
”Politehnica” University Timişoara
Computer Science and Engineering

Department

Graduation Diploma Project

Supervisors: Author:
Henk Uijterwaal (RIPE NCC) Dan Ardelean
Ioan Jurca (UPT)

2002

”Politehnica” University Timişoara
Computer Science and Engineering Department

Tracking Routing Black Holes with the RIS

2002

Acknowledgements

First I want to thank Henk Uijterwaal, New Projects Manager, my supervisor
at RIPE NCC, for all the support, the idea of this interesting project, the
guidance he provided during my trainee-ship at RIPE NCC and for all the
good comments he made on this paper. Next I want to thank Ioan Jurca,
my professor and my supervisor at ”Politehnica” University Timişoara for
all the good comments on this thesis, encouragement and support.

Special thanks go to René Wilhelm, Scientific Programmer, for all the
technical help and particularly for helping me with the graphic conversion
problems and also for convincing me to write this paper in LaTeX.

I would like to thank Daniel Karrenberg, Chief Scientist at RIPE NCC,
for all the comments made on my work and also for providing very good ideas
with black-holes plotting issues.

Also, special thanks go to Matthew Williams, Customer Liaison Engineer
at RIPE NCC who provided me with very good ideas, particularly concerning
reality checking on my project and also the two ratios that he suggested (5.5.2
and 5.5.3). I must also thank the two network engineers of the RIS project:
Arife Coltekin and Luigi Corsello for helping me with putting the black holes
project into production on the RIS’s servers. And of course, I have to thank
Olaf Kolkman, Scientific Programmer, for all the help in LaTeX and also
Reinhard and Andrew, two intern-students for all the productive talks and
help.

Finally, I want to thank all the New projects people at RIPE NCC for
being such a great team to work with.

iii

Contents

Acknowledgements iii

1 Introduction 1
1.1 About RIPE . 1
1.2 About RIPE NCC . 2
1.3 About the RIS project . 2
1.4 Terms used with RIS . 3

1.4.1 AS . 3
1.4.2 BGP . 3
1.4.3 GNU Zebra . 4
1.4.4 RRC . 5

1.5 RIS Architecture . 5

2 About black holes 7
2.1 Searching for a definition . 7
2.2 Some security aspects . 7
2.3 From BGP to black holes . 8
2.4 Possible ”uses” of black holes 9

3 Black holes searching strategy 11
3.1 More terms and explanations 11

3.1.1 Prefixes . 11
3.1.2 More specifics, aggregates 11
3.1.3 Prefix aggregation . 12

3.2 RIS dumps . 12
3.3 The strategy . 13
3.4 Development plan . 14

3.4.1 Take all prefixes from all the RRCs 14
3.4.2 Remove more specific announcements 14
3.4.3 Generate an IP view for all the Internet 15
3.4.4 Generate an IP view for a single peer 15

v

vi CONTENTS

3.4.5 Compare the two views, extract the difference 15

3.5 Displaying results . 16

3.5.1 Black Holes . 16

3.5.2 Statistics . 16

3.6 Comments on aggregation . 16

4 Tools 19

4.1 rrcpath . 20

4.1.1 RIS dumps location and organisation 20

4.1.2 Tool description . 20

4.2 route btoa . 22

4.3 getprefix . 22

4.4 rmspecific . 25

4.5 countip . 28

4.6 aggregate . 30

4.6.1 One step aggregation 30

4.6.2 Full aggregation . 33

4.7 getprefixgap . 34

4.8 drawspace . 42

4.8.1 The ROOT tool . 43

4.8.2 Tool description . 43

4.8.3 Graphics format conversion problems 48

4.9 Putting it all together . 48

4.10 Displaying results . 50

5 Generated statistic plots 51

5.1 Why generate statistic plots? 51

5.2 RIS statistic plots overview 51

5.3 RRD tool . 53

5.4 Variable description . 53

5.4.1 Total prefixes . 54

5.4.2 Prefixes after aggregation 55

5.4.3 Prefixes after removing specifics 56

5.4.4 Number of IP addresses 57

5.4.5 Prefixes after removing specifics and aggregation 58

5.5 Ratios . 59

5.5.1 Total prefixes versus Prefixes after specifics removal
and aggregation . 59

5.5.2 Prefixes after aggregation versus Prefixes after specifics
removal . 60

CONTENTS vii

5.5.3 Prefixes after specifics removal versus Prefixes after
specifics removal and aggregation 60

6 Results and Perspectives 63
6.1 Black holes tracking status . 63

6.1.1 Example 1 . 64
6.1.2 Example 2 . 66
6.1.3 Example 3 . 68

6.2 Perspectives . 68

A Full black holes list for 21/04/2002 00:00 71

B Full black holes list for 01/05/2002 00:00 87

C Full black holes list for 15/05/2002 00:00 93

Bibliography 97

List of Figures

1.1 RIS back-end architecture at RIPE NCC 6

2.1 BGP announcements example 9

3.1 Data flow in comparison process 15

4.1 Drawspace output example . 47
4.2 Black holes tracking data flow 49

5.1 Main statistic variables generation process 52
5.2 Number of total prefixes on all the RRCs

from May 2001 to May 2002 54
5.3 Number of aggregated prefixes on all the RRCs

from May 2001 to May 2002 55
5.4 Number of prefixes after removing more specifics on all the

RRCs from May 2001 to May 2002 56
5.5 Number of IP addresses observed on all the RRCs

from May 2001 to May 2002 57
5.6 Number of prefixes after removing specifics and aggregation

from May 2001 to May 2002 59
5.7 Ratio - Total prefixes versus Prefixes after specifics removal

and aggregation from May 2001 to May 2002 60
5.8 Ratio - Prefix after aggregation versus Prefixes after specifics

removal from May 2001 to May 2002 61
5.9 Ratio - Prefixes after specifics removal versus Prefixes after

specifics removal and aggregation from May 2001 to May 2002 61

6.1 Black holes example 1 - 21/04/2002 00:00 65
6.2 Black holes example 2 - 01/05/2002 00:00 67
6.3 Black holes example 3 - 15/05/2002 00:00 69

ix

List of Tables

1.1 RRC Locations . 5

3.1 Aggregation process example 12
3.2 BGP dump entry . 13

4.1 Tools used . 19
4.2 Tools developed . 20

5.1 A bogus announcement . 58

6.1 Statistics for Example 1 . 64
6.2 Statistics for Example 2 . 66
6.3 Statistics for Example 3 . 68

xi

Chapter 1

Introduction

This graduation diploma project is the result of my trainee-ship carried out at
RIPE NCC (Réseaux IP Européens - Network Coordination Centre) between
February 2002 and June 2002. The purpose of the project is to investigate
routing black holes using the data collected by the RIS project. The work
presented here allows further analysis of this interesting issue and can lead
to a better definition of the black-holes and their causes.

1.1 About RIPE

RIPE (Réseaux IP Européens) is an open collaborative community of organ-
isations and individuals, operating wide area IP networks in Europe and be-
yond. The objective of the RIPE community is to ensure the administrative
and technical coordination necessary to enable operation of a pan-European
IP network. RIPE does not operate a network of its own.

Numerous organisations and individuals participate in the work. The
result of the RIPE coordination effort is that an individual end-user is pre-
sented with a uniform IP service on his or her desktop irrespective of the
particular network his or her workstation is attached to. In May 2000, more
than 14.000.000 hosts were reachable via networks coordinated by RIPE.

RIPE has no formal membership and its activities are performed on a
voluntary basis, except the activities performed by the RIPE NCC. Most
of the work happens inside several working groups. Each of these working
groups has one or more mailing lists where relevant topics and questions can
be discussed. RIPE Working Groups meet 3 times a year during RIPE meet-
ings. Working groups topics include: routing, IPv6, DNS, RIPE database,
anti-spam and several others. [1]

1

2 Chapter 1. Introduction

1.2 About RIPE NCC

The RIPE NCC performs activities primarily for the benefit of the member-
ship in Europe, The Middle East, The North of Africa and parts of Asia;
mainly activities that its members need to organise as a group, even though
they may compete in other areas.

The RIPE Network Coordination Centre (RIPE NCC) is one of 3 Regional
Internet Registries (RIR) which exist in the world today, providing allocation
and registration services which support the operation of the Internet globally.

The services provided ensure the fair distribution of global Internet re-
sources in the RIPE NCC service region, required for the stable and reliable
operation of the Internet. This includes the allocation of Internet (IP) ad-
dress space, inter-domain routing identifiers (currently BGP autonomous sys-
tem numbers), and the management of reverse domain name space (currently
in-addr.arpa, ip6.arpa and ip6.int).

The RIPE NCC also provides services for the benefit of the Internet com-
munity at large including the development and maintenance of the RIPE
Database, administrative support for the RIPE community, and the devel-
opment and co-ordination of new projects.

The RIPE NCC currently supports 3150 Local Internet Registries (LIRs)
who collectively form the RIPE NCC membership. Membership is open to
anyone using the RIPE NCC services, primarily made up of Internet Services
Providers (ISPs). [1]

1.3 About the RIS project

The Research and Development Department at RIPE NCC is called New
Projects and its goal is to develop new projects which are useful to the RIPE
community and to the Internet community as a whole. One of the projects
currently developed is RIS (Routing Information Service).

There are a lot of tools to check issues related to Internet connectivity
like ping, traceroute, protocol analysers, router debugging commands, etc.
The main drawback of these tools is their lack of historical point of view. All
these are working on ”the time of use” basis. Another drawback is the one
related to mobility (with the exception of Looking Glasses, which are not
always publicly available, and they offer information about the AS where
they were set up).

The RIS project aims at breaking these frontiers by storing in a giant
database, routing information collected in several points throughout the
world, in particular in Internet exchanges. The giant database makes it

1.4. Terms used with RIS 3

possible for the user to visualise and analyse this data both from a global
point of view or from a particular point of view that is interesting for the
user.

