
Agilent Labs Technical Report 1

The Consistency Verification of Zebra BGP Data Collection

Hongwei Kong

1 Introduction

In spite of the wide deployment of BGP as the inter-domain protocol, the research on the

BGP behavior and its influence on Internet performance is still undergoing. Due to the complexity

of Internet, it is hard to model and analyze the behavior of BGP. To help understand the behavior

of BGP and to help to monitor the performance of Internet better, several BGP looking glasses

have been set up to provide useful BGP data collection. For instance, RIPE and Routeviews are

two well-known looking glasses (refer to [13][15] for more details on what is a looking glass and

how to retrieve BGP data from these looking glasses). Many of these looking glasses have been

using Zebra [1] as BGP data collector. These sites collect both BGP update messages and instant

routing tables. BGP updates and instant routing tables are generally written into binary files

periodically. When BGP messages are dumped into the file, they are dumped according to some

predefined packet dump format, which generally includes the information fields like time stamp,

message length, from and to IP addresses, from and to AS (Autonomous System) numbers,

message type, etc (refer to Appendix.2 for more details). These fields are provided both for the

manipulating of dumped messages as well as analyzing BGP behavior. Since binary file is not

very convenient and intuitive for analyzing, these binary files are generally decoded into readable

ASCII format BGP messages for further analysis. There are several tools able to do such kind

decoding. Among them, Route_BtoA coming along with MRTd [2] toolsets and Libbgpdump [11]

on RIPE NCC, are two widely used tools for decoding dumped BGP data.

Currently, much BGP research is based on the BGP data collections on public looking glasses.

Here we only list some of them as examples: [16][17][18][19]. Ensuring the consistency and

reliability of these data collections is very important to guarantee the accuracy of these research

results. It has been reported in [3] that some Zebra BGP data collections reported different number

of BGP update messages when processed with Route_BtoA on Linux and Solaris platform

separately. It’s also mentioned that some BGP messages have their message body missed when

decoded with Route_BtoA. This arouses suspicions on the reliability of both Zebra data collection

and the processing tools, for example Route_BtoA and Libbgpdump. Unfortunately, besides [3],

little work has been done to give a thorough exploration on the consistency of Zebra data

collection and the related tools. Thus one main objective of this report is to verify the consistency

of Zebra BGP data collections. To achieve this, we take an approach to verify the consistency by

comparing the data captured and processed with different tools. In this way, we can not only find

out whether Zebra data collection is consistent with the real BGP data, but also verify the

consistency of the observing results obtained by different tools. It has been noticed that some of

the related tools, such as Route_BtoA, behaves differently on Linux from on Solaris. Therefore

another purpose of this report is to verify the behavior of these tools on different platforms.

Verifying the consistency of Zebra BGP data collection actually includes two different

aspects: one is to verify that the related tools, which are used to process Zebra BGP data collection,

Agilent Labs Technical Report 2

behave as expected, and the other is to verify that the results obtained with different tools agree

with each other in all cases (in some cases, some discrepancies are allowed provided these

discrepancies are rational under the specific conditions). We have done a lot of tests to check

whether the tools behave as expected. During these tests, some bugs of the tools have been found

and solved, but there are still some problems not fixed at present. After finding the reasons that

cause these problems and being sure that they won’t compromise the reliability of the verification

results, we isolate those unfixed problems so that the tools behave as expected.

Two different verification approaches can be adopted to verify the consistency of Zebra data

collections. One way is to program the BGP speaker to send specific patterns and compare it with

the data dumped with Zebra. The other is to compare the on-wire captured data with that from

Zebra. The former approach is especially useful to pinpoint the bugs of related tools, and the latter

approach has a better adaptability since it can be used with both the synthetic BGP source and the

real BGP source. In this report both approaches have been adopted and the results show that these

approaches are very effective.

The arrangement of the following sections is: Firstly, the verification methodologies and

test-beds are presented. Then short descriptions on the related tools in the verification are given.

Next, the experimental results together with the detected problems of the tools used in the test are

presented. After the analysis of the experimental results, we draw some conclusions of the work in

this report.

2 Verification Approaches and Tools involved

2.1 Verification Approaches

 In this report, two different test-beds are used. Their configurations are shown in Fig.1 and

Fig.2, respectively. The test-bed in Fig.1 is for tests on Linux platform while the other in Fig.2 is

to test the behaviors of the tools on Solaris platform.

146.208.240.69

146.208.240.68

Venus:
Debian Woody

Mars:
Debian Woody

Jupiter:
Debian Woody

192.41.177.241

146.208.240.70

144.228.107.1

144.228.107.2
1

92.4
1.177

.169

BGP sessions with synthesized BGP data traffic

BGP sessions with real BGP data traffic
Fig.1 Test-bed on Linux platform

Agilent Labs Technical Report 3

Vicenza:
Debian Woody

Ferrara:
Debian Woody

Refugio:
Solaris

BGP sessions with synthesized BGP data traffic

BGP sessions with real BGP data traffic
Fig.2 Test-bed to test tools on Solaris platform

 The verification methods as well as the tools used in the tests are further illustrated in Fig.3.

As shown in Fig.1, Fig.2 and Fig.3, both test-beds are very simple and similar. They only consist

of a BGP source, a BGP router, and a sink of BGP messages. In the tests, BGPsim and SBGP are

used to generate and replay BGP source data, and Zebra acts both as BGP router and BGP

collector. As shown in Fig.3, there are 4 different comparisons. The purposes of these comparisons

are explained in the following: 1) Comparison C1. It represents the comparison between the

on-wire captured data and Zebra dumped data. This approach is mainly used to verify the

consistency of Zebra dumped data through on-wire captured data. 2) Comparison C2. It represents

the comparison between the source data and Zebra dumped data. The main purpose of comparison

C2 is to find the problems of Zebra and the related tools. When doing such test, specific source

patterns are used to ease the pinpointing of the problems. For example, in the tests, the

announcements consist of continuous, monotonically increasing prefixes like 124.0.1.0/24,

124.0.2.0/24, 124.0.3.0/24 … X.X.X.0/24. Thus if Zebra loses some BGP messages, it can be

easily found out when these BGP messages are lost by exploring the pattern of the received

prefixes. If further using KEEPALIVE messages as the “synchronization marker” between the

source data and Zebra dumped data, then we can easily find out whether there are KEEPALIVE

messages lost by check whether there are some “out of synchronization” intervals. 3) Comparison

C3. It represents the comparison between the source data and on-wire captured data. The same

source patterns mentioned above are used in the tests. The major purpose of C3 is to find the

problems of on-wire captured tools. 4) Comparison C4. It is to test whether Ethereal and Tcpdump

behave the same and how different versions of Libpcap influence the capture results.

Agilent Labs Technical Report 4

Kernel

TCP
Libpcap

EtherealTcpdump

Zebra
BGP Dissector

Route_
BtoA

Kernel

TCP
Libpcap

Ethereal Tcpdump

Zebra
BGP Dissector

Route_
BtoA

Network Interface Network Interface

Kernel

TCP
Libpcap

EtherealTcpdump

BGP Dissector

Network Interface

Bgpsim sbgp

Real BGP traffic
Synthesized BGP

traffic

C1

C2

C3

Source Interdomain BGP Router BGP Traffic Sink

C1
C4

C* Data Comparison
Fig.3 Illustration of verification methods

From Fig.3, it can be seen that all these comparisons require the comparison of the data files

obtained from different tools. However, the binary source data file, Zebra dumped data and the

on-wire captured data are usually in different formats, and BGP messages in these files have

different packet encapsulations. Directly comparing these files is inconvenient and inefficient.

These binary files are usually converted to ASCII format, and the BGP messages are decoded into

a readable format and then are compared to verify the consistency of Zebra dumped BGP data. In

this report, to avoid the time complexity of comparing BGP message bodies, the number of

announcements and the number of withdrawals are compared instead. The question here is how to

choose the appropriate comparison intervals. Specifying the time intervals and comparing the

number of announcements and withdrawals in those intervals won’t work in most of the cases.

This is because the processing delay of BGP messages in Zebra may make the set of BGP

messages in Zebra dumped file in the specified interval differ from that in the source data file and

that in the on-wire captured data file in the same time interval. Since the processing delay of BGP

messages in Zebra is unpredictable and varying with respect to the traffic load, it is hard to

compensate with a fixed delay. To solve this problem, there should be some “synchronization”

mechanism between the two data files to be compared. It is observed that ideally, the number of

BGP messages and the order of these messages between two successive KEEPALIVE messages of

one BGP session do not change when these messages arrive at the Zebra BGP message queue of

the peer. Thus in this report, KEEPALIVE messages are used as “synchronization markers”. Any

two successive KEEPALIVE messages determine a comparison interval. By aligning these

KEEPALIVE messages in the two files to be compared, the numbers of announcements and

withdrawals in the corresponding interval can be compared. The rationale is very simple: suppose

that the data dumped with Zebra is compared with on-wire capture data, and if on-wire captured

data is guaranteed to be consistent with the source data, and the number of announcements and

withdrawals in any comparison interval are the same for the two files, then based on the errorless

transmission of TCP, we can conclude that the BGP data dumped with Zebra is consistent with

on-wire captured data and thus consistent with the source data. In this report, we tried to use large

BGP routing tables (both synthesized and real BGP data) to test whether Zebra dumped data

collection is consistent.

