problems of Ethereal BGP dissector when trerd CP losses and retransmissions,
again the synthesized BGP data with specific prefix patisrosed as the source. The results are
given in Fig.19. When there are TCP retransmissions, Ethereal iB&#tdr will produce some
fake BGP messages, which is actually the decoding resulrahsetitted TCP segment. Thus the
on-wire captured BGP data doesn’t agree with that dumped wihita 2&/e have reported this
problem to the mail-list of Ethereal developers; Howevene has been no fix to this problem up
to now (ver 0.9.12). After using some script to remove these fake BGBgassiue to
retransmitted TCP segments, we find that the on-wire capBGP data agrees with Zebra
dumped data again.

Agilent Labs Technical Report 2C

Source Prefixes Patterns

124.1.1.0/24] 126.1.1.0/24| A
124.1.1.0/24] 126.1.1.0/24] W

Zebra collected prefix patterns Tcpdump cegatprefix patterns |:> After Removing Retransmissions
124.1.1.0/24] 126.1.1.0/24] A 124.0/24| 124.16.208.0/24] A 124.1.1.0/24] 126.1.1.0/24| A

. 124.4.245.0/24 24.8.232.0/24] A
124.16.209.0/24| 124.250.12.0/24| A
124.246.25.0/24] 125.9.220.0/24| A
125.1.245.0/24| 125.5.232.0/24|\A
\.125.1.245.0/24| 125.5.232.0/24}) A
125.9.221.0/24] 125.120.140.0/24| A
125.116.153.0/24| 125.148.56.0/24] A
125.144.69.0/24| 126.1.1.0/24| A

124.1.1.0/24] 126.1.1.0/24] W 1240/24| 124.69.52.0/24] W 124.1.1.0/24| 126.1.1.0/24] W
124.65.105.0/24| 124.66.88.0/24))W
124.69.53.0/24| 124.115.204.0/24| w
(124.112.241.0/24| 124.113.236.0/24) w
124.115.205.0/24| 124.145.180.0/24] w
(124.141.233.0/24| 124.142.216.0/24) w
124.145.181.0/24| 125.154.176.0/24] w

“125.147.253.0/24] 125.148.248.0/24), W
125.154.177.0/24] 125.198.180.0/24] W

P (125.195.217.0/24| 125.196.200.0/24) W
Retransmissions 125.198.181.0/24] 125.226.116.0/24| W

125.222.157.0/24| 125.223.152.0/24) W
125.226.117.0/24| 125.237.228.0/24] W
125.236.245.0/24| 125.251.76.0/24] W
(125.247.117.0/24| 125.248.112.0/24) W
125.251.77.0/24| 126.1.1.0/24] W

Fig.19 Discrepancies due to TCP retransmissions

After exploring the reasons that cause the discrepandigsdreZebra dumped data and
on-wire captured data and fixing these problems, we do mdsetoegerify the consistency of
Zebra BGP data collection. The results are given in the following cliduase

3.3 Verification results when using synthetic BGP data

In the test, the synthesized BGP data with largéxptable (about 160k prefixes) is used as
the source. The tests are done on both Linux and Solatferph. Since no MP_REACH_NLRI
/IMP_UNREACH_NLRI attributes are used in the tests, lbthtest on Linux and the test on
Solaris have the similar results. The results are shiowig.20. After all the problems mentioned
in the above sections were solved, now the on-wire captiatedagrees with Zebra BGP dumped
data for most of the time except when there is aipgsession break. However, the discrepancies
during the session break are reasonable since at thatheénstate of BGP is reset abruptly. It will
neglect all the following BGP messages. This may cdhsediscrepancies between on-wire
captured data and data dumped with Zebra. The number okespdagvery 15 minutes is shown
in Fig.21 to show the relation between the peering sesseak land the heavy BGP load. It can
be seen that the synthesized traffic used in thesest heavy that Zebra will delay the sending of
KEEPALIVE for so long a time that the peer on the other endP®@ in this test) tears down the
BGP session. Thus the results shown in Fig.20 and Fig.2ledetifat after solving the problems
of the tools, when there is no session break, Zebra dumped dataiggerdreven under extremely
heavy synthesized BGP traffic. However, when theressise break, Zebra dumped data may be

Agilent Labs Technical Report 21

inconsistent with what has been sent out from the source.