1.4 Terms used with RIS

1.4.1 AS

Routing throughout an internetwork is similar to routing within a single sub-
net, but with some added complications. An internetwork can be abstracted
as a graph, with its nodes being multi-protocol routers and the connected
lines representing connections between those routers. Once the graph has
been constructed, known routing algorithms, such as the distance vector and
link state algorithms, can be applied to the set of multi-protocol routers. This
gives a two-level routing algorithm: within each network an interior gateway
protocol is used, but between networks, an exterior gateway protocol is used.
In fact, since each network is independent, they may all use different algo-
rithms. Because each network in an internetwork is independent of all the
others, it is often referred to as an Autonomous System (AS).

At the network layer, the Internet can be viewed as a collection of sub-
networks or ASs that are connected together. There is no real structure, but
several backbones exist. These are constructed from high-bandwidth lines
and fast routers. Attached to the backbones are regional (mid-level) net-
works, and attached to these are the LANs at several ISPs, companies and
organisations. [2]

An autonomous system contains subnetworks that share the same admin-
istration policy.

1.4.2 BGP

BGP stands for Border Gateway Protocol, defined in RFC1771. This proto-
col allows building of a routing table without loops, between the autonomous
systems. Routers within an AS can use other internal gateway protocols to
exchange routing information.

BGP uses the transport control protocol TCP (port 179). Two peer
routers which are using BGP establish a TCP connection and exchange cer-
tain messages that confirm the connection parameters. Afterwards, they will
exchange information related to how the packets can be routed to a certain
destination network. Mainly, this information is the indication of the com-
plete path that a packet should take to reach a certain destination. Such a

4 Chapter 1. Introduction

path is formed by the list of ASs that need to be crossed in the way to reach-
ing the destination. This information allows building of a cycle free table
where routing policies can be applied to force some restrictions concerning
inter-domain routing.

Any two routers sharing a TCP connection, on which they exchange BGP
information are called neighbour routers or peers. Neighbour routers can
initially exchange all the information contain in their BGP tables. Starting
from that point, the exchanged information will concern only changes to
those tables. This gives BGP an incremental property.

BGP keeps a so called version number of the BGP table. This number
has to be the same for all the neighbours of that router keeping a copy of
its BGP table. Supplemental packets are sent to verify a certain neighbour
state and to inform neighbours of errors or special conditions.

If an AS has more than one router that implements BGP and is peering
different ASs, then it can be used as a potential transit AS. It is necessary
for an AS to ensure that all the networks within that AS are reachable before
sending information related to those networks to another exterior peer. This
is accomplished by redistributing information to and from the internal link
protocols.

Usually two neighbour routers are directly connected, but in certain spe-
cial cases, a router can have an established session with an external router,
even though it has no direct connection to that router’s network. In this case
we are talking about multihop BGP.

When a router that supports BGP is receiving a notification concerning a
certain destination from another AS, BGP will decide which path to choose
to reach a certain destination. The decision is based on several attributes
like the next AS in the AS path, local preferences, where is the notification
coming from, the AS path length, metrics and others. BGP will always
advertise to its neighbours the path that it considers to be the best one. [5]
This is a key property of the BGP protocol. When a router is advertising
a network to its neighbours we say that it sends an announcement for that
network. If the routing information for that network is no longer valid, it
sends a withdraw, notifying its peers about this change in its BGP table.

The RIS project collects information related to BGP protocol advertise-
ments.

1.4.3 GNU Zebra

GNU Zebra is a software tool to build a router in software, distributed under
the GNU Public License which controls TCPIP based protocols. It sup-
ports BGP version 4 and some other protocols like RIPv1, RIPv2, OSPFv2.

1.5. RIS Architecture 5

Opposite with traditional monolithic architectures (like gated), Zebra offers
modularity. The RIS project is using Zebra to collect BGP related informa-
tion.

1.4.4 RRC

A Remote Route Collector (RRC) is basically a machine that is physically
placed in a strategic point (generally a big Internet exchange point). Zebra
runs on the RRC and collects routing BGP information. This information
is periodically transferred to RIPE NCC, where it is stored both as raw files
and as data into a mysql database.

What is very important is that these route collectors are not routing
servers. They are only collecting routing information. They do not send any
advertisement to the outside world (no announcements and no withdraws).
Their purpose is only to listen for BGP data and store it for transfer to RIPE
NCC.

1.5 RIS Architecture

Now that we understand the basic terms in the RIS project context, we can
start looking at the RIS architecture.

The RIS project relies on a number of remote route collectors. Currently
there are 8 route collectors, but this number is slightly increasing. The more
collectors the project has, the more data can be collected and so the more
complete view over the Internet BGP routing table can be achieved. Table
1.1 shows the 8 RRCs along with their locations.

RRC Location
rrc00.ripe.net RIPE NCC, Amsterdam
rrc01.ripe.net LINX, London
rrc02.ripe.net SFINX, Paris
rrc03.ripe.net AMSIX, Amsterdam
rrc04.ripe.net CIXP, Geneva
rrc05.ripe.net VIX, Vienna
rrc06.ripe.net NSPIXP2, Otemachi, Japan
rrc07.ripe.net Netnod, Stockholm
rrc08.ripe.net MAE-West San Jose, California, USA

Table 1.1: RRC Locations

6 Chapter 1. Introduction

Each RRC sends the collected data to the main project server at RIPE
NCC in Amsterdam. Here, all the data is published on the web as raw files.
Also, an insertion process into a mysql database is taking place, so that data
can be more easily queried and analysed. Figure 1.1 shows the project’s
back-end architecture at RIPE NCC.

SERVICE network

NEW insertion script

WEB

NEW insertion script

WEB

hme0

ABCOUDE

ge0

(logs all updates)

RIS master DB

� �� ���
� �� �� �
� �� �� �

OUT: web cgi

OUT: db data (mysql)
OUT: rawdata

DB OUT: diemen (black holes)

DB OUT: diemen(RISreport)

DB IN: rrc00 (mysql data)

IN: rrc02-07 (rawdata)

� �� �� �
� �� �� �

� �� ���

DEVEL network (193.0.0.160/27)

DIEMEN (NEW HW)

-experimental web

rrc00 (NEW HW)

- data insertion

- bgpd

HALFWEG

RIS slave DB

(polls for updates)

web sync (master)

rawdata sync (master)

DB sync (slave)

eth1(acenic)
eth0100BaseTX

ext disk 1

RAID

ext disk 2

mammoth

-experimental mysql
-experimental bgpd
-black holes

-risreport execution

updb.ris.ripe.net
abcoude.ripe.net halfweg.ripe.net

data.ris.ripe.net
www.ris.ripe.net

1000BaseFX 100BaseTX
download rate limit

db.ris.ripe.net

Figure 1.1: RIS back-end architecture at RIPE NCC

The RIS back-end architecture currently relies on 4 dedicated servers.
Two of them (Halfweg and Abcoude) are connected in the RIPE NCC’s
service network and the other two (Diemen and RRC00) are connected to
the development network.

The two main servers Halfweg and Abcoude are functioning according
to a load balancing scheme, each of them being able to take over the tasks
usually performed by the other. RRC00 is, historically speaking, the first
remote route collector of the RIS project. It is used as a development and a
testing platform for the generic RRC configuration.

The Diemen server is dedicated to services such as RIS Report, analysis,
research and development. This is the place where the utilities for the black
holes report run and which are further explained in this paper.

Chapter 2

About black holes

2.1 Searching for a definition

From the very beginning I must say that the black holes subject is a research
related one. This is mainly the reason why there is no exact, clear and
generally adopted definition of a black hole.

A rough definition would be that a black hole is a block of the IP address
space for which there is no relevant routing information in a particular routing
table, right in the point where that information should have existed. In other
words a certain entity is considered to be the destination for that block, but
the entity itself does not know how to route that block.

2.2 Some security aspects

Routing is the process by which a packet is send from a location to another
over various intelligent elements. Each packet has a source and a destination
and so the routing process on each hop host determines the path that a
packet has to take to reach its destination. The routing process on the
Internet can be divided in two main categories: local routing and wide-area
routing. Local routing takes the packet to a host on a certain local network
when this packet has reached that network. Wide-area routing is concerned
about the inter-network transport.

One of the problems that still needs solving from a practical point of
view is the wide-area routing security. Several studies are concentrating
on authenticating advertisements that a router sends out. Certain wide-
area routing protocols (like BGP) have tried at a certain moment to address
these issues in conjunction with Internet routing. Still, some fundamental
questions about routing security include the following [6]:

7

8 Chapter 2. About black holes

• Does the wide-area routing security reduce to a simple problem of au-
thentication, or it is more a problem related to the protocol itself? In
the special case of the wide-are routing, is the threat coming from an
attacker who deliberately injects false routes into the Internet infras-
tructure, or is more an issue that involves building a protocol extension
to BGP that would help in case of operation errors?

• Who are those who can produce real threats in such a case, then?
Generally speaking, large scale attacks in BGP area involve access to
a router connected in an Internet Exchange Point, on a high speed
backbone. So, in this case the question is if these entities are vulnerable
or we should concentrate more on those who have legitimate access
to those routers? Nick Feamster [6] thinks about the fired network
administrators of huge Internet Service Providers.

2.3 From BGP to black holes

BGP is used to distribute routing information on the Internet. From BGP
perspective, the Internet consists of entities called ASs. Each AS has its own
rules when it comes to internal routing. Usually the interior gateway proto-
cols are not suitable for use with the large Internet scale, because they require
a complete view of the entire topology or they produce a large amount of
traffic because they are sending messages on each output interface. Contrary,
BGP has mechanisms which prevent routing cycles among the autonomous
systems and it is scalable because of its incremental nature: once the ex-
isting routes are synchronised, only advertisements like announcements and
withdraws are transferred.

The basic idea is that the Internet is partitioned in administrative do-
mains (ASs) and that each AS announces to the exterior world the set of
networks that it knows information about and is willing to share this infor-
mation with its peers.

For example, in Figure 2.1, AS100 knows how to route the 193.0.0.0/8
network and AS200 knows how to route the 194.0.0.0/8. Therefore, they
will send announcements concerning these networks to their peer - AS300.
AS300 will then announce these networks to AS400 which it is peering with.
So, AS400 will learn that in order to get to 193.0.0.0/8 and 194.0.0.0/8, it
first has to transit AS300.