Agilent Labs Technical Report 5

2.2 Related tools

 One purpose of this report is to have a thorough exploration of the tools used by verifying the

consistency of Zebra BGP data. Short descriptions of the tools used in the tests together with their

version information are given in this section.

1) MRTd (Ver. 2.2.2a). MRTd (Multi-threaded Routing Toolkit) is widely used in the field of

network performance measurement and BGP data processing. It includes the following tools:

MRTd daemon, BGPsim, SBGP, Route_AtoB and Route_BtoA. Except MRTd, the other four

tools are all used in the tests. MRTd acts as a routing daemon, which supports RIPng, RIP1/2,

multiple RIBs (route server) and BGP4+. However, in our tests, Zebra is used as the routing

daemon instead of MRTd daemon. The tool BGPsim is a BGP4 traffic generator and simulator. It

is used to generate BGP data with specific prefix patterns. The tool SBGP is a very simple

implementation of BGP speaker and listener. It sends out the BGP messages in the data file and

receives the BGP messages from the peer. However, it doesn’t implement any routing policy and

doesn’t change the kernel’s routing table. SBGP only supports the data file in MRTd format. It

doesn’t support replaying the data file in Zebra format. Route_BtoA and Route_AtoB are tools

used to convert binary BGP messages to ASCII format and vice versa. They also support data files

in Zebra format. In [3], it’s reported that some BGP messages lose their message bodies and the

missing of BGP message bodies was attributed to the inability of processing IPv6 (IP Version 6)

Messages. However, in our tests, we found that the conversion errors come not only from

Route_BtoA but also from Zebra data file. A more thorough summary on the problems and the

reasons for these problems are given later.

2) Zebra (Ver. 0.93b). Zebra is a routing software package that supports a lot of routing

protocols including RIP1/2, RIPng, OSPFv2, OSPFv3 and BGP. It is widely used in the field of

inter-domain routing. Its current BGP implementation BGPd supports RFC 1771 (A Border

Gateway Protocol 4 (BGP-4)) [4] and RFC 2858 (Multiple Protocol Extensions for BGP-4) [5].

Many looking glasses have been using Zebra as the BGP collector. A lot of research results are

based on the Zebra BGP data collections from those public looking glasses. Therefore verifying

the consistency of Zebra BGP data collections is very important for ensuring the reliability of

these research results. In the tests, it was found that inconsistency did exist for some BGP data

collections on these looking glasses, and the inconsistency comes not only from the bugs of Zebra

but also from the bugs of other related tools. These problems will be presented in the next section.

We also found that after fixing the bugs of the tools, Zebra data collections were consistent when

there is no session break. That is, it agrees with the data collected by other methods, for example,

the on-wire captured data.

3) Ethereal [6] (Ver. 0.9.11 and above) and Tcpdump [7] (Ver. 3.7.2). Both Ethereal and

Tcpdump can use the packet capture library to capture on-wire data. However, one main difference

between Ethereal and Tcpdump is that Ethereal provides more and stronger protocol analyzing

features to analyze the captured data than Tcpdump. Specially, Ethereal provides a full-featured

BGP dissector to decode the captured BGP packets into human readable ASCII format. Both

Ethereal and Tcpdump use the same file format. Thus in the tests, Ethereal’s BGP dissector is used

to decode data files captured by Tcpdump. For the capture file format, refer to Appendix.3.

4) Libpcap [7-8] (Ver. 0.7.2). Libpcap is a packet capture library, which captures the packets on

Agilent Labs Technical Report 6

the specified interface into the kernel, and provides APIs (Application Programming Interface) for

other applications to access these captured packets. It also provides filtering mechanisms to

capture only those packets that the filtering rules are matched. Phil Wood provided a patch to the

Libpcap library on Linux to improve its performance. That patch utilized the configuration option

CONFIG_PACKET_MMAP of the current Linux kernel (above Version 2.2.x). By using the

shared memory ring implementation in MMAP mode (Memory Mapping, which provides IO

mechanisms for the applications to access the device memory directly. Refer to [9] for more

detail), this new patch of Libpcap can allocate a queue of as many as 32768 frames for the

interface device to directly write the captured packets into. This greatly reduces the possibility of

capture loss due to buffer overflow and due to busy system. Besides the ring buffer, the new patch

can also provide better live statistics about the number of drops, receiving errors, transferring

errors, etc. refer to [9] for more details. The version of Libpcap patch used in our test is Ver.

0.8.030314.

5) NIST NET [10] (Ver. 2.0.12). NIST NET is a network emulator that runs on Linux. It allows

a single Linux PC set up as a router to emulate a wide variety of network conditions. In the tests,

it’s mainly used to generate TCP segment losses to test the behavior of Ethereal BGP dissector.

6) Libbgpdump [11] (Ver. 1.1). Besides Route_BtoA, Libbgpdump is another tool, which was

provided to convert binary BGP messages in Zebra format to ASCII messages. In the tests, its

results are compared with Route_BtoA, and the comparison results will be presented in the next

section.

3 Experiment results

 In above sections, the short introductions on the verifying approaches and the related tools

are given. In this section, the test results are presented.

3.1 Statistics on public Zebra BGP data collection

 It’s reported in [3] that due to the issues of Route_BtoA, some BGP messages were not

decoded correctly on Linux platform. Before verifying the consistency of Zebra BGP data

collections, the composition of incorrectly decoded BGP messages was firstly analyzed to find out

the problems of the related tools. According to the analysis results, those incorrectly decoded BGP

messages are classified into several groups. An overview on the binary dump packet format of

Zebra will help to understand what have caused these incorrectly decoded BGP messages. The

dump packet header of BGP messages is show in Fig.4
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Time
Type Subtype

Length
Source AS Number Destination AS Number

Interface Index Address Family

Agilent Labs Technical Report 7

Source IP Address
Destination IP Address

Fig.4 Binary dump packet header of BGP message

1) Unsupported attributes. The analysis results show that the BGP messages that contain

Multiprotocol Reachable NLRI (MP_REACH_NLRI) or Multiprotocol Unreachable NLRI

attribute (MP_UNREACH_NLRI) [5] will not be decoded correctly on Linux. For those messages

containing such attributes, some of them can be decoded correctly on Solaris, and some not.

Further exploration shows that if the MP_REACH_NLRI or MP_UNREACH_NLRI attribute is

for IPv6 prefixes, then these messages can be correctly decoded on Solaris platform but

incorrectly decoded on Linux platform, and that if the MP_REACH_NLRI or

MP_UNREACH_NLRI attribute is for the multicast prefixes of IPv4, then they are decoded

incorrectly on both Linux platform and Solaris platform. The messages containing Multiprotocol

Extension attributes differ from other BGP messages in that they don’t have NLRI field in the

message body.

2) NULL AS. When Zebra dumps BGP messages, it will set the source AS number and

destination AS number fields as shown in Fig.4 correspondingly. However, it was found that for

some dumped messages, the source AS number and destination AS number fields are set to all

zeros and there are no source IP address and destination IP address fields for these packets. These

messages are decoded as NULL messages when converted to ASCII messages. A further

examination on the body of these BGP message shows that these messages are actually OPEN

messages.

3) NO IP addresses. Every dumped BGP message should have the same dump header format as

shown in Fig.4. However, we found some dumped messages didn’t have the fields of source and

destination IP in their dump headers, and that these messages were decoded as NULL message on

both Linux and Solaris.

4) Incompletely dumped messages. In the tests, there are still some other incorrectly decoded

messages, which don’t belong to the above 3 groups. These messages are all very large BGP

messages. Careful examination on these messages shows that these messages are not completely

dumped. It’s found that the values of length field in the dump header are the same for all of these

large messages (4096 bytes), even if the length of these BGP messages differs. From Fig.4, it can

be seen that the value of length field in the dump header should equal to the length of BGP

message plus 16 bytes. Thus we suspected that some bugs of Zebra BGP dump program caused

this problem. After some source code debugging, the bug was found and fixed. Although this bug

compromised the consistency of Zebra BGP data collection, we think they won’t occur often. This

is because most of the updates are very short messages. However, when there is burst BGP traffic,

the problem of incompletely dumped BGP messages may occur much often. We did find burst

occurrence of such incompletely dumped large BGP messages in Zebra BGP data collections.

After classifying the problems of incorrectly decoded BGP messages, we got the statistics of

how frequently these problems occur in some Zebra BGP data collections. The Zebra BGP data

collections we used are the BGP updates in January, 2003 on rrc0-rrc8 [12] of RIPE NCC [13] and

the data collections on Routeview [14] for November and December of 2002. The statistics are

given in the table.1.

Agilent Labs Technical Report 8

#NULL_IP #NULL_AS #NO_IP Sites # All # State

Change Total #MPA6

#L #Multicast

BGP Total #O Total #O

rrc00 21773673 1391 0 0 86 0 314 314 0 0

rrc01 9794673 650776 0 0 11 0 0 0 0 0

rrc02 339188 137334 0 0 0 0 983 983 20158 3917

rrc03 19746099 339568 205777 203454 279 0 2156 2156 0 0

rrc04 3201253 129388 0 0 0 0 0 0 95476 2

rrc05 6889976 33616 0 0 54 0 1323 1323 0 0

rrc06 1811243 46088 0 0 0 0 162 162 416881 43

rrc07 6726286 71197 0 0 31 0 0 0 0 0

rrc08 52378607 48173 0 0 4 0 1 1 0 0

34394689 0 0 0 276 661184 0 0 0 0 RV.11

RV.12 38437887 0 0 0 5631 665198 0 0 0 0

Table.1 Statistics on the problems of Zebra BGP data collection on some looking glasses

Where #O represents the number of OPEN messages; #MPA6 represents the number of messages

that contain MP_REACH_NLRI/ MP_UNREACH_NLRI attributes for IPv6 prefixes. #MPA4

represents the number of messages that contain MP_REACH_NLRI/ MP_UNREACH_NLRI

attributes for IPv4 multicasting prefixes; and #L represents the number of large BGP messages

which can’t be decoded correctly.