[Zebra dumped data
[Tcpdump captured data

180000

= = =
N S o
o o o
o o o
o o o
o o o
| | |

Session Break

Announements per comparison interval

0 1000 2000 3000 4000 000

Time (s)

Fig.20 Comparison result with synthetic BGP data

400000 +

300000 +

200000 +

100000

Updates in every 15 minutes

0 1000 2000 3000 4000 5000 6000

Time (s)
Fig.21 The number of updates in every 15 minutes

3.4 Verification results when using real BGP data

In this test, real burst BGP data sets are used to Vieeifyonsistency of Zebra data collection,
where the burst BGP data sets are the dumped update data file8fiom 5:30 to 9:45 on 5
January, 2003. It can be seen that the size of these files is ataogdethan that of other dumped
files in magnitude. There are a lot of NOTIFICATION is&ges in these data files. However, in

Agilent Labs Technical Report 22

our tests, we simply ignore the session with NOTIFICATI@Bssges. The number of updates of
each BGP session in these files is counted, and the tthotlvé largest number of updates are
extracted out and replayed to do the tests. The sessi@AsS13237 to AS12654 and AS12859 to
AS12654. We find that over session AS12859 to AS12654 there are somm&s&ges, which
have MP_REACH_NLRI/MP_UNREACH_NLRI attributes for IPv6.n& Route BtoA on
Linux can't decode these messages correctly, we remese tmessages before we do the test.
What we want to mention here is that such removal woorhpromise the reliability of the
verification. This is based on two observations: 1) the replaymdtref such messages on Solaris
has shown that Zebra can dump such messages correetyyafien not different from other BGP
messages in this point. 2) the number of such messagesyismall compared with the total
number of updates in these files. The comparison reseltgrasented in Fig.22 together with the
updates every 15 minutes of the source data (these are only foneS$B237 to AS12654).

[Zebra dumped data
™ Tcpdump captured data

400000 +

300000 +

200000 +

100000

Announcements in every comparison interval

T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (s)

Fig.20 Comparison results when using real burst BGP data (AS13237 to AS12654).

60000
50000
40000
30000

20000

Updates in every 15 minutes

10000

0 10000

Time (s)

Fig.21 The number of updates in every 15 minutes for session AS13237 to AS12654

Agilent Labs Technical Report 23

The comparison results show that even for real BGP data wehesleurst, after the bugs of the
tools were fixed, Zebra BGP dumped data is consistent with the statecé there is no session
break, and that the results got using different tools agréeeaith other.

From all these results, we conclude that after fixing the bdglwfa BGP dump program,
Zebra dumped BGP data will be consistent when there is no sessidn &nd after all the
problems of the tools being fixed, the data got from differ@istwill agree with each other.

3.5 Results on the peering session breaks in real BGP data collections

In the above sections, the test results have sh@tmvtten there is no BGP session break,
Zebra data collections are consistent and they can be veriflredmwwire captured data. However,
we also notice that when the BGP traffic is heavy, BBP session between Zebra and its peer
may be torn down due to expired hold timer. When this happaisalata collection will be
corrupted because of the updates due to Zebra BGP sessinradd up. To find out how serious
the problem is, we do some statistics about the NOTIFIONT messages on the real data
collections.