An AS can agree on being a transit AS (like AS300 in our example):
if an AS gathers information about how to reach a certain network and if
the policy of that particular AS allows it, it will announce that network to

2.4. Possible ”uses” of black holes 9

AS100

AS200

AS300 AS400

193.0.0.0/8 ASPATH: 100

194.0.0.0/8 ASPATH: 300 200

193.0.0.0/8 ASPATH: 300 100

194.0.0.0/8 ASPATH: 200

Figure 2.1: BGP announcements example

its external peers and will also allow traffic to that network to be routed
thorough itself.

BGP is, in this context, a vector oriented protocol because every an-
nouncement includes the ASPATH attribute. This attribute contains the list
of ASs that need to be crossed in order to reach the announced network. The
ASPATH attribute allow easy detection of loops. Generally, vector oriented
protocols scale linearly with the number of nodes (in the BGP case, ASs),
while link state oriented protocols scale with the square number of nodes.

The problem with BGP is that is not perfect and we can think of several
threats that can come from different sources.

When a certain AS sends an announcement concerning a network that
it has no routing information for, we say that it is announcing a black hole.
Each peer receives a notification corresponding to that network and the sent
packets with that destination will be routed towards the originating AS,
where packets will be ignored. Producing a black hole is in this case a very
”efficient” attack from the attacker’s point of view.

2.4 Possible ”uses” of black holes

An example [6] where we can talk about a possible use of black holes and in
a non-malicious manner is when an AS announces networks via BGP, and
in the next hop attribute it specifies an address where all the traffic to that
destination will be ignored. This can be used to diminish the effects of traffic
floods for example.

Unfortunately this action can be also used to direct an attack towards
a certain network. The one that is planning the attack can create such
a black hole by announcing a route to a destination which will ignore the
traffic. In this case all the traffic is redirected and the actual network becomes
unreachable.

10 Chapter 2. About black holes

Another type of attack [6] can be conducted in such a way that traffic to
a certain destination is redirected by an attacker to a machine that performs
the same functionality as one in the real destination network. This allows the
attacker to pretend to be someone that is not. Typically this attack can be
conducted towards a web site and the consequences can be severe, specially
if we are talking about an e-commerce site.

Given all these, we can see an immediate need for a system that would be
able to detect this sort of black holes and then analyse them in order to see if
their source is an intended attack, a miss-configuration or an administrative
action. This will allow appropriate action to be taken in order for the problem
to be solved.

Chapter 3

Black holes searching strategy

This project tries to narrow the search for black holes by extracting a set of
IP zones where the black holes are most likely to be found. I will explain in
the following sections of this chapter how we can use data collected by the
RIS project to accomplish this.

But first we should take care of some more terms which can lead to a
better understanding of the whole process.

3.1 More terms and explanations

3.1.1 Prefixes

An IP address is a 32-bit number consisting of a network part (N bits) and
a host part (32-N bits).

A prefix in the BGP context corresponds to a network address. A net-
work address is a 32-bit number, written usually in dotted decimal notation,
accompanied with a value that specifies the number of bits in the 32-bit
number which corresponds to the network part. The remaining bits (up to
32) must be 0. For example 1.0.0.0/8 gives information about all the IP
addresses from 1.0.0.0 to 1.255.255.255.

3.1.2 More specifics, aggregates

If a certain prefix is completely covered by another prefix, we call the first to
be a more specific of the second. For example the prefix 1.1.1.0/24 covers the
IP zone 1.1.1.0 to 1.1.1.255. The prefix 1.0.0.0/8 covers the IP zone 1.0.0.0 to
1.255.255.255. As we can clearly see, the first range is completely included in
the second one, so we can say that 1.0.0.0/24 is a more specific of 1.0.0.0/8.
We also call the 1.0.0.0/8 an aggregate of 1.1.1.0/24.

11

12 Chapter 3. Black holes searching strategy

3.1.3 Prefix aggregation

Prefix aggregation involves expressing 2 or more prefixes by a single prefix.
The best way to describe this is by using an example: if we have two pre-
fixes 1.1.1.0/25 and 1.1.1.128/25 the result of the aggregation process will be
1.1.1.0/24. Table 3.1 shows this aggregation process in more detail.

Prefix Start IP End IP
1.1.1.0/25 1.1.1.0 1.1.1.127
1.1.1.128/25 1.1.1.128 1.1.1.1.255
1.1.1.0/24 (aggregate) 1.1.1.0 1.1.1.255

Table 3.1: Aggregation process example

Not all the prefixes that have adjacent borders can be aggregated. For
example: 1.1.1.128/25 and 1.1.1.2.0/25 share one zone border, but still they
cannot be aggregated because more than 1 bit of their network part is differ-
ent. Also, two prefixes which do not have the same number of network bits
cannot be aggregated, even in the case of a common border. For example:
1.1.1.128/25 and 1.1.1.2.0/24.

3.2 RIS dumps

For this study we have used the first 6 RRCs of the RIS project. By combining
the 6 views over the Internet we can achieve a single, fairly consistent view
of all the prefixes (networks) announced on the Internet.

The RRCs are dumping their BGP table each 8 hours. These dumps
are publicly available on the RIS project site. The dump files are in MRT
(Multi- Threaded Routing Toolkit) format and basically contain each entry
in the BGP table by the time of the dump. Each entry refers to a prefix that
the RRC has information about. This information was received by the RRC
from a particular AS that it is peering with.

The mrt toolkit contains a tool - route btoa - which can be used to convert
the dump from the binary format to the ASCII format. Table 3.2 shows an
example of a BGP dump entry.

If we extract from such an entry, only the announced prefix (i.e. in
the case of the example from Table 3.2 - 62.68.0.0/19), we will end up,
after processing the whole dump file, with a lot of prefixes. These prefixes
combined, give an indication of the IP space covered by the announcements
from the entity that created the file.

3.3. The strategy 13

TIME: 05/01/02 08:38:19
TYPE: TABLE DUMP/INET
VIEW: 0
SEQUENCE: 16
PREFIX: 62.68.0.0/19
FROM: 193.203.0.65 AS1273
ORIGINATED: 04/26/02 05:02:27
ORIGIN: IGP
ASPATH: 1273 6735
NEXT HOP: 193.203.0.65
MULTI EXIT DISC: 100
COMMUNITY: 1273:8000 6735:90
STATUS: 0x1

Table 3.2: BGP dump entry

In our case, if we process a dump file from a certain RRC, this will give
us an image over the IP space covered (seen) by that RRC. If we further look
also at the FROM field in the BGP entry, we can determine which prefix
announcement has been received from which peer.

3.3 The strategy

In searching for black holes we first rely on the information provided by a
full feed router. A full feed router is a router that holds the BGP table
for virtually all the Internet. RIS’s route collectors are peering with such
routers.

We have seen earlier how we can obtain a view of the covered Internet
space by looking at the prefix announced in each BGP dump entry. If we
also look and separate the prefixes that are coming from a peer that gives
full feeds, then, ideally, the IP area designated by the full feed would have
to be the same as the combined all RRC IP area. But of course this is not
happening in the real world. More, the full feed routers show differences
among their BGP table.

The question here is where do these differences come from? Some might
come from the propagation delay of a certain announcement, some might
come from the different filters that are applied by that particular router.

If we do a comparison between the IP space observed on all the RRCs
and the space observed by a particular peer that gives full feeds we will end

14 Chapter 3. Black holes searching strategy

up with a difference. A difference that in theory should not be there, or
anyway should be very small (if only propagation delays are involved). But,
as we will see, when we will look at the results, this IP space difference is
not small, or anyway not that small so that it all comes from propagation
delays.

We will further call this space difference - black holes. Although these
are not reflecting the exact black holes that I have described earlier, there
are reasons to believe that real black holes are contained in this difference.
The main two points that we rely on here are on one hand, the ability of a
BGP router to filter suspicious announcements and on the other hand the
historical character of the RIS.

3.4 Development plan

The development plan consists of the following steps:

• Take all prefixes from all the RRCs

• Remove more specific announcements

• Generate an IP view for all the Internet (RIS perspective)

• Generate an IP view for a peer that gives full feeds

• Compare the two views, extract the difference

This plan is also described in the diagram shown in the Figure 3.1.

3.4.1 Take all prefixes from all the RRCs

This task is achieved by using the dump file storage system of the RIS.
Due to the fact that dumps are generated for each RRC at 8 hours intervals,
processing should be done each 8 hours, by taking into account the last dump
from each RRC. After processing a dump file, duplicates must be removed
(it is possible to have more announcements for a certain prefix, with different
attributes).

3.4.2 Remove more specific announcements

We have talked earlier about more specifics. In the case of analysing prefixes
from parsing the dump files we will end up with a lot of prefixes which have
more specifics. To have only one appearance of an IP address in the IP view,
we will need to remove those more specifics.

3.4. Development plan 15

RRC00 RRC01 RRC02 RRC03 RRC04 RRC05

Remove specifics
Generate Global View

Dump Dump Dump Dump Dump Dump

Filter peer
Remove Specifics

Generate Peer View

Compare Views

Black Holes
Report

Figure 3.1: Data flow in comparison process

3.4.3 Generate an IP view for all the Internet

After removing specifics we will end up with a list of unique prefixes. In this
list, each IP address will appear only once (as a part of certain prefix). This
view will allow us to do more statistics which derive from it. How many pre-
fixes are announced? How many prefixes are there after removing specifics?
How many are there are after aggregation or after removing specifics and
aggregation? Please refer to the following chapters for more explanations on
that.

3.4.4 Generate an IP view for a single peer

All the procedures described above can be also carried out for a single peer.
The remark is that in the initial step we will need to take care such that
only prefixes originated from that peer would follow the remove duplicates
and remove specifics chain.