 Further explanations on the statistic results are given below:

1) From Table.1, we can see that all messages with zero AS numbers are OPEN messages. We

also found that these messages have no source IP address and destination IP address field in the

dump header. This indicates that these OPEN messages are not dumped in the format as shown in

Fig.4. This causes Route_BtoA to decode these messages as NULL Message. We also noticed

that there are correctly dumped OPEN messages, and the OPEN messages along the session

between two Zebra BGPds are usually dumped correctly, and that the OPEN messages along the

session between BGPsim and Zebra or SBGP and Zebra are usually dumped incorrectly. This

should be a bug of Zebra BGPd dump program. Thus one suggestion for improving Zebra is to

revise the BGP message dump part and dump OPEN messages in the format as shown in Fig.4.

Another suggestion for improving Route_BtoA is to add the support for packets with irregular

dump header (It’s observed that BGP message bodies are correct for these NULL_AS messages).

2) For those messages without source and destination IP address fields (NO IP), they have

non-zero AS numbers and most of them are not OPEN messages. These distinguish them from the

NULL AS messages. These messages are found in the BGP data collections of January, 2003 on

rrc02, rrc04 and rrc06. However, it is strange that for the month before January, 2003 and the

month after January, 2003, we don’t find any such messages on these sites. Thus it is not likely

that this is merely due to a bug of Zebra (Otherwise, such malformed packets should persist). So

we are interested in what has happened on rrc02, rrc04 and rrc06 during January, 2003, and what

has resulted in those messages dumped without source and destination IP address fields. Although

these messages don’t have correct dump headers, they have correct BGP messages bodies. Thus

adding the support for such messages in Route_BtoA will also relieve the problem of incorrectly

decoded BGP messages.

3) For data collections on Routeviews, it’s observed that a lot of BGP UPDATE messages can’t

Agilent Labs Technical Report 9

be correctly decoded. The first glance shows that these messages all have no NLRI fields. Our

statistics further indicates that all of them contain at least one MP_REACH_NLRI

/MP_UNREACH_NLRI attribute and that all of them have correct dump headers. To check

whether these messages are correct BGP message, we replay these messages with SBGP. Then

on-wire BGP messages are captured with Ethereal. After decoding them with Ethereal BGP

dissector, we find that these messages are correct BGP messages, and that they all contain

MP_REACH_NLRI/MPUNREACH_NLRI attribute for multicasting IPv4 prefixes. As an

example, a decoded BGP message containing MP_REACH_NLRI/MPUNREACH_NLRI

attribute for multicasting IPv4 prefixes is shown in Fig.5. These suggest that Route_BtoA should

be enhanced to support the MP_REACH_NLRI/MPUNREACH_NLRI attribute for multicasting

IPv4 prefixes. Messages containing MP_REACH_NLRI /MPUNREACH_NLRI attribute for

Multicast IPv4 prefixes are not found on the looking glasses rrc00 to rrc08.

Frame 16 (113 bytes on wire, 113 bytes captured)……

Ethernet II, Src: 00:90:27:a7:86:b2, Dst: 00:90:27:13:a9:d4……

Internet Protocol, Src Addr: 146.208.240.68 (146.208.240.68), Dst Addr: 146.208.240.70 ……

Transmission Control Protocol, Src Port: bgp (179), Dst Port: 32792 (32792), Seq: 49, ……

Border Gateway Protocol

 UPDATE Message

 Marker: 16 bytes

 Length: 47 bytes

 Type: UPDATE Message (2)

 Unfeasible routes length: 0 bytes

 Total path attribute length: 24 bytes

 Path attributes

 MP_UNREACH_NLRI (24 bytes)

 Flags: 0x90 (Optional, Non-transitive, Complete, Extended Length)

 1... = Optional

 .0.. = Non-transitive

 ..0. = Complete

 ...1 = Extended length

 Type code: MP_UNREACH_NLRI (15)

 Length: 20 bytes

 Address family: IPv4 (1)

 Subsequent address family identifier: Multicast (2)

 Withdrawn routes (17 bytes)

 130.184.0.0/16

 144.167.0.0/16

 150.208.97.0/24

 150.208.116.0/24

 159.150.0.0/16

Fig.5 Ethereal decoded BGP message containing MP attributes for multicast IPv4 prefixes

Our further exploration on MRTd source reveals that MRTd software package actually has

implemented the support for MP_REACH_NLRI or MP_UNREACH_NLRI attribute for the

Agilent Labs Technical Report 10

multicast prefixes of IPv4. However, when it’s built, the configure script will automatically detect

whether the kernel has multicast routing support. If the kernel doesn’t support multicast routing,

this feature is turned off automatically. From this, it can be seen that the features of Route_BtoA is

entangled with the kernel configurations. This is not reasonable and leads to the difference when

running on different kernels. Thus we suggest improving Route_BtoA by turning on the support

for these attributes.

4) On rrc03, a lot of dumped messages with all-zero source and destination IP addresses are

found. These messages are not decoded correctly on Linux platform, but decoded correctly on

Solaris platform. A further exploration on the message bodies shows that most of them contains

MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6 prefixes. For the left messages with

all-zero source and destination IP addresses, we find many of them are KEEPALIVE messages.

These imply that when Zebra dumps BGP messages for IPv6 messages, it sets the IP fields in the

dump header of these messages to zero. The correct decoding of the messages on Solaris, which

have MP_REACH_NLRI or MP_UNREACH_NLRI attribute for IPv6 prefixes, shows that the

support of MP_REACH_NLRI or MP_UNREACH_NLRI attribute for IPv6 prefixes is also

implemented in MRTd package. Further exploration on the source codes of MRTd reveals that

when it’s built, the configuration script automatically detect whether the kernel has the support for

IPv6. If the kernel has no support for IPv6, then the feature that supports the decoding of

MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6 prefixes is turned off automatically.

This has result in the observed different behavior of Route_BtoA when running on Linux platform

and Solaris platform respectively. One possible improvement on Route_BtoA to decode these

messages on Linux correctly is to turn on the support for IPv6 even when Linux kernel is not

configured to support IPv6. These NULL IP messages are only found on rrc03.

5) Incompletely dumped large BGP messages are found on several sites, and the number of

incompletely dumped large BGP messages is very small compared with the total number of

messages dumped. This is just what we expected. However, this doesn’t mean the incompletely

dumped large BGP messages have neglectable effect on the consistency of Zebra BGP data. We

did find for some data files, the number of incompletely dumped BGP messages is not neglectable

compared with the total number of messages dumped. Several examples are given in table.2.

Site Date Time # Total #L Percent (%)

Routeview 19/12/2002 20:22-20:37 42663 117 0.27

Routeview 19/12/2002 20:37-20:52 27707 114 0.4

Routeview 19/12/2002 20:52-21:07 28336 20 0.07

Routeview 19/12/2002 21:07-21:22 44393 100 0.23

rrc03 06/01/2003 09:30-09:45 22707 59 0.26

rrc03 31/01/2003 02:30-02:45 28636 103 0.36

Table.2 Some data files that contain incompletely dumped large BGP messages

 In table.2, it can be seen that for these data files, the frequency of incompletely dumped large

BGP messages is about once every thousand BGP messages. However, taking the number of

prefixes in a large BGP message into account, the number of missing prefixed due to incompletely

dumped large BGP message may compose a large percent of the total number of updates. To

Agilent Labs Technical Report 11

illustrate this, the correctly dumped parts of these incompletely dumped BGP messages are

decoded and the numbers of prefixes before and after considering the incompletely dumped

messages are compared in table.3. The results show that the number of prefixes lost due to

incompletely dumped messages may be very large compared with the total number of prefixes in

the same file. These incompletely dumped large BGP messages are suspected to result from some

bug of Zebra BGP dump program. Details on the bug and how to fix it are presented later.

Updates # Updates Loss Percent (%) File

A # W #A #W A W Total

RV-20021219.2022 220543 3370 225174 119284 2% 97.2% 35%

RV-20021219.2037 125850 1821 128343 117669 2% 98.5% 48.1%

RV-20021219.2052 259489 5806 265288 121775 2% 95.2% 31.5%

RV-20021219.2107 129341 1396 131777 19045 2% 92.7% 13.3%

RP-20030106.0930 107730 3278 107730 87850 0% 96.3% 43.2%

RP-20030131.0230 134127 6180 134127 112542 0% 94.5% 43.1%

Table.3 The number of prefixes influenced by incompletely dumped BGP packets.

 In this section, the incorrectly decoded BGP messages are classified into different groups. It

can be seen that some of these messages are due to the bugs of Zebra, and some of them are due to

the problem of Route_BtoA. The reason of some (NO IP) other messages is different from other

incorrectly decoded messages, since we observed different behaviors on RRC02 in Dec. 2002, Jan.