Site Date #NOTIFICATION
Routeview Jan 1%Jan 312003 | 0

rrcO0 Jan. 2003 11

rrcOl Jan. 2003 6

rrc02 Jan. 2003 1780

rrc03 Jan. 2003 45061

rrcO4 Jan. 2003 0

rrc05 Jan. 2003 17

rrcO7 Jan. 2003 1

rrcO8 Jan. 2003 9314

Table.4 The number of Notifications in one-month data collections
From Table.4, we can see that for site rrc02, rrc03 and rrc08, therkiaoé a

NOTIFICATION messages. So many NOTIFICATION messages caage corrupted data
collections since there may be lots of updates due to Zebra sepsiod down. Further
explorations on the NOTIFICATION messages reveals that #rerseveral different kinds of
NOTIFICATION message patterns:
1) Successive NOTIFICATION series (type 4/0) from the same peer dhaoddttimer
expiration. We found that the NOTIFICATION series on rrb@®ng to this category. For rrc08,
we observed consecutive NOTIFICATION messages from AS29tyyie 4/0. The data files
from 9, 9" Jan. to 23:45®Jan are used. The NOTIFICATION series and the number of updates
in every 5 minutes are shown in Fig.22 and Fig.23 to explore the postai@rbetween the
hold timer expiration and the BGP traffic load on Zebra. From FighdZ&y.23, we can coarsely
see that the NOTIFICATION messages are related with the nurhB&Rupdates. However, the
explicit relation between the number of update messages and THEMNATION messages is not
found yet. It is very strange that the NOTIFICATION messagagesimes are so close to each
other. Some interval between two NOTIFICATION messages isv@maller than 30 seconds.

Agilent Labs Technical Report 24

Due the frequent NOTIFICATION messages, the peer sends atmogidates to the Zebra BGP
daemon peering with it. Thus such kind of session break influbacnsistency of Zebra BGP
data collection very little, we can ignore the data from thai@@sompletely when there are
successive NOTIFICATION series from the same peer to aleigroblem of corrupted data due
to Zebra session up and down. Such NOTIFICATION patterns seenplpthere may be some
bug in the BGP implementation of the routers. However, up to now we hagsgfied this
suspicion.

Data: RRC08/200301
From 9 Jan,9th to 19:45 Jan, 9th

100000
80000 +
60000 —

40000 +

#Updates in every 5 minutes

20000 +

0 6000 12000 18000 24000 30000
Time (s)

Fig.22 The number of update messages in every 5minutes

2.0 1

Data: RRC08/200301
From 9 Jan,9th to 19:45 Jan, 9th

& 15
[«
N
0
<
IS
g 1.0 1 - - - —
c
0
I
L
3 054
=z

0.0 1

T T T T T T T T T 1
0 6000 12000 18000 24000 30000
Time (s)

Fig.23 NOTIFICATION series
2) Successive NOTIFICATION messages (type 4/0) from severatafitfpeers due to hold
timer expiration. We notice that when the BGP traffic is vegviiethe BGP sessions from
several peers may break in a very short time interval. Thiser&wusly corrupt the data
collections. Since heavy BGP traffic often means a lot afort changes, we are extremely

Agilent Labs Technical Report 2&

interested in the data collections when the BGP traffic is heayy. Thus peering session break
under heavy BGP traffic will be problematic. To illustrate flogssible relationship between the

BGP traffic and the NOTIFICATION series from different gedhe data files for the time period
from 10, 7" Jan to 14:45,"7Jan are used. The results are shown in Fig.24 and Fig.25 respectively
Although sometimes the NOTIFICATION messages don’'t seem tespond a heavy BGP traffic.
We can see when there are heavy BGP traffic, some BGP sedsiexpetience session break

due to hold timer expiration. To consistently collect BGP dagll time, Zebra need to be revised.