3.4.5 Compare the two views, extract the difference

When comparing the two resulted views - the global view and the view from a
full feed we will seek for a difference in IP ranges. An IP range will result for
example when we have a prefix in the global view and one of its more specifics
in the peer view. In the case of 1.0.0.0/8 (global) and 1.0.0.0/24 (peer) the
result will be the range 1.0.1.0 - 1.255.255.255 which can be expressed using

16 Chapter 3. Black holes searching strategy

prefixes by consequently breaking the initial prefix in smaller prefixes. What
you will see in the resulting black holes report will be only IP ranges.

3.5 Displaying results

At the point when we have all this data, the question is how to display it in
a form that would be useful and would allow us to have a general view over
this issue.

3.5.1 Black Holes

For the black holes the aim was to publish this data on the web, both as IP
ranges, and as a graph. The graph would show the black holes distribution
over IP space. So, the IP space would have to be represented over the X axis.

3.5.2 Statistics

For the statistics generated along with the black hole tracking process, we
have decided to insert this data into rrds - Round Robin Databases. This
would allow easy, on the fly, generation of several plots. These statistics can
be also used as global status report over the RIS project.

3.6 Comments on aggregation

We have seen what aggregation is, earlier in this chapter. As it can be
observed from the development plan, for the black holes we do not use the
aggregation technique. This is not needed for the comparison process because
after removing specifics each IP address is represented only once in the view
that we have over the covered IP space. Still, aggregation is very useful
in generating statistics. Aggregating the IP space before or after removing
specifics will allow us to measure the global effort of ASs, on one hand, and
of registries on the other hand.

With this in mind, we have included in the development plan also the
necessary tools that will perform the aggregation process. A remark though,
has to be made here: as we have not aimed to gather more information from
the dump file, but the prefix announced, when the aggregation is performed,
the originating AS is not taken into account. That means that we can only
have a global view over a virtual aggregation process that is taking place
over all the prefixes announced.

3.6. Comments on aggregation 17

That means that no router can reach the limit of the aggregation process
performed by not taking in account the originating AS. We can consider
those aggregated prefixes as a lower limit, the limit beyond we cannot cross.
This is why these prefixes will be used further in deploying ratios that will
show a global effort: either coming from the registries, either from the ASs.

This will be further discussed in the following chapters.

Chapter 4

Tools

To implement the system according to the scheme presented in Chapter 3
several tools were used and others were developed. Table 4.1 shows the tools
used to implement the system and Table 4.2 shows the tools developed on
the way to tracking black holes.

Tool Description
route btoa Tool to convert dump files from binary format to ASCII

format. [12]
Flex Tool to generate fast lexical analysers. [13]
ROOT Tool that provides a set of Object Oriented frameworks

with all the functionality needed to handle and analyse
large amounts of data in an efficient way. [14]

RRDTool RRDTool is a package that deals with Round Robin
Databases - stores, retrieves, produces time graphs. [15]

ps2gif Tool to convert from Postscript format to gif format.
Written by René Wilhelm (rene@ripe.net).

mogrify Tool used for graphics tuning. [16]

Table 4.1: Tools used

The main idea behind the developed tools was not to build a giant tool
that will do all the work, but to have small tools for various tasks and to
glue them together using bash and perl scripts. All the tools presented in
Table 4.2 were developed in C and C++. Tools that were used directly in the
development process were Flex for parser code generation and ROOT (more
specifically ROOT libraries, which were used to link with the developed tool).

This chapter will discuss these tools, providing short descriptions of the
tools used and a more in depth description of the tools developed. We will

19

20 Chapter 4. Tools

Tool Description
rrcpath Gets the URL of the latest rrc dump
getprefix Gets prefixes from a converted ASCII-dump file
rmspecific Removes more specifics from a sorted prefixes file
aggregate Aggregates (one step) a file containing prefixes
countip Counts the number of IP addresses in a file containing

prefixes
getprefixgap Gets the difference in IP ranges by comparing two pre-

fixes files
drawspace On the fly generation of black holes IP space graph.

Table 4.2: Tools developed

make our tools road map from the process of getting the data from the RIS
site to processing it and displaying it.

4.1 rrcpath

The rrcpath tool gets the file name of the latest rrc dump taking as argument
a reference point in time.

4.1.1 RIS dumps location and organisation

All RIS dump files can be located at [11]. The data is organised over a time
scheme. There are directories for RRCs, years and months. Each month
directory contains all the dumps and all the updates collected by a cer-
tain RRC for a specific month. Dumps have the following naming format:
bview.<date>.<time>.gz and the updates update.<date>.<time>.gz.

4.1.2 Tool description

The rrcpath tool places itself in a reference point in time and provides the
user with the latest dump or update URL path. It can be used in several
applications that are using the RIS rawdata. The command line format is
the following:

rrcpath dump|update <rrc_number> <date.time>

Date and time should be expressed in the format yyyymmdd.hhmm. This
utility first fetches the directory listing from the RIS web server into a tem-
porary file. After that, it parses the file using code generated by FLEX.

4.1. rrcpath 21

Here is the description file for the FLEX analyser:

%{

#include <stdio.h>

#include "flex.h"

int yycode;

%}

%option noyywrap

%option caseless

%option debug

%option yylineno

BVIEW "bview."[0-9]{8}"."[0-9]{4}

UPDATE "updates."[0-9]{8}"."[0-9]{4}

%%

{BVIEW} { yycode = FLEX_BVIEW; return; }

{UPDATE} { yycode = FLEX_UPDATE; return; }

. { }

\n { }

<<EOF>>{ yycode = FLEX_EOF; return; }

%%

This helps the generated parser to identify the ”bview” and ”update”
patterns. Further analysis over time and date issues are addressed in the C
code.

The main problem here is when the dump or update is the month, or even
the year before the reference time passed as argument in the command line.
In that situation, a new file with the needed directory listing is fetched from
the web server. This problem can better be seen with the following example:

$ rrcpath dump 01 20010101.0001

http://data.ris.ripe.net/rrc01/2001.12/bview.20011231.2244.gz

In the example above we ask rrcpath to give the URL for the latest dump
from RRC01 given as time reference point 01/01/2002 at 00:01am. What
rrcpath does is that it fetches the directory contents for 01/01/2002 and when
it parses the file it doesn’t find any dump previous to the time specified (i.e.
00:01), so it decides to fetch the directory contents for one month before,

22 Chapter 4. Tools

but because the reference point is in January, it has to go back one year and
fetch the directory listing for December 2001. It parses the file and it finds
out that the correspond dump file is bview.20011231.2244.gz, so it prints the
file’s full URL on the standard output.

4.2 route btoa

Route btoa is a standard mrt tool which converts a binary dump file into
an ASCII format. It is widely used when extracting information from mrt-
format file types. This tool is part of the mrt - Multi-Threaded Routing
Toolkit.

4.3 getprefix

Getprefix is developed to parse a ASCII converted dump file. It mainly uses
a flex generated parser to identify the atoms in the route btoa generated
ASCII file. It can also filter on ”per peer” basis. The command line syntax
is the following:

getprefix [-<as number>] [<file>]

If the as number part is missing all the prefixes are extracted. If an
as number is specified, only the prefixes learned from that particular AS
will appear in the result. If the file is not specified, standard input will be
assumed as containing route btoa generated file.

The definition for the lexical analyser is the following:

/* scanner for route_btoa generated ascii files */

%{

#include <stdio.h>

#include "flex.h"

int yycode;

%}

%option noyywrap

%option caseless

%option debug

%option yylineno

4.3. getprefix 23

TIMESTAMP time:

PREFIXSTAMP prefix:

PREFIX [0-9]+"."[0-9]+"."[0-9]+"."[0-9]+"/"[0-9]+

FROMSTAMP from:

AS "AS"[0-9]+

%%

{TIMESTAMP} { yycode = FLEX_TIMESTAMP; return; }

{PREFIXSTAMP} { yycode = FLEX_PREFIXSTAMP; return; }

{PREFIX} { yycode = FLEX_PREFIX; return; }

{FROMSTAMP} { yycode = FLEX_FROMSTAMP; return; }

{AS} { yycode = FLEX_AS; return; }

. { }

\n { }

<<EOF>>{ yycode = FLEX_EOF; return; }

%%

The C code for getprefix is fairly simple using the flex generated routines:

#include <stdio.h>

#include <string.h>

#include "flex.h"

char as[100]="";

char prefix[30];

int main(int argn,char **argv) {

int i;

yy_flex_debug = 0;

yycode = FLEX_UNKNOWN;

yyin = stdin;

for(i=1;i<argn;i++) {

if(strncmp(argv[i],"-",1)==0) {

strcpy(as,argv[i]+1);

} else {

yyin = fopen(argv[i], "r");

if(yyin==NULL) {

printf("Unable to open %s\n",argv[i]);

exit(1);

24 Chapter 4. Tools

}

}

}

yylex();

while(yycode!=FLEX_EOF) {

while(yycode!=FLEX_PREFIXSTAMP && yycode!=FLEX_EOF)

yylex();

if(yycode == FLEX_PREFIXSTAMP) {

yylex();

if(yycode!=FLEX_PREFIX) {

fprintf(stderr,"Error in source file at

line %i Exiting ... \n",

yylineno);

exit(1);

}

strcpy(prefix,yytext);

while(yycode != FLEX_FROMSTAMP) {

yylex();

if(yycode==FLEX_TIMESTAMP) {

fprintf(stderr,"Error in source file -

no origin as for prefix %s at line %i

Exiting ...",prefix,yylineno);

exit(1);

}

}

while(yycode != FLEX_AS) {

yylex();

if(yycode==FLEX_TIMESTAMP) {

fprintf(stderr,"Error in source file -

no origin as for prefix %s at line %i

Exiting ...", prefix,yylineno);

exit(1);

}

}

if(strcasecmp(as,yytext)==0 || strlen(as)==0) {

printf("%s\n",prefix);

yylex();

}

}

4.4. rmspecific 25

}

return(0);

}

Getprefix prints all the prefixes announced, according to the given option
(all or just on per peer basis) to the standard output. Each prefix is printed
on a single line. A typical (partial) output would be:

9.141.128.0/24

32.0.0.0/8

53.244.0.0/19

62.13.192.0/19

62.40.128.0/19

62.40.160.0/19

62.40.192.0/19

4.4 rmspecific

When starting to develop rmspecific - the tool that removes more specifics
prefixes from a file - the following assumption was made: the prefixes file is
sorted by each digit in the prefix and mask starting from left to right. This
is achieved by a combination of standard Unix tools like awk and sort. The
command line syntax is:

rmspecific [<sorted prefixes file>]

Having the prefixes file sorted in this way, makes it easy for the rmspecific
tool to remove specifics in only one file parsing. Sorting the prefixes file in
the way described above yields to the same result as the sort over a binary
representation of prefixes.