2003, Feb. 2003, respectively. The feedback from RIPE NCC is that this problem may be due to

the upgrade of Zebra at that time. For all the problems we found, proposed improvements are

given to solve them. After all the problems being fixed, there should be no incorrectly decoded

BGP messages when using Route_BtoA.

 Besides Route_BtoA, there are also other tools for converting binary dump BGP messages to

ASCII. Libbgpdump [11] is one of them, for example. We also perform tests to see whether the

problems mentioned above exist for Libbgpdump and to see whether Libbgpdump is superior to

Route_BtoA. The test results are summarized as follows:

1) For Messages that contain MP_REACH_NLRI/MPUNREACH_NLRI attribute for

multicasting IPv4 prefixes, libbgpdump can decode the attributes that it supports, but can’t decode

MP_REACH_NLRI/MPUNREACH_NLRI attribute for multicasting IPv4 prefixes. An example

is given in Fig.6 to illustrate this.

2) For Messages that contain MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6

prefixes, libbgpdump can decode the attributes that it supports, but can’t decode

MP_REACH_NLRI/MPUNREACH_NLRI attribute for IPv6 prefixes. An example is given in

Fig.7 to illustrate this.

3) For the messages with NULL AS (OPEN message), libbgpdump doesn’t decode and gives no

messages.

4) For the messages without source and destination IP fields (NO IP), libbgpdump doesn’t

decode and gives no messages.

5) For the incompletely dumped large BGP messages, libbgpdump can decode the part which

was dumped correctly, and decode the missing part as if they are all zeros. For such messages,

Route_BtoA will not decode at all. So libbgpdump is superior to Route_BtoA in this point.

Agilent Labs Technical Report 12

However, we also found that if there are several successive incompletely dumped BGP messages,

libbgpdump will exit with a segmentation fault. The decoded message of incompletely dumped

BGP message is given in Fig.7 as an example.

TIME : Fri Nov 1 08:03:33 2002
LENGTH : 115
TYPE : Zebra BGP
SUBTYPE : Zebra BGP Message
 SOURCE_AS : 2914
 DEST_AS : 6447
 INTERFACE : 0
 SOURCE_IP : 129.250.0.11
 DEST_IP : 198.32.162.102
MESSAGE TYPE : Update/Withdraw
WITHDRAW :
ANNOUNCE :
ATTRIBUTES :
 ATTR_LEN : 76
 ORIGIN : 0
 ASPATH : 2914
 NEXT_HOP : 129.250.0.11
 MED : 56
 LOCAL_PREF : N/A
 ATOMIC_AGREG : N/A
 AGGREGATOR : N/A
 COMMUNITIES : 2914:410 2914:2000 2914:3000

Fig.6 Decoded message, which contains MP_REACH_NLRI/MPUNREACH_NLRI

attribute for multicasting IPv4 prefixes

TIME : Tue Jan 28 03:46:26 2003
LENGTH : 100
TYPE : Zebra BGP
SUBTYPE : Zebra BGP Message
 SOURCE_AS : 12859
 DEST_AS : 12654
 INTERFACE : 0
 SOURCE_IP : 0.0.0.0
 DEST_IP : 0.0.0.0
MESSAGE TYPE : Update/Withdraw
WITHDRAW :
ANNOUNCE :
ATTRIBUTES :
 ATTR_LEN : 61
 ORIGIN : 0
 ASPATH : 12859 3265 2914 4685
 NEXT_HOP : N/A
 MED : 1
 LOCAL_PREF : N/A
 ATOMIC_AGREG : N/A
 AGGREGATOR : N/A
 COMMUNITIES : 3265:4001

Fig.7 Decoded message, which contains MP_REACH_NLRI/MPUNREACH_NLRI

attribute for IPv6 prefixes

TIME : Fri Dec 20 05:23:07 2002
LENGTH : 4096
TYPE : Zebra BGP
SUBTYPE : Zebra BGP Message
 SOURCE_AS : 16150
 DEST_AS : 6447
 INTERFACE : 0
 SOURCE_IP : 217.75.96.60

Agilent Labs Technical Report 13

 DEST_IP : 198.32.162.102
MESSAGE TYPE : Update/Withdraw
WITHDRAW :
ANNOUNCE :
 17.255.240.0/23
 24.121.16.0/23
 24.121.18.0/23
 24.121.20.0/23
 .
 .
 .
 204.44.208.0/20
 204.52.242.0/24
 204.0.0.0/18 Not completely dumped part
 0.0.0.0/0 Use Zero to stuff
 0.0.0.0/0
 0.0.0.0/0
ATTRIBUTES :
 ATTR_LEN : 39
 ORIGIN : 2
 ASPATH : 16150 20757 1239 7018
 NEXT_HOP : 217.75.96.60
 MED : N/A
 LOCAL_PREF : N/A
 ATOMIC_AGREG : N/A
 AGGREGATOR : N/A
 COMMUNITIES : 16150:65303 16150:65304 16150:65321

Fig.8 Decoded message, which is incompletely dumped large BGP message

3.2 Inconsistency between Zebra BGP data collection and on-wire

captured data

 The statistic results on Zebra BGP data collections help us understand what has caused the

problem of incorrectly decoded messages and how they influence the consistency of Zebra BGP

data collection. We can see in the above section that all except the incompletely dumped BGP

messages can be correctly decoded as long as some improvements are made on Route_BtoA since

the bodies of these BGP messages are correct. For those incompletely dumped BGP messages, to

ensure a correct decoding, the bug of Zebra must be fixed. To give an example on how serious this

problem may be, we did tests using synthesized BGP data as the source. The content of BGPsim

configuration file is given below. The test-bed is shown in Fig.1. On-wire captured data is

compared with that dumped with Zebra on the same Linux machine, Jupiter. The numbers of

announcements and withdrawals in corresponding comparison intervals are compared. The

comparison results are given in Fig.9 and Fig.10, respectively.
network-list 1
 range 124.1.1.0/24 126.128.1.0
 stability 40
 change 40
 map 1 2
route-map 1
 set origin IGP
 set as-path 182 23 23 15
 set next-hop 146.208.240.68
route-map 2
 set origin IGP
 set as-path 1185 112 10
 set next-hop 146.208.240.68

Agilent Labs Technical Report 14

0 1000 2000 3000
0

200

400

600

800

1000

1200

B

G
P

 M
es

sa
ge

s
in

 e
ve

ry
 c

om
pa

ris
on

 in
te

rv
al

Time (s)

 Zebra dumped data
 Ethereal Captured data

Fig.9 The numbers of BGP messages in every comparison interval

0 1000 2000 3000
0

5000

10000

15000

20000

25000

A

nn
ou

nc
em

en
ts

 in
 e

ve
ry

 c
om

pa
ris

on
 in

te
rv

al

Time (s)

 Zebra dumped data
 Ethereal Captured data

Fig.10 The numbers of announcements in every comparison interval

 In Fig.9 and Fig.10, it can be seen that the number BGP messages in the corresponding

comparison intervals is the same for both on-wire captured data and Zebra dumped data. However,

the number of announcements in the corresponding comparison interval differs a lot. Further

exploration shows that this difference is due to the incompletely dumped BGP messages. To solve

Agilent Labs Technical Report 15

this problem, after debugging BGP dump program of Zebra, we located the bug and fixed it.

 Incompletely dumped BGP messages are mainly due to the limited size of dump buffer. When

initializing, BGP dump module allocates a buffer with fixed space and uses it to hold the dumped

messages before writing them into the data file. The code is shown below:

Bgp_dump_obuf = stream_new (BGP_MAX_PACKET_SIZE + BGP_DUMP_HEADER_SIZE);

/*

 BGP_MAX_PACKET_SIZE=4096

 BGP_DUMP_HEADER_SIZE=12

*/

 However, from Fig.4, we can see that the dump header includes not only the common header,

which occupies 12 bytes, but also the dump message header, whose length is different for different

message type and subtype. Taking BGP update messages for an instance, the dump message

header will include source and destination as numbers, Interface Index, Address Family, and IP

addresses. This part alone will occupy 16 bytes. However, it can be seen the above code doesn’t

take the size of this part of dump header. Thus if the BGP message is a very large BGP message,

the buffer will overflow and result in incompletely dumped BGP message. To solve this problem,

allocating a larger buffer is adequate. Taking IPv6 into account, additional 40 bytes are allocated

to the dump buffer and the code turns to be the following:

bgp_dump_obuf = stream_new (BGP_MAX_PACKET_SIZE + BGP_DUMP_MSG_HEADER+

BGP_DUMP_HEADER_SIZE);

/*

 BGP_MAX_PACKET_SIZE=4096

 BGP_DUMP_HEADER_SIZE=12

 BGP_DUMP_MSG_HEADER=40

*/

 After fixing this bug of Zebra BGP, we did similar tests to check whether Zebra BGP data

collection agrees with on-wire captured data. Both synthesized data and real BGP data from IPMA

[20] are used. The comparison results with synthesized data are given in Fig.11. In Fig.11, it can

be seen that the problem of incompletely dumped BGP messages is solved and that the counts in

many of the comparison intervals are equal. However, there are some comparison intervals, in

which although the counts are very close, the counts of Zebra dumped data are a little bigger than

those of Ethereal captured data. Since the BGP source is configured to send specific prefix

patterns, an examination on the prefix patterns of Ethereal captured data reveals that there are

some prefixes lost. We further found that the losses appear in a rather periodic way, and that every

time there are prefixes lost, it seems that the prefixes in one BGP messages are lost completely.