Data: RRC03/200301
From 10:00 Jan, 7th to 15:00 Jan, 7th

700000 —
600000 —-
500000 +
400000 —-
300000 —-

200000 +

#Updates in every 5 minutes

100000

0
0 3000 6000 9000 12000 15000 18000

Time (s)

Fig.24 The number of updates messages in every 5 minutes

(@)

£

2 Data: RRC03/200301

g 204 From 10 Jan,07 to 15 Jan,07

£

s N < <

< 154 v—W v—V

] A—NA—A

(] A—A

>

©

0 —m— AS12956
- | | n—n

§ o o6 —A— AS24875

° —A— AS2914

S o —v— AS3257

E 54 —<I— AS9143

= —e— AS2818

o —%— AS12859

[}

(7]

< 0.0

'4% T T T T T T T T T T 1

g 0 3000 6000 9000 12000 15000 18000

3 Time (s)

2

Fig.25 NOTIFICATION series (type 4/0) from different peers

3) Interleaved NOTIFICATION message series between type 4/0 and §/pg@rfrc02, the
successive NOTIFICATION messages from AS12956 belong to this catéhes behavior is

Agilent Labs Technical Report 2€

also very strange, since the Zebra BGP daemon, which is coll&&iRglata from AS12956,
should be an authorized peer for AS12956. If we have the OPEN messisigeys the Zebra BGP
daemon, we can find whether there are some errors at the Inggdi8GP session establishment.
Thus we propose to improve Zebra by adding the feature of dumpimgnbend out BGP
messages.

4 Next step improvements on the tools

Ensuring that the tools behave as expected, and givésteonsresults is very important.
According to the results in section.3, the next step improvementedools are given below:
1) Route_BtoA.
e Add full support of MP_REACH_NLRI / MP_UNREACH_NLRI attritas for both
IPv6 and multicasting IPv4 prefixes no matter whethek#reel has the supports for IPv6
and multicast routing.
» Add support of decoding messages without correct dump headeitbutorrect BGP
messages
* Add support of decoding incompletely dumped BGP messages
* Add support of converting unsupported attributes directly into AR®hhat
2) Ethereal
* Introduce a new patch to correctly reconstruct BGH@essvhen there are TCP losses,
retransmissions and out of order TCP segments
3) Zebra
* Revise the part of BGP dump to make sure that Zebra sldasps packets in the
format given in Appendix.2.
* Revise Zebra to make it more suitable for BGP datacitlg, for example, removing
the prefix update and out filter modules from BGPd implentiemta
« Dump both in and out BGP messages for research purpose, thbayat messages are
only OPEN, KEEPALIVE and NOTIFICATION messages.

5 Conclusions

In this report, the consistency of Zebra BGP datéea®n is verified. We thoroughly
analyzed and classified the problems that can resuticiorrectly decoded BGP messages, and
presented statistic results of how frequently thesbkl@nes may occur. Improvements on the tools
are also proposed to solve these problems. Then we pbpgo® approaches to verify the
consistency of Zebra data collection. Both verifying apphes are very effective and help to
identify many problems that cause discrepancies betteeresults obtained by different tools.
After these problems were fixed, the test results sthawwhen there is no BGP session break,
Zebra data collection is consistent and can be comparatlemivire captured data. The results
in this report also imply that although there may be sissw@es in public BGP data collection, the

Agilent Labs Technical Report 27

problems themselves are not very serious and most of tliRedd@ collections are reliable and
consistent.

6 Acknowledgements

The author would like to express thanks to Alexaddelor, Olaf Maennel and Xinyu Ma
for their good suggestions on the report and their kind hielpsig this project. The discussion
with Lance Tatman on the BGP session break patteneryshelpful for making the conclusions
in this report complete and consistent. Matthew Williamd Arife Vural also provide helpful
feedbacks on how to improve the report. The author is gtdtefall of them for their helps on
improving the report.

Agilent Labs Technical Report 28

Reference

© XN O~ ®®DPRE

e T < =
O U~ WN RO

17.

18.
19.

20.

http://www.zebra.org

http://www.mrtd.net/

Vinay Kumar Aggarval, “Debugging ROUTE_BTOA”, March, 2003
http://www.ietf.org/rfc/rfc1771.txt

http://www.ietf.org/rfc/rfc2858.txt

http://www.ethereal.com

http://www.tcpdump.org/

http://public.lanl.gov/cpw/
http://www.xml.com/Idd/chapter/book/ch13.html

. http://snad.ncsl.nist.gov/itg/nistnet/

. http://www.ris.ripe.net/source/ (by Dan Ardelean with RIPE NCC)

. http://data.ris.ripe.net

. http://www.ripe.net

. http://archive.routeviews.org

. http://www.routeviews.org

. R. Govindan, A. Reddy, An Analysis of Internet Inter-dontapology and Route Stability,

IEEE INFOCOM 1997, Japan.