We can easily check if one prefix is included into another. If the prefixes
file is sorted ascendly then we can always keep track of a single prefix, called
the current prefix. If the next prefix read is included (as IP space) in the
current prefix, rmspecific reads the next prefix to be analysed. If the next
prefix read is not included it means that the current prefix is a maximum
aggregate, so it gets printed to standard output, and the prefix read becomes
the current prefix.

Here is the C code of rmspecific:

#include <stdio.h>

26 Chapter 4. Tools

#define BUFSIZE 100

#define BYTE unsigned char

FILE *in;

typedef struct prefix_struct {

BYTE addr[4];

BYTE mask;

char fulladdress[100];

} prefix;

void fillprefix(prefix *p,char *str);

void showprefix(prefix *p);

void copyprefix(prefix *dest,prefix *s);

int notincluded(prefix *curent,prefix *above);

int main(int argn, char **argv) {

prefix above;

prefix curent;

char buffer[BUFSIZE+1];

if(argn>1) {

in = fopen(argv[1], "r");

if(in==NULL) {

printf("Cannot open %s",argv[1]);

exit(1);

}

} else {

in = stdin;

}

fillprefix(&above,"0.0.0.0/255\n");

while(!feof(in)) {

if(fgets(buffer,BUFSIZE,in)==NULL) break;

fillprefix(&curent,buffer);

if(notincluded(&curent,&above)) {

showprefix(&curent);

copyprefix(&above,&curent);

}

}

4.4. rmspecific 27

}

void fillprefix(prefix *p,char *str) {

sscanf(str,"%d.%d.%d.%d/%d",

&p->addr[0],

&p->addr[1],

&p->addr[2],

&p->addr[3],

&p->mask);

strcpy(p->fulladdress,str);

}

void showprefix(prefix *p) {

printf("%s",p->fulladdress);

}

void copyprefix(prefix *dest,prefix *source) {

dest->addr[0] = source->addr[0];

dest->addr[1] = source->addr[1];

dest->addr[2] = source->addr[2];

dest->addr[3] = source->addr[3];

dest->mask = source->mask;

strcpy(dest->fulladdress,source->fulladdress);

}

int notincluded(prefix *curent,prefix *above) {

int rest;

int i;

if(curent->mask < above->mask) return 1;

if(curent->mask == above-> mask) return 1;

// compare first above->mask bits

i=0;

for(i=0;i<(above->mask)/8;i++)

if(curent->addr[i]!=above->addr[i]) return 1;

rest = above->mask % 8;

if((curent->addr[i] >> (8-rest)) !=

(above->addr[i] >> (8-rest)))

28 Chapter 4. Tools

return 1;

return 0;

}

There are 4 functions defined in the program. I will give a short descrip-
tion of each one:

• fillprefix - takes as argument a prefix structure and a string. It pro-
cesses the string (containing a prefix) and it fills the structure with the
corresponding IP digits and mask.

• showprefix - simple function to print a prefix represented as a prefix
structure.

• copy prefix - simple function to copy the contents of one prefix structure
to another prefix structure.

• notincluded - the function that does the job: it verifies if one prefix is
included into another.

The main idea around rmspecific is having the prefix file ordered. This
avoids multiple file parsing procedures and makes rmspecific very fast even
for fairly large files.

4.5 countip

Countip parses a prefix file and reports the total number of IP addresses seen.
It opens the input file, it parses the file, fills a prefix structure using the same
fillprefix function as in rmspecific, calculates the number of IP addresses per
prefix and adds this number to a global counter. Finally, it prints the global
counter to standard output. Here is the abbreviated source code:

#include <stdio.h>

#define BUFSIZE 100

#define BYTE unsigned char

FILE *in;

unsigned int count;

unsigned int pow2(int exp);

4.5. countip 29

typedef struct prefix_struct {

BYTE addr[4];

BYTE mask;

char fulladdress[100];

} prefix;

void fillprefix(prefix *p,char *str);

int main(int argn, char **argv) {

prefix curent;

char buffer[BUFSIZE+1];

if(argn>1) {

in = fopen(argv[1], "r");

if(in==NULL) {

printf("Cannot open %s",argv[1]);

exit(1);

}

} else {

in = stdin;

}

count = 0;

while(!feof(in)) {

if(fgets(buffer,BUFSIZE,in)==NULL) break;

fillprefix(&curent,buffer);

count = count + pow2(32-curent.mask);

}

printf("%u\n",count);

}

unsigned int pow2(int exp) {

int result = 1;

return result << exp;

}

30 Chapter 4. Tools

4.6 aggregate

The aggregate tool is used to aggregate a sorted prefixes file. Because of its
nature, the aggregation cannot be performed in only one step (one parse of
the input file). Actually the aggregate tool does only one parsing. It reports
then the number of aggregations performed. Based on this, a simple script
can do the full aggregation process by repeating the above procedure until
the number of aggregations performed is 0. We will further discuss the two
aspects in the following subsections.

4.6.1 One step aggregation

This is actually the task of the aggregate tool. It takes a sorted prefixes
file as input and it starts parsing it. Whenever it finds two prefixes that
can be aggregated together, it will aggregate those two and it will only print
the resulted aggregated prefix. The sorted prefixes file helps a lot in this
context. If two prefixes are to be aggregated we will find them in consecutive
positions. Here follows the C source:

#include <stdio.h>

#define BUFSIZE 100

#define BYTE unsigned char

FILE *in;

typedef struct prefix_struct {

BYTE addr[4];

BYTE mask;

char fulladdress[100];

} prefix;

void fillprefix(prefix *p,char *str);

void showprefix(prefix *p);

void copyprefix(prefix *dest,prefix *s);

int canaggregate(prefix *curent,prefix *above);

int aggregate_count;

int main(int argn, char **argv) {

4.6. aggregate 31

prefix above;

prefix curent;

char buffer[BUFSIZE+1];

BYTE aggreg;

aggregate_count = 0;

if(argn>1) {

in = fopen(argv[1], "r");

if(in==NULL) {

printf("Cannot open %s",argv[1]);

exit(1);

}

} else {

in = stdin;

}

if(!feof(in)) {

fgets(buffer,BUFSIZE,in);

fillprefix(&above,buffer);

}

else exit(0);

if(!feof(in)) {

fgets(buffer,BUFSIZE,in);

fillprefix(&curent,buffer);

}

else {

showprefix(&above);

exit(0);

}

do {

aggreg = canaggregate(&curent,&above);

if(!aggreg) {

showprefix(&above);

copyprefix(&above,&curent);

}

if(fgets(buffer,BUFSIZE,in)!=NULL);

fillprefix(&curent,buffer);

} while(!feof(in));

if(aggreg) showprefix(&above);

32 Chapter 4. Tools

else showprefix(&curent);

if(aggregate_count==0) return 0;

else return(1);

}

void fillprefix(prefix *p,char *str) {

sscanf(str,"%d.%d.%d.%d/%d",

&p->addr[0],&p->addr[1],

&p->addr[2],&p->addr[3],

&p->mask);

strcpy(p->fulladdress,str);

}

void showprefix(prefix *p) {

printf("%s",p->fulladdress);

}

void copyprefix(prefix *dest,prefix *source) {

dest->addr[0] = source->addr[0];

dest->addr[1] = source->addr[1];

dest->addr[2] = source->addr[2];

dest->addr[3] = source->addr[3];

dest->mask = source->mask;

strcpy(dest->fulladdress,source->fulladdress);

}

int canaggregate(prefix *curent,prefix *above) {

int rest;

int i;

if(curent->mask != above-> mask) return 0;

i=0;

for(i=0;i<(above->mask-1)/8;i++)

if(curent->addr[i]!=above->addr[i]) return 0;

rest = ((above->mask)-1) % 8;

if((curent->addr[i] >> (8-rest)) !=

(above->addr[i] >> (8-rest)))

return 0;

4.6. aggregate 33

above->mask = above->mask-1;

sprintf(above->fulladdress,"%d.%d.%d.%d/%d\n",

above->addr[0],

above->addr[1],

above->addr[2],

above->addr[3],

above->mask);

aggregate_count++;

return 1;

}

The function canaggregate is the core function of this tool. It takes two
prefixes, and it returns true if they can be aggregated and false if they cannot
be. If the prefixes can be aggregated, the aggregated prefix is returned in
the prefix structured pointed by the ”above” pointer.

The aggregate tool will print all the prefixes to the standard output. The
return value of the tool will show if any aggregation has been performed. If
no aggregation has been performed 0 is return, otherwise 1 is returned.

4.6.2 Full aggregation

In order to perform full aggregation over a prefix file, multiple steps (parsings)
have to be done. If the aggregate tool returns a 1 value, that means that at
least one aggregation was performed in the last step. The parsing process
over the file has to be repeated until no more aggregations can be performed.
This is achieved by using the following script:

#!/bin/bash

. include/paths

. include/timefuncs

until aggregate $1 > $tmps/aggregation00; do

mv $tmps/aggregation00 $1

done

This will ensure that at the end of this script’s execution, the file will be
completely aggregated. The only problem with this is the non-deterministic
time in which the operation is performed. Execution time may be different,
depending on the file contents. Still, tests have shown that this is not really a

34 Chapter 4. Tools

problem, because the aggregate tool operates quite fast (less than 1 second for
115k prefixes) and so there is no actual consistent drawback in performance
because of that. Also, on a regular file originated from an RRC, it takes
about 6-7 iterations (calls to aggregate) for the full aggregation process to
finish. So, fears that this aggregation process will affect the overall processing
time proven to be unfounded.