It’s also noticed in the test that one TCP segment usually contains tens of such short BGP

messages. Thus such kind of prefix losses is not possible due to TCP segments. It is more possible

that such prefix losses are due to bugs of BGP dissector.

 To check whether such prefix losses occur for real BGP data, real BGP data (real BGP data

[20] in January, 2000, on Mae-east) are replayed and on-wire captured data is compared with

Zebra dumped data. The result is shown in Fig.11. In Fig.11, it can be seen that when replaying

real BGP data, the counts of Ethereal captured data differ from those of Zebra dumped data for the

Agilent Labs Technical Report 16

same comparison interval due to prefix losses.

0 500 1000 1500 2000
0

20000

40000

60000

80000

100000

120000

140000

counts not match
#A

nn
ou

nc
em

en
ts

 e
ve

ry
 c

om
pa

ris
on

 in
te

rv
al

Time (s)

 Zebra dumped data
 Ethereal captured data

Fig.11 Comparison results when using synthesized BGP data

1000 1500 2000
0

2000

4000

6000

8000

10000

12000

14000

A

nn
ou

nc
em

en
ts

 in
 e

ve
ry

 c
om

pa
ris

on
 in

te
rv

al

Time (s)

 Ethereal captured data
 Zebra dumped data

Fig.12 Comparison when using real BGP data from Mae-east

 By debugging Ethereal BGP dissector code, we find that the bug is due to incorrect processing

of BGP messages whose message head is over the edge of TCP segments. Ethereal BGP dissector

works in the following way: BGP data in every TCP segment is cached according to the sequence

they are captured. Then BGP dissector searches for the BGP message marker to delimit the BGP

messages and passes the BGP messages to BGP message decoder. The codes, which cause the

problem, are shown in Fig.13. When the BGP message header is over the edge of TCP segments,

that message won’t be processed since the message is not complete. However, the message header

is not kept for later decoding of this message. This causes the message missed in the decoded

ASCII file.

l = tvb_reported_length(tvb); /*l is the length of BGP PDU in TCP segments*/

Agilent Labs Technical Report 17

 i = 0;

 found = -1;

/* run through the TCP packet looking for BGP headers */

 while (i + BGP_HEADER_SIZE <= l) {

 tvb_memcpy(tvb, bgp_marker, i, BGP_MARKER_SIZE);

 bgp_len = tvb_get_ntohs(tvb, i + BGP_MARKER_SIZE);

 bgp_type = tvb_get_guint8(tvb, i + BGP_MARKER_SIZE + 2);

 /* look for bgp header */

 if (memcmp(bgp_marker, marker, sizeof(marker)) != 0) {

 i++;

 continue;

 }

 found++;

 ……

 .…...

 }/*end of while*/

}/*end of function dissect_bgp*/

Fig.13 The bug of BGP dissector

 We reported this bug to the mail-list of Ethereal and submitted an incomplete patch for this

bug. After our report, the new version of Ethereal (Ver. 0.9.12) has fixed this bug with a patch.

 After fixing the bug of BGP dissector, we do the comparisons again and the results are given

in Fig.14 and Fig.15, respectively.

0 500 1000 1500 2000
0

20000

40000

60000

80000

100000

120000

140000

A

nn
ou

nc
em

en
ts

Time (s)

 Zebra dumped data
 Before patching Ethereal BGP Disector
 After patching Ethereal BGP Disector

Fig.14 Comparison result before and after patching the bug of Ethereal

Agilent Labs Technical Report 18

1000 1500 2000
0

2000

4000

6000

8000

10000

12000

14000

A

nn
ou

nc
em

en
ts

Time (s)

 Zebra dumped data
 Before patching BGP dissector
 After patching BGP dissector

Fig.15 Comparison result before and after patching the bug of Ethereal

 As shown In Fig.14, after patching the bug of BGP dissector, the discrepancies between Zebra

dumped data and Ethereal captured data disappears. However, in Fig.15, it can be seen that

although patching the bug of Ethereal BGP dissector eliminates some discrepancies between

Zebra dumped data and Ethereal captured data (the 2nd and 4th bar), there are still some

discrepancies remaining (the 1st and 3rd bar). These remaining discrepancies make us suspect that

there may be some capture losses for the Ethereal captured data due to the heavy processing load,

since we run Zebra dump and Ethereal on the same Linux machine.

 To verify our suspicion, the synthesized BGP data with large BGP table (about 160k prefixes)

is used. The prefixes are sent with the pattern mentioned in section.2 to help to find when there are

capture losses. Data captured with Ethereal and data dumped with Zebra are compared. The

comparison results are given in Fig.16. It can be seen that when the processing load is heavy,

Ethereal loses some captures. To see the correlation between processing load and Ethereal capture

losses, the numbers of updates every 15 minutes are shown in Fig.17.

0 1000 2000 3000 4000
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

KEEPALIVE lost

capture losses

#A
nn

ou
nc

em
en

ts
 in

 e
ve

ry
 c

om
pa

ris
on

 in
te

rv
al

Time (s)

 Zebra dumped data
 Ethereal captured data

Agilent Labs Technical Report 19

Fig.16 Capture losses of Ethereal

0 1000 2000 3000 4000
0

100000

200000

300000

400000

U

pd
at

es
 in

 e
ve

ry
 1

5
m

in
ut

es

Time (s)

Fig.17 Number of updates in every 15 minutes

From Fig.16 and Fig.17, we can see that when there are a huge number of updates and the

processing load is very heavy, Ethereal will lose some captures. The loss of KEEPALIVE message

even causes some troubles when aligning the comparison intervals, as shown in Fig.16.

 Observing the results show in Fig.16 and Fig.17 together, we can find some correlation

between the capture losses and the processing load. Thus we speculate that the capture losses

happen in Libpcap (ver.0.7.2) library. Maybe heavy processing load makes the kernel have

insufficient time to fetch the captured packet from the capture queue of Libpcap, and thus the

overflow of the capture queue of Libpcap leads to capture losses. As mentioned in section.2, Phil

Wood provided a patch of Libpcap that utilizes the mechanism of MMAP. MMAP can allow the

network adapter to directly capture the packets into system memory. With a large ring queue in

system memory, this mechanism can greatly reduce the probability of queue overflow and capture

losses. In the tests, Tcpdump (Ver. 3.7.2) is rebuilt and linked with the new patch of Libpcap (Ver

0.8.030314). Then the new Tcpdump is used to capture on-wire data. We did some tests and found

that the new Libpcap library does eliminate the problem of capture loss of Ethereal. The hardware

configurations of the PC, on which we run both Zebra and Tcpdump, consist of a Pentium III

800Mhz CPU, 256 MB memory. In the tests, we switched the speed of the link interface between

10Mb/s and 100Mb/s, used heavy BGP traffic, and turned on Zebra BGP dump on the PC where

Tcpdump ran. All the results showed that there were no capture losses after applying the patch of

Libpcap. As an example, the same real BGP data from mae-east is used as the source. The results

are given in Fig.18. For the same source data, the results in Fig.18 are different from those shown

in Fig.15. The discrepancies due to capture losses are eliminated.

Agilent Labs Technical Report 20

1000 1500 2000 2500
0

2000

4000

6000

8000

10000

A

nn
ou

nc
em

en
ts

Time (s)

 Zebra dumped data
 Tcpdump Captured data

Fig.18 Comparison results when using new Libpcap library

 Since Ethereal and Tcpdump capture data without being aware of what the possible protocol is

used for the captured session while correctly decoding captured BGP packets requires the correct

reconstruction of the BGP session. Thus we are curious about the behavior of Ethereal BGP

dissector when there are TCP segment losses and retransmissions. To simulate TCP segment losses

and retransmissions more efficiently, NIST Net [10] is used to drop the TCP segments at preset

drop probability. Then BGP dissector is used to decode the on-wire captured BGP packets to see

whether BGP dissector can correctly reconstruct the BGP session and decode the BGP messages

correctly when there are lots of losses and retransmissions. The BGP dissector has taken the

session reconstruction into account. To enable the session reconstruction option, Ethereal should

be used with the following options on:

Tethereal –o bgp.desegment:true –o tcp.desegment_tcp_streams:true

 To find the problems of Ethereal BGP dissector when there are TCP losses and retransmissions,

again the synthesized BGP data with specific prefix patterns is used as the source. The results are

given in Fig.19. When there are TCP retransmissions, Ethereal BGP dissector will produce some

fake BGP messages, which is actually the decoding result of retransmitted TCP segment. Thus the

on-wire captured BGP data doesn’t agree with that dumped with Zebra. We have reported this

problem to the mail-list of Ethereal developers; However, there has been no fix to this problem up

to now (ver 0.9.12). After using some script to remove these fake BGP messages due to

retransmitted TCP segments, we find that the on-wire captured BGP data agrees with Zebra

dumped data again.