J. Rexford, J. Wang, Z. Xiao, Y. Zhang, BGP Routing Stalfi§opular Destinations, ACM
SIGCOMM Internet Measurement Workshop (IMW) 2002,
http://www.icir.org/vern/imw-2001/imw2002-papers/160.ps.gz

C. Labovitz, A. Ahuja, A. Bose, Delayed Internet Routing ConvergenG€GWM 2000.

D. G. Anderson, N. Feamster, S. Bauer, H. Barakrishnan, Topatégnerice from BGP
Routing Dynamics, ACM SIGCOMM Internet Measurement Vgbdp (IMW), 2002.
http://www.icir.org/vern/imw-2001/imw2002-papers/206.ps.gz
ftp://ftp.merit.edu/statistics/ipma/data/

Agilent Labs Technical Report 2¢

Appendix.1l Packet binary dump format of MRTd

Followings are the binary packet formats used by most MRI§.too

1) MRT header (12 bytes)

0 1 2 3
o 1] 2| 34| s|[e|[78] 9] o] 1]2]3]4]s]6|7]|8]9]0|1]2]3]4]5]6|7]8]0]0]1
Time
Type \ Subtype
Length

All MRT messages have this common header, which incllicteestamp, message
type and subtype and the length of the message. The @ogghnot include the MRT

header itself.

MRT_MSG_TYPES (Valid Type Values and Their Definiti ons)

0 MSG_NULL,

1 MSG_START, /* sender is starting up */

2 MSG_DIE, [* receiver should shu t down */
3MSG_| AM_DEAD, /* sender is shutting down */
4 MSG_PEER_DOWN, [* sender's peer is do wn */

5 MSG_PROTOCOL_BGP, [* msg is a BGP packet */

6 MSG_PROTOCOL_RIP, /* msg is a RIP packet */

7 MSG_PROTOCOL_IDRP, /* msg is an IDRP pack et */

8 MSG_PROTOCOL_RIPNG, /* msg is a RIPNG pack et */

9 MSG_PROTOCOL_BGP4PLUS, /*msgis a BGP4+ pack et */

10 MSG_PROTOCOL_BGP4PLUS 01, /* msg is a BGP4+ (dra ft 01) packet */

2) Subtypes of BGP Messa@¢sG_PROTOCOL_BGP, MSG_PROTOCOL_BGP4PLUS,

MSG_PROTOCOL_BGP4PLUS_01)

MRT_MSG_BGP_TYPES (Valid Subtype Values and Their D efinitions)

0 MSG_BGP_NULL,

1MSG_BGP_UPDATE, /*raw update packet (containsb oth with and ann) */
2 MSG_BGP_PREF_UPDATE, /* tlv preferences followed by raw update */

3 MSG_BGP_STATE_CHANGE /* state change */
4 MSG_BGP_SYNC

» If the message type i8SG_PROTOCOL_BGINd the message subtype is
MSG_BGP_UPDATEthe following applies:

0 1

2 3

0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

Source AS Number

Source IP Address

Source IP Address

Destination AS Number

Destination IP Address

BGP Update Packet

Agilent Labs Technical Report

3C

If the message type i8SG_PROTOCOL_BGP4PL@$d the message subtype is
MSG_BGP_UPDATEthe following applies:

0 1
0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

2 3
6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

Source AS Number Source IP Address

Source IP Address continued

Source IP Address continued

Source IP Address continued

Source IP Address continued \ Destination AS Number

Destination IP Address

Destination IP Address continued

Destination IP Address continued

Destination IP Address continued

BGP Update Packet

If the message subtypeNssG_BGP_STATE_CHANGRhe following format
should be used for state change messages:

0 1
0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

2 3
6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

Source AS Number Source IP Address

Source IP Address continued

Source IP Address continued

Source IP Address continued

Source IP Address continued Old State

New State

If the message subtypensG_BGP_SYNCthe following format applies:

0
0‘1‘2‘3‘4‘5‘6‘7

1 2 3
8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

View #

File Name (Variable)

The filename ends with \0’ (null.)