The aggregation process is not really useful in tracking black holes be-
cause, comparing IP space can be done after the removing specifics process,
but it helps in generating useful statistics which will be discussed in Chapter
5.

The aggregation tool can be also used wherever someone needs to ag-
gregate prefixes. It is very easy to use, and from what we have seen in
production, it is also very fast.

4.7 getprefixgap

Getprefixgap was design to finalise black holes tracking process. This is the
tool that produces the file containing the IP ranges representing the potential
black holes. It takes as arguments two prefixes files: one reference file and
one file to process. The command line syntax is:

getprefixgap -<reference file> [<file_to_process>]

The output consists of IP ranges, each IP range on one line. These IP
ranges represent the IP space that is present in the <file_to_process> and
is not in the <reference file>. One line of output has the following format:

<start_ip> <end_ip> <number of ip addresses in the range>

To better understand how this works, I will further show a short example.
We will have to define the reference file, the file to be processed and then see
the output of getprefixgap.

The reference file:

1.0.0.0/24

1.0.4.0/24

2.0.0.0/8

The file to process:

1.0.0.0/16

3.0.0.0/24

4.7. getprefixgap 35

Running getprefixgap against these two files would yield to the following
result:

1.0.1.0 1.0.3.255 768

1.0.5.0 1.0.255.255 64256

3.0.0.0 3.0.0.255 256

The first two ranges in the result come from the fact that in the file to
process we have the prefix 1.0.0.0/16 which is not completely covered in the
reference file. As we can see, there are two gaps in that space. The third
range comes from the 3.0.0.0/24 prefix which is not present at all in the
reference file, so it is converted to an IP range and listed as result.

The number of IP addresses contained in the range is redundant infor-
mation. This number can be obtained by ”subtracting” from the <end_ip>

the <start_ip>. Still, this number is very useful when generating statistics,
because having the number already in the file avoids the calculations to be
done each time the file is processed.

Here is the getprefixgap’s C source code:

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdlib.h>

#define BUFSIZE 100

#define BYTE unsigned char

#define IADDR uint32_t

#define IMASK unsigned int

#define TRUE 1

#define FALSE 0

typedef struct ipspace_struct {

IADDR start;

IADDR end;

} IPSPACE;

IADDR getstart(IPSPACE ipspace);

IADDR getend (IPSPACE ipspace);

36 Chapter 4. Tools

void setipspace(IPSPACE *result,IADDR start,IADDR end);

IADDR str2iaddr(char *dotnotation);

void str2ipspace(IPSPACE *result,char *dotnotation);

void showipspace(IPSPACE ipspace);

void showrest_in(void);

FILE *ref=NULL;

FILE *in=NULL;

int main(int argn, char **argv) {

IPSPACE s_ref;

IPSPACE s_in;

IPSPACE temp;

char buffer[101];

unsigned int s_ref_start,s_ref_end;

unsigned int s_in_start,s_in_end;

int i;

for(i=1;i<argn;i++) {

if(strncmp(argv[i],"-",1)==0) {

ref = fopen(argv[i]+1,"r");

if(ref==NULL) {

fprintf(stderr,"Unable to open the reference

file. Exiting ...\n");

exit(1);

}

} else {

in = fopen(argv[i], "r");

if(in==NULL) {

fprintf(stderr,"Unable to open %s\n",argv[i]);

exit(1);

}

}

}

if(ref==NULL) {

fprintf(stderr,"No valid reference file. Exiting. \n");

exit(1);

}

4.7. getprefixgap 37

if(in ==NULL) {

fprintf(stderr,"No valid input file. Exiting. \n");

exit(1);

}

if(fgets(buffer,100,ref)==NULL) {

printf("Empty reference file. Exiting ...\n");

exit(1);

}

else { str2ipspace(&s_ref,buffer); }

if(fgets(buffer,100,in) ==NULL) {

printf("Empty input file. Exiting ...\n");

exit(1);

}

else { str2ipspace(&s_in,buffer); }

do {

s_ref_start = getstart(s_ref);

s_ref_end = getend(s_ref);

s_in_start = getstart(s_in);

s_in_end = getend(s_in);

if(s_in_end < s_ref_start) {

// the in space is bellow the ref space

// show the in space

// read more in space

showipspace(s_in);

if(fgets(buffer,100,in)!=NULL)

str2ipspace(&s_in,buffer);

else exit(0);

} else

if(s_in_start > s_ref_end) {

// the ref space is bellow the in space

// read more ref space

if(fgets(buffer,100,ref)!=NULL)

str2ipspace(&s_ref,buffer);

else {

showipspace(s_in);

showrest_in();

38 Chapter 4. Tools

exit(0);

}

} else

if(s_in_start < s_ref_start) {

// the in space has a part bellow the ref space

// show that space

// modify in space accordingly

setipspace(&temp,s_in_start,s_ref_start-1);

showipspace(temp);

setipspace(&s_in,s_ref_start,s_in_end);

} else

if(s_in_end < s_ref_end &&

s_in_start >= s_ref_start) {

// the in space is included in the ref space

// modify the ref space

// read more in space

setipspace(&s_ref,s_in_end+1,s_ref_end);

if(fgets(buffer,100,in)!=NULL)

str2ipspace(&s_in,buffer);

else exit(0);

} else

if(s_in_end > s_ref_end &&

s_in_start >= s_ref_start) {

// the in space is larger then ref space

// redimension in space

setipspace(&s_in,s_ref_end+1,s_in_end);

} else {

// the in space is exactly the ref space

// read in space

// read ref space

if(fgets(buffer,100,in)!=NULL)

str2ipspace(&s_in,buffer);

else exit(0);

if(fgets(buffer,100,ref)!=NULL)

str2ipspace(&s_ref,buffer);

else { showrest_in(); exit(0); }

}

} while(!feof(ref) & !feof(in));

if(!feof(ref)) {

4.7. getprefixgap 39

showipspace(s_ref);

while(fgets(buffer,100,ref)!=NULL)

printf("%s",buffer);

}

return(0);

}

IADDR getstart(IPSPACE ipspace) {

return(ipspace.start);

}

IADDR getend (IPSPACE ipspace) {

return(ipspace.end);

}

void setipspace(IPSPACE *result,IADDR start,IADDR end) {

result->start = start;

result->end = end;

}

IADDR str2iaddr(char *dotnotation) {

IADDR result;

inet_aton(dotnotation,(struct in_addr *)&result);

return(ntohl(result));

}

void str2ipspace(IPSPACE *result,char *dotnotation) {

int pos=0;

int i,mask;

uint32_t tmp=1;

char temp[100];

strcpy(temp,dotnotation);

while(temp[pos]!=’/’ && pos<strlen(dotnotation)) pos++;

if(pos!=strlen(dotnotation)-1) { temp[pos]=0x00; pos++; }

result->start=str2iaddr(temp);

mask=atoi(&temp[pos]);

if(mask==32) { result->end=result->start; }

40 Chapter 4. Tools

else {

for(i=1;i<32-mask;i++) { tmp = tmp << 1; tmp++; }

result->end = tmp | result->start;

}

}

void showipspace(IPSPACE ipspace) {

IADDR invert_start;

IADDR invert_end;

invert_start = htonl(ipspace.start);

invert_end = htonl(ipspace.end);

printf("%s",inet_ntoa(*(struct in_addr *)&invert_start));

printf(" ");

printf("%s",inet_ntoa(*(struct in_addr *)&invert_end));

printf(" ");

printf("%d",ipspace.end-ipspace.start+1);

printf("\n");

}

void showrest_in(void) {

char buffer[101];

IPSPACE temp;

while(!feof(in)) {

if(fgets(buffer,100,in)!=NULL) {

str2ipspace(&temp,buffer);

showipspace(temp);

}

}

}

The first thing to notice in the source code is the definition of a new
structure (IPSPACE) that holds the border IPs of an IP range. The IADDR
representation for an IP address (in fact a 32 bits numeric value) was chosen,
so that the values of this type can be easily compared and so that the data
structures are UNIX sockets compatible.

All the processing functions make use of this structure. We will take a
look over each defined function and describe its functionality:

• getstart, getend - trivial functions to extract the beginning and ending
of an IP region.

4.7. getprefixgap 41

• setipspace - trivial function of filling the IPSPACE structure with the
corresponding data.

• str2iaddr - function to convert from string IP dotted representation to
numeric IADDR representation.

• str2ipspace - function to convert from string representing a prefix to an
IPSPACE structure. It makes use of str2iaddr.

• showipspace - function to show an IPSPACE structure by printing the
start IP address, the end IP address and the number of IP addresses
in between.

• main - this is where all the process is taking place. The two input files
are processed and the result is printed on the standard output. The
process is described further in this section.

• showrest in - function to print the remaining prefixes in the file to
process in the case that the reference buffer has reach its end of file.
This will print the prefixes in IPSPACE output form.

The comparison process considers the two input files sorted. At any
time during the comparison process, two IPSPACE structures are holding
the information to be compared. The s ref structure is holding space which
originated from the reference file and the s in structure is holding space orig-
inating from the file to process. Initially, each of the structures are holding
an IP region corresponding to the first prefix in each file.

At each iteration (see the do { ... } while loop in the main() function)
the s in and s ref structures are compared and a decision is made concerning
either concerning these structures borders, either concerning getting new
prefixes from the input files. Here are the situations that can occur:

• All the s in space is bellow the s ref space. Getprefixgap will show the
s in space in this case, will read the next prefix from the file to process
and will store its borders in the s in structure.

• The s ref space is bellow the s in space. A new reference prefix will be
read from the reference file buffer and its borders will be inserted into
the s ref structure.

• A part of s in space is bellow the beginning of the s ref space. In that
case, getprefixgap will show this ”sub-space” and will modify the s in
structure so that its inferior border will be equal to the inferior border
of the s ref space.

42 Chapter 4. Tools

• The s in space in completely included in the s ref space. In this case,
the s ref space needs to be modified so that the upper border of the
s in space (+1) becomes the lower border of the s ref space.