Agilent Labs Technical Report 21

Source Prefixes Patterns

124.1.1.0/24| 126.1.1.0/24| A
124.1.1.0/24| 126.1.1.0/24| W

--------------------------------- --------------------------------------
Zebra collected prefix patterns Tcpdump captured prefix patterns
--------------------------------- ---------------------------------------
124.1.1.0/24| 126.1.1.0/24| A 124.1.1.0/24| 124.16.208.0/24| A
 124.4.245.0/24| 124.8.232.0/24| A
 124.16.209.0/24| 124.250.12.0/24| A
 124.246.25.0/24| 125.9.220.0/24| A
 125.1.245.0/24| 125.5.232.0/24| A
 125.1.245.0/24| 125.5.232.0/24| A
 125.9.221.0/24| 125.120.140.0/24| A
 125.116.153.0/24| 125.148.56.0/24| A
 125.144.69.0/24| 126.1.1.0/24| A

124.1.1.0/24| 126.1.1.0/24| W 124.1.1.0/24| 124.69.52.0/24| W
 124.65.105.0/24| 124.66.88.0/24| W
 124.69.53.0/24| 124.115.204.0/24| w
 124.112.241.0/24| 124.113.236.0/24| w
 124.115.205.0/24| 124.145.180.0/24| w
 124.141.233.0/24| 124.142.216.0/24| w
 124.145.181.0/24| 125.154.176.0/24| w
 125.147.253.0/24| 125.148.248.0/24| W
 125.154.177.0/24| 125.198.180.0/24| W
 125.195.217.0/24| 125.196.200.0/24| W
 125.198.181.0/24| 125.226.116.0/24| W
 125.222.157.0/24| 125.223.152.0/24| W
 125.226.117.0/24| 125.237.228.0/24| W
 125.236.245.0/24| 125.251.76.0/24| W
 125.247.117.0/24| 125.248.112.0/24| W
 125.251.77.0/24| 126.1.1.0/24| W

TCP
Retransmissions

 After Removing Retransmissions

124.1.1.0/24| 126.1.1.0/24| A

124.1.1.0/24| 126.1.1.0/24| W

Fig.19 Discrepancies due to TCP retransmissions

 After exploring the reasons that cause the discrepancies between Zebra dumped data and

on-wire captured data and fixing these problems, we do more tests to verify the consistency of

Zebra BGP data collection. The results are given in the following subsections.

3.3 Verification results when using synthetic BGP data

 In the test, the synthesized BGP data with large prefix table (about 160k prefixes) is used as

the source. The tests are done on both Linux and Solaris platform. Since no MP_REACH_NLRI

/MP_UNREACH_NLRI attributes are used in the tests, both the test on Linux and the test on

Solaris have the similar results. The results are shown in Fig.20. After all the problems mentioned

in the above sections were solved, now the on-wire captured data agrees with Zebra BGP dumped

data for most of the time except when there is a peering session break. However, the discrepancies

during the session break are reasonable since at that time the state of BGP is reset abruptly. It will

neglect all the following BGP messages. This may cause the discrepancies between on-wire

captured data and data dumped with Zebra. The number of updates in every 15 minutes is shown

in Fig.21 to show the relation between the peering session break and the heavy BGP load. It can

be seen that the synthesized traffic used in the test is so heavy that Zebra will delay the sending of

KEEPALIVE for so long a time that the peer on the other end (BGPsim in this test) tears down the

BGP session. Thus the results shown in Fig.20 and Fig.21 verified that after solving the problems

of the tools, when there is no session break, Zebra dumped data is consistent even under extremely

heavy synthesized BGP traffic. However, when there is session break, Zebra dumped data may be

Agilent Labs Technical Report 22

inconsistent with what has been sent out from the source.

0 1000 2000 3000 4000 5000
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Session Break

A

nn
ou

ne
m

en
ts

 p
er

 c
om

pa
ris

on
 in

te
rv

al

Time (s)

 Zebra dumped data
 Tcpdump captured data

Fig.20 Comparison result with synthetic BGP data

0 1000 2000 3000 4000 5000 6000
0

100000

200000

300000

400000

U

pd
at

es
 in

 e
ve

ry
 1

5
m

in
ut

es

Time (s)

Fig.21 The number of updates in every 15 minutes

3.4 Verification results when using real BGP data

 In this test, real burst BGP data sets are used to verify the consistency of Zebra data collection,

where the burst BGP data sets are the dumped update data files on rrc03 from 5:30 to 9:45 on 25th,

January, 2003. It can be seen that the size of these files is an order larger than that of other dumped

files in magnitude. There are a lot of NOTIFICATION messages in these data files. However, in

Agilent Labs Technical Report 23

our tests, we simply ignore the session with NOTIFICATION messges. The number of updates of

each BGP session in these files is counted, and the two with the largest number of updates are

extracted out and replayed to do the tests. The sessions are AS13237 to AS12654 and AS12859 to

AS12654. We find that over session AS12859 to AS12654 there are some BGP messages, which

have MP_REACH_NLRI/MP_UNREACH_NLRI attributes for IPv6. Since Route_BtoA on

Linux can’t decode these messages correctly, we remove these messages before we do the test.

What we want to mention here is that such removal won’t compromise the reliability of the

verification. This is based on two observations: 1) the replaying result of such messages on Solaris

has shown that Zebra can dump such messages correctly. They are not different from other BGP

messages in this point. 2) the number of such messages is very small compared with the total

number of updates in these files. The comparison results are presented in Fig.22 together with the

updates every 15 minutes of the source data (these are only for session AS13237 to AS12654).

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

100000

200000

300000

400000

A

nn
ou

nc
em

en
ts

 in
 e

ve
ry

 c
om

pa
ris

on
 in

te
rv

al

Time (s)

 Zebra dumped data
 Tcpdump captured data

Fig.20 Comparison results when using real burst BGP data (AS13237 to AS12654).

0 10000
0

10000

20000

30000

40000

50000

60000

U

pd
at

es
 in

 e
ve

ry
 1

5
m

in
ut

es

Time (s)

Fig.21 The number of updates in every 15 minutes for session AS13237 to AS12654

Agilent Labs Technical Report 24

 The comparison results show that even for real BGP data with severe burst, after the bugs of the

tools were fixed, Zebra BGP dumped data is consistent with the source data if there is no session

break, and that the results got using different tools agree with each other.

 From all these results, we conclude that after fixing the bug of Zebra BGP dump program,

Zebra dumped BGP data will be consistent when there is no session break, and after all the

problems of the tools being fixed, the data got from different tools will agree with each other.

3.5 Results on the peering session breaks in real BGP data collections

 In the above sections, the test results have shown that when there is no BGP session break,

Zebra data collections are consistent and they can be verified with on-wire captured data. However,

we also notice that when the BGP traffic is heavy, the BGP session between Zebra and its peer

may be torn down due to expired hold timer. When this happens, Zebra data collection will be

corrupted because of the updates due to Zebra BGP session down and up. To find out how serious

the problem is, we do some statistics about the NOTIFICATION messages on the real data

collections.

Site Date #NOTIFICATION

Routeview Jan 15th-Jan 31st 2003 0

rrc00 Jan. 2003 11

rrc01 Jan. 2003 6

rrc02 Jan. 2003 1780

rrc03 Jan. 2003 45061

rrc04 Jan. 2003 0

rrc05 Jan. 2003 17

rrc07 Jan. 2003 1

rrc08 Jan. 2003 9314

Table.4 The number of Notifications in one-month data collections

 From Table.4, we can see that for site rrc02, rrc03 and rrc08, there are a lot of

NOTIFICATION messages. So many NOTIFICATION messages may cause corrupted data

collections since there may be lots of updates due to Zebra session up and down. Further

explorations on the NOTIFICATION messages reveals that there are several different kinds of

NOTIFICATION message patterns:

1) Successive NOTIFICATION series (type 4/0) from the same peer due to hold timer

expiration. We found that the NOTIFICATION series on rrc08 belong to this category. For rrc08,

we observed consecutive NOTIFICATION messages from AS2914 with type 4/0. The data files

from 9, 9th Jan. to 23:45 9th Jan are used. The NOTIFICATION series and the number of updates

in every 5 minutes are shown in Fig.22 and Fig.23 to explore the possible relation between the

hold timer expiration and the BGP traffic load on Zebra. From Fig.22 and Fig.23, we can coarsely

see that the NOTIFICATION messages are related with the number of BGP updates. However, the

explicit relation between the number of update messages and the NOTIFICATION messages is not

found yet. It is very strange that the NOTIFICATION messages sometimes are so close to each

other. Some interval between two NOTIFICATION messages even is smaller than 30 seconds.

Agilent Labs Technical Report 25

Due the frequent NOTIFICATION messages, the peer sends almost no updates to the Zebra BGP

daemon peering with it. Thus such kind of session break influence the consistency of Zebra BGP

data collection very little, we can ignore the data from that session completely when there are

successive NOTIFICATION series from the same peer to avoid the problem of corrupted data due

to Zebra session up and down. Such NOTIFICATION patterns seem to imply there may be some

bug in the BGP implementation of the routers. However, up to now we haven’t verified this

suspicion.

0 6000 12000 18000 24000 30000
0

20000

40000

60000

80000

100000

Data: RRC08/200301
From 9 Jan,9th to 19:45 Jan, 9th

#U
pd

at
es

 in
 e

ve
ry

 5
 m

in
ut

es

Time (s)

Fig.22 The number of update messages in every 5minutes

0 6000 12000 18000 24000 30000

0.0

0.5

1.0

1.5

2.0

Data: RRC08/200301
From 9 Jan,9th to 19:45 Jan, 9th

N
ot

ifi
ca

tio
n

fr
om

 A
S

29
14

Time (s)

Fig.23 NOTIFICATION series

2) Successive NOTIFICATION messages (type 4/0) from several different peers due to hold

timer expiration. We notice that when the BGP traffic is very heavy, the BGP sessions from

several peers may break in a very short time interval. This can seriously corrupt the data

collections. Since heavy BGP traffic often means a lot of network changes, we are extremely

Agilent Labs Technical Report 26

interested in the data collections when the BGP traffic is very heavy. Thus peering session break

under heavy BGP traffic will be problematic. To illustrate the possible relationship between the

BGP traffic and the NOTIFICATION series from different peers, the data files for the time period

from 10, 7th Jan to 14:45, 7th Jan are used. The results are shown in Fig.24 and Fig.25 respectively.