3) The format for the routing table dump is:

0 1
0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

2 3
6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

View # Prefix
Prefix (continue) Mask \ Status
Time Last change
Attribute Length
BGP Attribute (Variable Length)...
Agilent Labs Technical Report 31

Appendix.2 Packet binary dump format of Zebra

The packet binary dump format of Zebra shares the samengn header with that of MRTd.

This is to provide backward compatibility of MRTd binaryaléite. The common header is in the
following format:

0 1 2 3
o| 1| 2 34| s|[e[78] 9] o] 1]2]3]4]s]6]|7]|8]9]0|1]2]3]4]5]6|7]8]0]0]1
Time
Type \ Subtype

Length

The valid type for Zebra binary dump format is MSG_FRCOL_BGP4MP (16), and the
valid subtype is:

BGPAMP_STATE_CHANGE 0

BGP4AMP_MESSAGE 1
BGPAMP_ENTRY 2
BGP4AMP_SNAPSHOT 3

o If ‘type'is PROTOCOL_BGP4MP, “subtype' is BGPAMP_STATE_CHANGE, and
Address Family == IP (version 4)

0 1 2 3
0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5 6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1
Source AS Number Destination AS Number
Interface Index Address Family

Source IP Address
Destination IP Address
Old State \ New State

Where State is the value defined in RFC1771.

* |If ‘type'is PROTOCOL_BGP4MP, “subtype' is BGPAMP_STATE_CHANGE, and
Address Family == IP (version 6)

0 1 2 3
0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5 6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1
Source AS Number Destination AS Number
Interface Index Address Family

Source IP Address
Source IP Address Continued
Source IP Address Continued
Source IP Address Continued

Agilent Labs Technical Report 32

Destination IP Address

Source IP Address Continued

Source IP Address Continued

Source IP Address Continued

Old State \ New State

» If ‘type'is PROTOCOL_BGP4MP, “subtype' is BGP4AMP_MESSAGE, andesddr
Family == IP (version 4)

0 1 2 3

0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

Source AS Number

Destination AS Number

Interface Index

Address Family

Source IP Address

Destination IP Address

BGP Message Packet

Where BGP Message Packet is the whole content of the BGP4 mesdad@ghheader

portion.

» If ‘type'is PROTOCOL_BGP4MP, “subtype' is BGP4AMP_MESSAGE, andesddr

Family == IP (version 6)

0 1

2 3

0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

Source AS Number

Destination AS Number

Interface Index

Address Family

Source IP Address

Source IP Address Continued

Source IP Address Continued

Source IP Address Continued

Destination IP Address

Destination IP Address Continued

Destination IP Address Continued

Destination IP Address Continued

BGP Message Packet

» If ‘type'is PROTOCOL_BGP4MP, “subtype' is BGP4AMP_ENTRY, and Addrassly
== IP (version 4)

0 1 2 3

0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5 6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

View # Status

Time Last Change

Agilent Labs Technical Report

| SAFI |
Next Hop Address
Prefix Length \ Address Prefix (variable)
Attribute Length \
BGP Attributes (variable length)

Address Family Next-Hop-Len

» If ‘type'is PROTOCOL_BGP4MP, “subtype' is BGPAMP_ENTRY, and Addrassly
== |IP (version 6)