• The s in has some parts common with the s ref space, but it goes
beyond the s ref space. The s in space will be redimensioned so that
the lower border will be equal to the s ref’s higher border (+1).

• The s in space in equal with the s ref space. The action taken is to read
both the reference buffer and the file to process buffer for new prefixes
to be inserted as ranges in the s in and s ref structure.

The main idea behind the algorithm is to always try to accomplish two
tasks:

• read a prefix from the file to process if the prefix read previously from
this file is lower (in space) than the prefix read from the reference file

• read a prefix from the reference if the prefix read previously is lower
than the prefix read from the file to process.

This gives the algorithm the ability to advance and process both files and
be able to extract and show the space present in the file to process and not
present in the reference file.

Let’s take a look over what happens if end of file is reached for one of
the two files. If end of file occurs for the file to process, that means that the
process is finished - there is no more space to show, so we can discard all the
further contents of the reference file. If end of file occurs for the reference file,
it means that all the IP space that follows in the file to process has be shown.
That explains the presence of the showrest in() function, which prints as IP
ranges all the prefixes left in the file to process.

4.8 drawspace

Drawspace parses a file generated by getprefixgap and generates a graph
showing the read IP ranges in a two coordinates system. On the X axis we
have the IP space from 0.0.0.0 to 255.255.255.255. This space is represented
in chunks of 65536 IP addresses. That means that one datapoint on the X
axis corresponds to a region of 65536 addresses on the global IP space. The
Y axis shows the number of IP addresses contained in the ranges read from
the input file that are present in a certain 65536 block.

4.8. drawspace 43

To compute this graph, the ROOT tool was used. Drawspace produces
standard Postscript output which has to converted to gif output. To do this
the ps2gif and the graphics tuning tools where used.

4.8.1 The ROOT tool

The ROOT system provides a set of OO frameworks with all the functionality
needed to handle and analyse large amounts of data in a very efficient way.
Having the data defined as a set of objects, specialised storage methods are
used to get direct access to the separate attributes of the selected objects,
without having to touch the bulk of the data. Included are histograming
methods in 1, 2 and 3 dimensions, curve fitting, function evaluation, min-
imisation, graphics and visualisation classes to allow the easy setup of an
analysis system that can query and process the data interactively or in batch
mode.

Thanks to the builtin CINT C++ interpreter the command language, the
scripting or macro language and the programming language are all C++.
The interpreter allows for fast prototyping of the macros since it removes
the time consuming compile/link cycle. If more performance is needed the
interactively developed macros can be compiled using a C++ compiler.

ROOT is an open system that can be dynamically extended by linking
external libraries. This makes ROOT a premier platform on which to build
data acquisition, simulation and data analysis systems. [9]

4.8.2 Tool description

Drawspace relies on the ROOT tool to build the generated graph. It mainly
uses the ROOT TGraph object, enters data in TGraph structures and then
asks the ROOT libraries to build the graph. To be noted here is how easy
graphs can be generated using the ROOT analysis tool. Here follows the
drawspace’s C++ source code:

#include <iostream.h>

#include <stdio.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdlib.h>

#ifndef __CINT__

44 Chapter 4. Tools

#include "TROOT.h"

#include "TApplication.h"

#include "TCanvas.h"

#include "TChain.h"

#include "TTree.h"

#include "TFile.h"

#include "TH1.h"

#include "TH2.h"

#include "TF1.h"

#include "TGraphErrors.h"

#include "TPaveLabel.h"

#include "TText.h"

#include "TLine.h"

#include "TStyle.h"

#include "TPostScript.h"

#endif

#define TOTAL_POINTS 65536

class IpAddress {

public:

UInt_t ip;

IpAddress() { ip=0; }

IpAddress(const IpAddress& copy) { ip=copy.ip; }

IpAddress& operator= (const IpAddress& copy) {

ip=copy.ip; return *this;

} // if you change include if (this==©) !

TString getIpString(void) {

UInt_t invert_ip;

invert_ip = htonl(ip);

TString temp("");

temp.Append(inet_ntoa(*(struct in_addr *)&invert_ip));

return temp;

}

void ReadIP(TString straddr) {

inet_aton(straddr.Data(),(struct in_addr *)&ip);

ip=ntohl(ip);

}

4.8. drawspace 45

};

void InsertRange(IpAddress& start, IpAddress& end,

TGraph& graph);

int main(int argc,char **argv) {

// ROOT initialisation

TROOT simple ("RIS", "Plots");

gROOT->SetBatch();

filebuf fb_read;

fb_read.open(argv[1],ios::in);

istream is(&fb_read);

TString tstr;

IpAddress ip_start,ip_end;

TGraph gr(TOTAL_POINTS);

gr.SetTitle("Black Holes over IP space");

for(int i=0;i<TOTAL_POINTS;i++) gr.SetPoint(i,i,0);

while(!is.eof()) {

tstr.ReadToDelim(is,’ ’);

if(tstr=="") break;

ip_start.ReadIP(tstr);

tstr.ReadToDelim(is,’ ’);

if(tstr=="") break;

ip_end.ReadIP(tstr);

tstr.ReadLine(is);

if(tstr=="") break;

InsertRange(ip_start,ip_end,gr);

}

TCanvas *c1 = new TCanvas("c1","IP Space",200,10,700,500);

c1->cd();

gr.SetFillColor(100);

gr.Draw("AB");

46 Chapter 4. Tools

TAxis *xa;

xa = gr.GetXaxis();

if(xa==NULL) cout << "NULL !!!";

IpAddress temp;

xa->Set(5,0,TOTAL_POINTS);

for(int i=1;i<=5;i++) {

temp.ip=(UInt_t) xa->GetBinCenter(i)*65536;

xa->SetBinLabel(i,temp.getIpString());

}

xa->LabelsOption("vu");

gr.Draw("AB");

c1->Update();

c1->Print("/dev/stdout");

return 0;

}

void InsertRange(IpAddress& start, IpAddress& end,

TGraph& graph) {

Int_t start_point,end_point;

Double_t x,y;

start_point=start.ip/65536;

end_point=end.ip/65536;

graph.GetPoint(start_point,x,y);

if(start_point == end_point) graph.SetPoint(

start_point,

start_point,

y+(end.ip-start.ip));

else {

graph.SetPoint(start_point,start_point,

y+(65536-start.ip%65536));

for(int i=start_point+1;i<end_point;i++) {

graph.GetPoint(i,x,y);

4.8. drawspace 47

graph.SetPoint(i,i,y+65536);

}

graph.GetPoint(end_point,x,y);

graph.SetPoint(end_point,end_point,y+end.ip%65536);

}

}

The source code is very easy to understand: drawspace reads one by one
all the IP ranges from the input file and decides which 65536 blocks these
ranges belong to. For each block that has addresses in the read range, a
value corresponding to the number of IP addresses in that block is added to
the Y value corresponding to that block in the TGraph ROOT object.

Drawspace is used to show the distribution of black holes over the IP
space. A simple example of a drawspace generated graph is shown in Figure
4.1.

25.153.0.0
76.204.0.0

128.0.0.0
179.51.0.0

230.102.0.00

5000

10000

15000

20000

25000

30000

35000

Black Holes over IP space

25.153.0.0
76.204.0.0

128.0.0.0
179.51.0.0

230.102.0.00

5000

10000

15000

20000

25000

30000

35000

Figure 4.1: Drawspace output example

48 Chapter 4. Tools

The graph in the Figure 4.1 was generated by drawspace having as input
the following file:

#start_ip #end_ip #number_of_ips

10.183.0.0 10.183.31.255 8192

62.95.128.0 62.95.255.255 32768

202.183.0.0 202.183.31.255 8192

217.74.192.0 217.74.207.255 4096

4.8.3 Graphics format conversion problems

The format produced by the drawspace tool is Postscript. As Postscript
can not be published as is on the web, this format has to be converted to a
browser displayable format. For the black holes pages ps2gif was used. This
tool converts the image from Postscript format to gif format. The problem
noticed with this tool was that some lines from the graphs, that appear on
the Postscript graph, do not appear in the converted gif image.

The solution to this problem was to enlarge the scale factor of the con-
verted gif, so that the gif output displays all the lines in the Post Script
image. That way we have ended up with a large gif. This is why mogrify
tool is used to scale the gif to a size suitable for displaying it in a browser.
It appears that scaling the gif with mogrify keeps the aspect of the image
proportional, without rough information loss.

4.9 Putting it all together

Now that I have described all the tools developed and used in the process,
let’s see how all these glue up to generate black holes lists and to get data
ready for statistics to be available.

The idea is to generate black holes lists by analysing last 8 hours RIS
data and store the resulted black holes in a structured way, so that they can
be accessed by a CGI script that will show a specific list and will generate a
black holes over IP space graph on demand.

Figure 4.2 show the data flow picture of the black holes tracking. This
process is repeated each 8 hours thanks to a cron job.

At first, rrcpath is used to get the last dump from each RRC. Each dump
is fetched from the RIS web site and passed through route btoa filter. The
result is then passed to getprefix, which will extract all the prefixes which
have a corresponding announcement in the dump file. These prefixes will go
through a process of sorting and duplicates removal. This is achieved using

4.9. Putting it all together 49

route_btoa

getprefix/sort

Last RRC00 dump Last RRC01 dump Last RRC06 dump

RRC00 ascii dump RRC01 ascii dump RRC02 ascii dump

RRC00 prefixes RRC06 prefixes APNIC peer prefixes

rmspecific/statistics

aggregate/statistics

All RRCs

diff

rmspecific

getprefixgap

Black holes listRRD databases

Collected numbers

rrcpath

Date and time

Figure 4.2: Black holes tracking data flow

50 Chapter 4. Tools

standard UNIX tools like sort and awk. At the same time prefixes for a
certain peer (currently APNIC) are extracted and follow the same process of
sorting and duplicates removal. When all dumps are fetched and processed,
the files are merged so that a reference point is build, containing all the pre-
fixes announced on all the RRCs. The prefixes from the reference point which
are not contained in the peer’s view are obtained using the UNIX standard
tool - diff. This difference, after the remove specifics process, becomes the
file to process for the getprefixgap tool. The reference file for getprefixgap
will be the file containing the peer’s prefixes, also processed with rmspecific.