Although sometimes the NOTIFICATION messages don’t seem to correspond a heavy BGP traffic.

We can see when there are heavy BGP traffic, some BGP session will experience session break

due to hold timer expiration. To consistently collect BGP data at all time, Zebra need to be revised.

0 3000 6000 9000 12000 15000 18000
0

100000

200000

300000

400000

500000

600000

700000

Data: RRC03/200301
From 10:00 Jan, 7th to 15:00 Jan, 7th

No Capture Data

#U
pd

at
es

 in
 e

ve
ry

 5
 m

in
ut

es

Time (s)

Fig.24 The number of updates messages in every 5 minutes

0 3000 6000 9000 12000 15000 18000

0.0

0.5

1.0

1.5

2.0
Data: RRC03/200301
From 10 Jan,07 to 15 Jan,07

 AS12956
 AS24875
 AS2914
 AS3257
 AS9143
 AS2818
 AS12859

N
ot

ifi
ca

tio
n

S
er

ie
s

fr
om

 th
e

pe
er

s
du

e
to

 h
ol

d
tim

er
 e

xp
iri

ng

Time (s)

Fig.25 NOTIFICATION series (type 4/0) from different peers

3) Interleaved NOTIFICATION message series between type 4/0 and type 2/5. On rrc02, the

successive NOTIFICATION messages from AS12956 belong to this category. This behavior is

Agilent Labs Technical Report 27

also very strange, since the Zebra BGP daemon, which is collecting BGP data from AS12956,

should be an authorized peer for AS12956. If we have the OPEN messages sent by the Zebra BGP

daemon, we can find whether there are some errors at the beginning of BGP session establishment.

Thus we propose to improve Zebra by adding the feature of dumping both in and out BGP

messages.

4 Next step improvements on the tools

 Ensuring that the tools behave as expected, and give consistent results is very important.

According to the results in section.3, the next step improvements on the tools are given below:

1) Route_BtoA.

• Add full support of MP_REACH_NLRI / MP_UNREACH_NLRI attributes for both

IPv6 and multicasting IPv4 prefixes no matter whether the kernel has the supports for IPv6

and multicast routing.

• Add support of decoding messages without correct dump header but with correct BGP

messages

• Add support of decoding incompletely dumped BGP messages

• Add support of converting unsupported attributes directly into ASCII format

2) Ethereal

• Introduce a new patch to correctly reconstruct BGP sessions when there are TCP losses,

retransmissions and out of order TCP segments

3) Zebra

• Revise the part of BGP dump to make sure that Zebra always dumps packets in the

format given in Appendix.2.

• Revise Zebra to make it more suitable for BGP data collecting, for example, removing

the prefix update and out filter modules from BGPd implementation.

• Dump both in and out BGP messages for research purpose, where the out messages are

only OPEN, KEEPALIVE and NOTIFICATION messages.

5 Conclusions

 In this report, the consistency of Zebra BGP data collection is verified. We thoroughly

analyzed and classified the problems that can result in incorrectly decoded BGP messages, and

presented statistic results of how frequently these problems may occur. Improvements on the tools

are also proposed to solve these problems. Then we proposed two approaches to verify the

consistency of Zebra data collection. Both verifying approaches are very effective and help to

identify many problems that cause discrepancies between the results obtained by different tools.

After these problems were fixed, the test results show that when there is no BGP session break,

Zebra data collection is consistent and can be comparable with on-wire captured data. The results

in this report also imply that although there may be some issues in public BGP data collection, the

Agilent Labs Technical Report 28

problems themselves are not very serious and most of the BGP data collections are reliable and

consistent.

6 Acknowledgements

 The author would like to express thanks to Alexander Tudor, Olaf Maennel and Xinyu Ma

for their good suggestions on the report and their kind helps during this project. The discussion

with Lance Tatman on the BGP session break patterns is very helpful for making the conclusions

in this report complete and consistent. Matthew Williams and Arife Vural also provide helpful

feedbacks on how to improve the report. The author is grateful for all of them for their helps on

improving the report.

Agilent Labs Technical Report 29

Reference

1. http://www.zebra.org

2. http://www.mrtd.net/

3. Vinay Kumar Aggarval, “Debugging ROUTE_BTOA”, March, 2003

4. http://www.ietf.org/rfc/rfc1771.txt

5. http://www.ietf.org/rfc/rfc2858.txt

6. http://www.ethereal.com

7. http://www.tcpdump.org/

8. http://public.lanl.gov/cpw/

9. http://www.xml.com/ldd/chapter/book/ch13.html

10. http://snad.ncsl.nist.gov/itg/nistnet/

11. http://www.ris.ripe.net/source/ (by Dan Ardelean with RIPE NCC)

12. http://data.ris.ripe.net

13. http://www.ripe.net

14. http://archive.routeviews.org

15. http://www.routeviews.org

16. R. Govindan, A. Reddy, An Analysis of Internet Inter-domain topology and Route Stability,

IEEE INFOCOM 1997, Japan.

17. J. Rexford, J. Wang, Z. Xiao, Y. Zhang, BGP Routing Stability of Popular Destinations, ACM

SIGCOMM Internet Measurement Workshop (IMW) 2002,

http://www.icir.org/vern/imw-2001/imw2002-papers/160.ps.gz

18. C. Labovitz, A. Ahuja, A. Bose, Delayed Internet Routing Convergence. SIGCOMM 2000.

19. D. G. Anderson, N. Feamster, S. Bauer, H. Barakrishnan, Topology Inference from BGP

Routing Dynamics, ACM SIGCOMM Internet Measurement Workshop (IMW), 2002.

http://www.icir.org/vern/imw-2001/imw2002-papers/206.ps.gz

20. ftp://ftp.merit.edu/statistics/ipma/data/

Agilent Labs Technical Report 30

Appendix.1 Packet binary dump format of MRTd

Followings are the binary packet formats used by most MRT tools.
1) MRT header (12 bytes)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Time
Type Subtype

Length

All MRT messages have this common header, which includes Timestamp, message
type and subtype and the length of the message. The length does not include the MRT
header itself.
MRT_MSG_TYPES (Valid Type Values and Their Definiti ons)

0 MSG_NULL,

1 MSG_START, /* sender is starting up */

2 MSG_DIE, /* receiver should shu t down */

3 MSG_I_AM_DEAD, /* sender is shutting down */

4 MSG_PEER_DOWN, /* sender's peer is do wn */

5 MSG_PROTOCOL_BGP, /* msg is a BGP packet */

6 MSG_PROTOCOL_RIP, /* msg is a RIP packet */

7 MSG_PROTOCOL_IDRP, /* msg is an IDRP pack et */

8 MSG_PROTOCOL_RIPNG, /* msg is a RIPNG pack et */

9 MSG_PROTOCOL_BGP4PLUS, /* msg is a BGP4+ pack et */

10 MSG_PROTOCOL_BGP4PLUS_01, /* msg is a BGP4+ (dra ft 01) packet */

2) Subtypes of BGP Message (MSG_PROTOCOL_BGP, MSG_PROTOCOL_BGP4PLUS,

MSG_PROTOCOL_BGP4PLUS_01)

MRT_MSG_BGP_TYPES (Valid Subtype Values and Their D efinitions)

0 MSG_BGP_NULL,

1 MSG_BGP_UPDATE, /* raw update packet (contains b oth with and ann) */

2 MSG_BGP_PREF_UPDATE, /* tlv preferences followed by raw update */

3 MSG_BGP_STATE_CHANGE /* state change */

4 MSG_BGP_SYNC

• If the message type is MSG_PROTOCOL_BGP and the message subtype is
MSG_BGP_UPDATE, the following applies:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Source IP Address
Source IP Address Destination AS Number

Destination IP Address
BGP Update Packet

Agilent Labs Technical Report 31

• If the message type is MSG_PROTOCOL_BGP4PLUS and the message subtype is
MSG_BGP_UPDATE, the following applies:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Source IP Address
Source IP Address continued
Source IP Address continued
Source IP Address continued

Source IP Address continued Destination AS Number
Destination IP Address

Destination IP Address continued
Destination IP Address continued
Destination IP Address continued

BGP Update Packet

• If the message subtype is MSG_BGP_STATE_CHANGE, the following format
should be used for state change messages:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Source IP Address
Source IP Address continued
Source IP Address continued
Source IP Address continued

Source IP Address continued Old State
New State

• If the message subtype is MSG_BGP_SYNC, the following format applies:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

View # File Name (Variable)
 The filename ends with ‘\0’ (null.)

3) The format for the routing table dump is:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

View # Prefix
Prefix (continue) Mask Status

Time Last change
Attribute Length

BGP Attribute (Variable Length)…

Agilent Labs Technical Report 32

Appendix.2 Packet binary dump format of Zebra

 The packet binary dump format of Zebra shares the same common header with that of MRTd.