0 1 2 3
6‘7‘8‘9‘0‘ 1‘ 2‘ 3‘4‘ 5‘6‘7‘8‘9‘0‘ 1
Status

o‘ 1‘ 2‘ 3‘4‘5‘6‘7‘8‘9‘0‘ 1‘ 2‘ 3‘4‘ 5
View #

Time Last Change
Address Family \ SAFI \
Next Hop Address
Next Hop Address Continued
Next Hop Address Continued
Next Hop Address Continued
Prefix Length \ Address Prefix (variable)
Address Prefix continued (variable) \
Attribute Length
BGP Attributes (variable length)

Next-Hop-Len

BGP4 Attribute must not contain MP_UNREACH_NLRI. If BGP Attribhies
MP_REACH_NLRI field, it must has zero length NLRI, e.g., MP_REACHRNhas
only Address Family, SAFI and next-hop values.

» If ‘type'is PROTOCOL_BGP4MP and “subtype' is BGP4AMP_SNAPSHOTfil€he
specified in "File Name" contains all routing entries, whichimatée format of "subtype
== BGP4AMP_ENTRY".

0 1 2 3

0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1‘2‘3‘4‘5

6‘7‘8‘9‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘0‘1

View #

File Name (variable)

Agilent Labs Technical Report

34

Appendix.3 Ethereal data file format

Ethereal uses the same data file format as Tcpdump, whichnatilie format of WinPcap
and Libpcap. At the beginning of the file, there is a header, wbosaf is given below:

0 1 2 3
0] 1/ 2|3/ 4567/ 8/ 90123456 7/89]0| 1|2 3 4 5 6| 78901
Magic Number
Major Version ‘ Minor Version

Time Zone Offset
Time stamp accuracy
File Length
Link Type

« The magic number Oxalb2c3d4 is used to understand if the file was gegratéttle
endian architecture or by a big endian architecture. In theditdian case the bytes
sequence is: Oxal, O0xb2, 0xc3, 0xd4; in the big endian case: 0xd4, 0xc3, 0xb2, Oxal.

e The Major Version field and Minor Version field are used to fifethe version of the
file format. Current Major Version is 2 and Minor Version is 4.

» Time Zone Offset: the time zone in relation with Greenwich.

« Time stamp accuracy: not actually used.

« The link type: describes on what kind of link the packets areieph The map between
the value and the link types is given below:

<
=
c
D

Description

no link-layer encapsulation
Ethernet (10Mb)

Experimental Ethernet (3Mb)
Amateur Radio AX.25

Proteon ProNET Token Ring
Chaos

IEEE 802 Networks

ARCNET

Serial Line IP

Point-to-point Protocol

FDDI

LLC/SNAP encapsulated ATM
Raw IP

BSD/OS Serial Line IP
BSD/OS Point-to-point Protocol

Ol|IN|oOo|Old|W|N|FL|O

=
o

[N
[EEN

[EnN
N

=
w

I
5

Each packet has a capture header that contains theifgjloviormation:

Agilent Labs Technical Report 3t

0 1 2 3
0] 1/ 2|3/ 4567/ 8/ 90|12 34|56 7/8/9]0| 1|2 3 4 5 6| 780901
Seconds

Microseconds
Packet Length
The packet part length contained in the file

« Seconds: the number of seconds since January 1, 1970, 00:00:00 GMT.

» Microseconds: the number of microsecond since that second whesiclet was
captured.

» Packet Length: the number of bytes of packet data that were chpture

» The packet part length contained in the file: the actualeofgthe packet, which may be
greater than the packet length if not a entire packet was saved.

Agilent Labs Technical Report 3€

Appendix.4 Libpcap8.0 patch for Linux

Libpcap8.0 patch for Linux utilizes the shared memory ring layffehich were first
implemented in the Linux kernel by Alexey Kuznetsov as a pattiet2.2.x kernel and now a
kernel configuration option (CONFIG_PACKET_MMAP) in the 2.4.x kerngl.ttJ
approximately 32768 frames can be allocated and the frame size isquiari® parameter using
environment variable.