This is to provide backward compatibility of MRTd binary data file. The common header is in the

following format:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Time
Type Subtype

Length

 The valid type for Zebra binary dump format is MSG_PROTOCOL_BGP4MP (16), and the

valid subtype is:

BGP4MP_STATE_CHANGE 0

BGP4MP_MESSAGE 1

BGP4MP_ENTRY 2

BGP4MP_SNAPSHOT 3

• If `type' is PROTOCOL_BGP4MP, `subtype' is BGP4MP_STATE_CHANGE, and

Address Family == IP (version 4)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Destination AS Number
Interface Index Address Family

Source IP Address
Destination IP Address

Old State New State

Where State is the value defined in RFC1771.

• If `type' is PROTOCOL_BGP4MP, `subtype' is BGP4MP_STATE_CHANGE, and

Address Family == IP (version 6)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Destination AS Number
Interface Index Address Family

Source IP Address
Source IP Address Continued
Source IP Address Continued
Source IP Address Continued

Agilent Labs Technical Report 33

Destination IP Address
Source IP Address Continued
Source IP Address Continued
Source IP Address Continued

Old State New State

• If `type' is PROTOCOL_BGP4MP, `subtype' is BGP4MP_MESSAGE, and Address

Family == IP (version 4)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Destination AS Number
Interface Index Address Family

Source IP Address
Destination IP Address
BGP Message Packet

Where BGP Message Packet is the whole content of the BGP4 message including header

portion.

• If `type' is PROTOCOL_BGP4MP, `subtype' is BGP4MP_MESSAGE, and Address

Family == IP (version 6)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source AS Number Destination AS Number
Interface Index Address Family

Source IP Address
Source IP Address Continued
Source IP Address Continued
Source IP Address Continued

Destination IP Address
Destination IP Address Continued
Destination IP Address Continued
Destination IP Address Continued

BGP Message Packet

• If `type' is PROTOCOL_BGP4MP, `subtype' is BGP4MP_ENTRY, and Address Family

== IP (version 4)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

View # Status
Time Last Change

Agilent Labs Technical Report 34

Address Family SAFI Next-Hop-Len
Next Hop Address

Prefix Length Address Prefix (variable)
Attribute Length

BGP Attributes (variable length)

• If `type' is PROTOCOL_BGP4MP, `subtype' is BGP4MP_ENTRY, and Address Family

== IP (version 6)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

View # Status
Time Last Change

Address Family SAFI Next-Hop-Len
Next Hop Address

Next Hop Address Continued
Next Hop Address Continued
Next Hop Address Continued

Prefix Length Address Prefix (variable)
Address Prefix continued (variable)

Attribute Length
BGP Attributes (variable length)

BGP4 Attribute must not contain MP_UNREACH_NLRI. If BGP Attribute has

MP_REACH_NLRI field, it must has zero length NLRI, e.g., MP_REACH_NLRI has

only Address Family, SAFI and next-hop values.

• If `type' is PROTOCOL_BGP4MP and `subtype' is BGP4MP_SNAPSHOT, The file

specified in "File Name" contains all routing entries, which are in the format of "subtype

== BGP4MP_ENTRY".

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

View # File Name (variable)

Agilent Labs Technical Report 35

Appendix.3 Ethereal data file format

� � �Ethereal uses the same data file format as Tcpdump, which is the native format of WinPcap

and Libpcap. At the beginning of the file, there is a header, whose format is given below:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Magic Number

Major Version Minor Version

Time Zone Offset

Time stamp accuracy

File Length

Link Type

• The magic number 0xa1b2c3d4 is used to understand if the file was generated by a little

endian architecture or by a big endian architecture. In the little endian case the bytes

sequence is: 0xa1, 0xb2, 0xc3, 0xd4; in the big endian case: 0xd4, 0xc3, 0xb2, 0xa1.

• The Major Version field and Minor Version field are used to identify the version of the

file format. Current Major Version is 2 and Minor Version is 4.

• Time Zone Offset: the time zone in relation with Greenwich.

• Time stamp accuracy: not actually used.

• The link type: describes on what kind of link the packets are captured. The map between

the value and the link types is given below:

Value Description

0 no link-layer encapsulation

1 Ethernet (10Mb)

2 Experimental Ethernet (3Mb)

3 Amateur Radio AX.25

4 Proteon ProNET Token Ring

5 Chaos

6 IEEE 802 Networks

7 ARCNET

8 Serial Line IP

9 Point-to-point Protocol

10 FDDI

11 LLC/SNAP encapsulated ATM

12 Raw IP

13 BSD/OS Serial Line IP

14 BSD/OS Point-to-point Protocol

 Each packet has a capture header that contains the following information:

Agilent Labs Technical Report 36

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Seconds

Microseconds

Packet Length

The packet part length contained in the file

• Seconds: the number of seconds since January 1, 1970, 00:00:00 GMT.

• Microseconds: the number of microsecond since that second when the packet was

captured.

• Packet Length: the number of bytes of packet data that were captured.

• The packet part length contained in the file: the actual length of the packet, which may be

greater than the packet length if not a entire packet was saved. �

�

Agilent Labs Technical Report 37

Appendix.4 Libpcap8.0 patch for Linux

 Libpcap8.0 patch for Linux utilizes the shared memory ring buffers, which were first

implemented in the Linux kernel by Alexey Kuznetsov as a patch to the 2.2.x kernel and now a

kernel configuration option (CONFIG_PACKET_MMAP) in the 2.4.x kernel. Up to

approximately 32768 frames can be allocated and the frame size is a configurable parameter using

environment variable.

 “to_ms” is a configurable parameter, which was supposed to define a time in milliseconds

when a “read” from the network would wait for incoming packets before returning to the pcap

function that causes a read from the network. In the past, on Linux, and possibly other operating

systems, this value was not deemed worthy of accommodating. However, with the advent of

memory mapped ring buffers, in the new patch this function could be accommodated. In the patch,

the meaning of “to_ms” was redefined as follows

 1) to_ms is set to zero. This means that if no packet immediately available then return to calling

program it will poll. This will be good for programs have other things than capture packets to do.

 2) to_ms is set to be greater than zero. This means that when the timeout value (its initial value

is the value of to_ms) has gone to zero since the beginning of the capture, then return.

 3) to_ms is set to be less than zero. This means never returning from Libpcap library. Keep

picking packet off the ring, doing callbacks and waiting, in that order until the program terminates

via a signal, error or the PCAP_TIMEOUT time has been exceeded.

 There are a number of ways a Libpcap based application can be coerced into using

the shared ring buffer:

1) If shared libraries are being used by the application, then you can set

 an environment variable to clue pcap_open_live to go the ring route:

 # PCAP_FRAMES=max tcpdump -i eth1 ...

 Setting PCAP_FRAMES to max actually sets the size of the ring buffer to 32768 (0x8000)

frames. For ring buffer of 32768 frames, with 1530 bytes per frame (ethernet mtu + frame

overhead + 16), around 51 Mbytes is needed for the ring buffer alone.

 Other environment variables include:

 PCAP_SNAPLEN think tcpdump -s

 PCAP_PROMISC -1 = promiscous -2 = not promiscuous

 PCAP_TO_MS variable meanings, think milliseconds(ms) to wait for pkt,

 or how long to loop reading packets and calling the user

 supplied callback.

 PCAP_RAW 2 = cooked mode

 PCAP_PROTO ip,ipv6,arp,rarp,802.2,802.3,lat,dec,atalk,aarp,ipx,x25

 PCAP_MADDR requires hex string which will override PCAP_PROMISC

 PCAP_FRAMES greater than 0 up to 32768, "max" is equiv to 32768. Setting

 PCAP_FRAMES to 0 will disable the ring buffer.

 PCAP_VERBOSE print informative messages, since old app doesn't see them.

 PCAP_STATS print pcap statistics to stderr every PCAP_PERIOD ms.

Agilent Labs Technical Report 38

 Stats will also be printed whenever pcap_read, pcap_dispatch,

 and pcap_loop return to the calling program.

 PCAP_TIMEOUT return errno "ETIMEDOUT" when packet time is greater than

 value provided (eg PCAP_TIMEOUT=1044406300 will cause

 tcpdump to quit on Mon Feb 4 17:51:40 MST 2003).

 PCAP_PERIOD milliseconds between stats (will not cause pcap_dispatch

 to return, will generate stats).

2) If static libraries are being used the application will need to be reloaded.

3) Or, one can write non-portable Libpcap based applications by calling a linux specific pcap

routine called pcap_ring_args which initializes ebuf prior to calling pcap_open_live as a way of

passing in extra ring related arguments (Not recommended).

 The new patch can coerce live statistics using the environment variable 'PCAP_STATS'. The

format for PCAP_STATS is a 32 bit mask. Bit 0 is defined to be 0x00000001. The meaning of the

statistics and their corresponding mask bits are given below:

 0 secs since 00:00:00, Jan 1, 1970, followed by a '.' fraction (us)

 1 Packets processed

 2 Packets dropped

 3 Packets total

 4 Packets ignored

 5 Packets seen by device (in and out)

 6 Bytes seen by device (in and out)

 7 Bytes received

 8 Number of times poll system call called

 9 Current ring buffer index

 10 Maximum number of frames pulled from ring before having to poll

 11 Specious signal to pull frames from ring

 12 Elapsed time between first and last packet seen during sample time

 13 Received errors

 14 Received drops

 15 Transfer errors

 16 Transfer drops

 17 Multicast packet count (the Packets total includes this number)

 Setting PCAP_STATS=0x021fff means that the ring statistics line would print items 0 through

12 and item 17 in that order.