“to_ms” is a configurable parameter, which was supposeditedetime in milliseconds
when a “read” from the network would wait for incoming packetfore returning to the pcap
function that causes a read from the network. In the past, on Linuppasithly other operating
systems, this value was not deemed worthy of accommodatingeugowwith the advent of
memory mapped ring buffers, in the new patch this function could be awmtated. In the patch,
the meaning of “to_ms” was redefined as follows

1) to_ms is set to zero. This means that if no packet imtegdavailable then return to calling
program it will poll. This will be good for programs have ottieéngs than capture packets to do.

2) to_ms is set to be greater than zero. This means that vehiemeélout value (its initial value
is the value of to_ms) has gone to zero since the beginning of theecalpén return.

3) to_ms is set to be less than zero. This means never retinammbibpcap library. Keep
picking packet off the ring, doing callbacks and waiting, in thd¢iountil the program terminates
via a signal, error or the PCAP_TIMEOUT time has been exceeded.

There are a number of ways a Libpcap based application caersed¢mto using
the shared ring buffer:

1) If shared libraries are being used by the application, thenaroset
an environment variable to clue pcap_open_live to go theouig:r

PCAP_FRAMES=max tcpdump -i ethl ...

Setting PCAP_FRAMES to max actually sets the size of tigebuiffer to 32768 (0x8000)
frames. For ring buffer of 32768 frames, with 1530 bytes per framerfethetu + frame
overhead + 16), around 51 Mbytes is needed for the ring buffer alone.

Other environment variables include:

PCAP_SNAPLEN think tcpdump -s

PCAP_PROMISC -1 = promiscous -2 = not promiscuous

PCAP_TO_MS variable meanings, think milliseconds(me)giofor pkt,
or how long to loop reading packets and caliegiser
supplied callback.

PCAP_RAW 2 = cooked mode

PCAP_PROTO ip,ipv6,arp,rarp,802.2,802.3,lat,dec,atalk,aarp,ipx,x25

PCAP_MADDR requires hex string which will overrideARC PROMISC

PCAP_FRAMES greater than O up to 32768, "max" is equiv to 32768. ngSetti
PCAP_FRAMES to 0 will disable the ring buffer

PCAP_VERBOSE print informative messages, since old aggmtsee them.

PCAP_STATS print pcap statistics to stderr every PCERI®D ms.

Agilent Labs Technical Report 37

Stats will also be printed whenever poegd, pcap_dispatch,
and pcap_loop return to the calling program
PCAP_TIMEQUT return errno "ETIMEDOUT" when packet timgreater than
value provided (eg PCAP_TIMEOUT=1044406300 wailke
tcpdump to quit on Mon Feb 4 17:51:40 MST 2003).

PCAP_PERIOD milliseconds between stats (will nosegqacap_dispatch
to return, will generate stats).

2) If static libraries are being used the application will nedae reloaded.

3) Or, one can write non-portable Libpcap based applications bygcallinux specific pcap
routine called pcap_ring_args which initializes ebuf paralling pcap_open_live as a way of
passing in extra ring related arguments (Not recommended).

The new patch can coerce live statistics using the envirdnragable 'PCAP_STATS'. The
format for PCAP_STATS is a 32 bit mask. Bit 0 is defined to be 0x00000001. Tinmeathe
statistics and their corresponding mask bits are given below:

0 secs since 00:00:00, Jan 1, 1970, followed by a '." fraction (us)
Packets processed
Packets dropped
Packets total
Packets ignored
Packets seen by device (in and out)
Bytes seen by device (in and out)
Bytes received
Number of times poll system call called
Current ring buffer index
Maximum number of frames pulled from ring beforenigeto poll
Specious signal to pull frames from ring
Elapsed time between first and last packatd@éng sample time
Received errors
Received drops
Transfer errors
Transfer drops
17 Multicast packet count (the Packets total incltligssiumber)
Setting PCAP_STATS=0x021fff means that the ring statisticsdmgd print items O through
12 and item 17 in that order.

© 00 NO Ol WDN P

e N < =
O UM WNRERO

Agilent Labs Technical Report 38