The result is a file containing IP ranges which is suitable for drawspace
input.

Along all this process certain figures are collected and inserted into RRD
databases. Please refer to Chapter 5 for more information on generated
statistics. The aggregate tool is a part of this process. It takes the prefixes
files generated by rmspecific or prefixes files where duplicates were removed
and it aggregates as much as possible (as we have seen earlier in this chapter).

4.10 Displaying results

Displaying results is achieved through several CGIs which offer on demand
plots generation. The results can be seen at:

http://www.ris.ripe.net/black-holes

for black holes lists display and:

http://www.ris.ripe.net/analysis

for the generated statistics.

Chapter 5

Generated statistic plots

5.1 Why generate statistic plots?

Plots are very useful when looking to a system as a whole. Of course, it
depends on what we actually put in those plots, but if the correct variables
are chosen, a plot can provide us with very useful information on how the
system behaves, how well it interacts with the outside world, how other
external factors influence the system.

In our case, we talk about two systems involved: the RIS and the Internet.
Why the Internet? Because the RIS is a fairly good reflection of what happens
in routing area over the Internet.

In consequence, having statistics and plots for the RIS can lead to a
good image over the RIS operational status, and also to a basic system for
monitoring aspects related to Internet routing.

5.2 RIS statistic plots overview

In the process of tracking black holes, a lot of intermediate files are generated
(please see Figure 4.2). These files can be used for statistical purposes by
counting the number of prefixes in a certain file (which is in fact the actual
number of lines in the file) and by counting the number of IP addresses
contained in a certain prefixes file. The latter can be achieved by using the
countip tool discussed in Chapter 4.

A detailed view of data collection process is presented in Figure 5.1. Five
main variables are collected and inserted into RRD databases. This process
is done for each dump file collected by each RRC at 8 hours intervals. The
actual work is combined with black holes tracking, thus reducing CPU cycles
on the processing machine.

51

52 Chapter 5. Generated statistic plots

route_btoa

getprefix/sort

Zebra binary dump

Zebra ASCII dump

rmspecific aggregate

Duplicates free prefixes file line count

RRD Database

Total prefixes

Specifics free prefixes

Aggregated prefixes line count

RRD Database

Prefixes after aggregation

line count

RRD Database

Prefixes after removing specifics

aggregate

Specifics free and aggregated prefixes

countip

RRD Database

Number of IP addresses

line count

RRD Database

Prefix after rmspecifc and aggregation

Figure 5.1: Main statistic variables generation process

5.3. RRD tool 53

These variables give a general view over RIS status and also over some
trends in the Internet BGP routing area.

5.3 RRD tool

Because we are interested in how the variables develop over time, RRD tool
comes very handy in designing the storage place for these variables, but even
more, for generating graphs.

RRDTool is written by Tobias Oetiker <oetiker@ee.ethz.ch> with con-
tributions from many people all around the world.

RRD refers to Round Robin Database. This is a database technique
that works with a fixed amount of data points, and a pointer to the current
element. Think of a circle with some dots plotted on the edge, these dots are
the places where data can be stored. Draw an arrow from the centre of the
circle to one of the dots, this is the pointer.

When data is written, the pointer moves to the next element. As we are on
a circle there is no beginning nor an end, you can go on and on. After a while,
all the available places will be used and the process automatically reuses old
locations. This way, the database will not grow in size and therefore requires
no maintenance. RRDTool works with Round Robin Databases (RRDs). It
stores and retrieves data from them. [10]

As RRDTool is most suitable for showing variables that develop over
time, and since this is exactly what we need in the context of RIS analysis,
the plots derived from RIS statistic variables are generated using this tool.

5.4 Variable description

In this section you will find descriptions of the five collected variables, analysis
and examples of generated statistic plots.

All plots are over time and data was fed into the RRD databases at 8
hours intervals. A cron job does this, activating automatically at 00:00, 8:00
and 16:00. As you will further notice, we are able to see the development of
these variables over a larger period of time (1 year). Special scripts processed
data older than late March (when the cron jobs were put in production).

Having the RIS data processed at 8 hours intervals provides a good ap-
proximation of BGP table behaviour, specially if we are looking at large
trends like 1 year or even several years.

There is also an operational advantage because looking at the graphs, one
can identify a sudden drop in number of prefixes received by a certain RRC

54 Chapter 5. Generated statistic plots

from its peers and can further investigate the problem, identify its source
and notify the parties involved.

Please note that in the following subsections only some of the graphs were
presented and analysed. For a complete view please visit:

http://www.ris.ripe.net/analysis.

5.4.1 Total prefixes

This is the number of all the prefixes received by a certain entity. Plots are
available for each RRC, the APNIC peer and also for all the data collected
by the RIS.

Let’s take a closer look over these trends. Figure 5.2 shows how this
variable developed over the last year for all the RRCs.

Figure 5.2: Number of total prefixes on all the RRCs
from May 2001 to May 2002

As you can see, during the first two month shown in this plot (June and
July) we can notice a slight instability in the number of prefixes observed.
The deep short valley that you can see in the beginning of august comes from
a certain error in the processing script, which did not take into account the
uncompressed files in the rawdata collection. Normally, files in the rawdata
collection are compressed, but for the beginning of august some of the dump
files for RRC00 were not compressed, resulting in the script assuming data
was not there, and therefore the number of prefixes was not accurate for the
beginning of august. As this was an isolate event we can focus on analysing
the general trend.

5.4. Variable description 55

Beginning with the month of august, a stability in prefix number evolution
can be observed: a very slight increase during September and October and
then a decrease in the second half of November. During the next three
months, the number of total prefixes was nearly unchanged. Starting with
late February and beginning of March, an increase can be observed which
leads to a small peak in late March, a stable behaviour during mid April
and then an increase in late April which continues in May. Looking at the
evolution from August to May we can notice that a slight, but observable
grow in the number of prefixes is present.

If we look at May 2001, it started with 120k prefixes announced, and
so did May 2002. The overall trend line is still very flat compared to the
substantial grow that occurred in the past years (as shown by studies prior
to this one).

5.4.2 Prefixes after aggregation

This variable shows the number of prefixes after an aggregation process was
performed (without removing more specifics). Figure 5.3 shows the develop-
ment over time of this variable.

Figure 5.3: Number of aggregated prefixes on all the RRCs
from May 2001 to May 2002

What is interesting here is that this graph has approximately the same
shape as the graph showing the total number of prefixes (see Figure 5.2). It’s
only that the upper bound of total prefixes is around 130k, while the upper
bound of aggregated prefixes is about 90k.

56 Chapter 5. Generated statistic plots

The shape being the same, means that the variations in number of prefixes
do not have much influence over the aggregated prefixes. That means that
the variations that we have seen on the total prefixes graph do not come
from multi-homing expansion. If this would have been the case, we would
notice variations on the total prefixes graph which would have translated in
flat lines in the aggregated prefixes graph. That of course, does not mean
that multi-homing is not present. The observation here is that it does not
influence the variations related to the total number of prefixes.

5.4.3 Prefixes after removing specifics

This variable shows the number of prefixes after a process of more specifics
removal. Figure 5.4 shows the RRD generated graph based on this variable.

Figure 5.4: Number of prefixes after removing more specifics on all the
RRCs from May 2001 to May 2002

If we look at the trend line here, we can clearly see that the number of
prefixes is increasing over time. The shape of the graph is quite different
from what we have seen before in total prefixes and aggregated prefixes.

The prefixes left after removing specifics are maximum aggregates. If the
maximum aggregates increase over time, this behaviour may be the result
of more IP space allocations, but causes related to multi-homing can not be
excluded. If for a certain reason we would have a prefix that would be slit
into several more specifics (due to multi-homing purposes for example) and
the actual ”mother” prefix would be no longer announced, this would also
lead to an increase in the number of prefixes after removing specifics. To

5.4. Variable description 57

have an idea about this, we would have to compare this trend with the trend
in the number of IP addresses announced, i.e. the actual IP space covered.

5.4.4 Number of IP addresses

This variable counts the number of IP addresses actually announced. After
removing more specifics, this variable is computed by adding the number of
IP addresses contained in every (max aggregate) prefix. Figure 5.5 shows the
evolution of this variable over time.

Figure 5.5: Number of IP addresses observed on all the RRCs
from May 2001 to May 2002

A slight, but almost constant increase can be observed by looking at the
graph line. Of course we may wonder what happened in the beginning of
August and what happened in late August, since we have there a deep valley
and quite a big peak.

In the beginning of August we have the compressed file situation that
I have already explained earlier in this chapter. The peak, tough, is some-
thing very interesting. I will explain how I have determined where the peak
originated from. I have suspected that this peak would be caused by a bad
announcement, an anomaly. Extracting the prefixes from a dump file from
26th of August and sorting them by the prefix’s mask, resulted in one /3
being announced. Table 5.1 shows all the details of this prefix.

With the RIS and this statistic plot generation we can actually be able
to see when such things like this occur. An action can be taken immediately,

58 Chapter 5. Generated statistic plots

TIME: 08/26/01 16:58:45
TYPE: TABLE DUMP/INET
VIEW: 0
SEQUENCE: 8125
PREFIX: 96.0.0.0/3
FROM: 129.250.0.232 AS2914
ORIGINATED: 08/25/01 06:06:07
ORIGIN: INCOMPLETE
ASPATH: 2914 237
NEXT HOP: 129.250.0.232
MULTI EXIT DISC: 24
COMMUNITY: 2914:420
STATUS: 0x1

Table 5.1: A bogus announcement

or if a certain event happen in the past and we localise it on the graph, then
we can use the RIS to track even further this and to identify the cause.

Now that we have seen why we have the huge peak and the deep valley
on the graph, we can proceed in analysing the trend line in the graph. We
can clearly see an increase trend in the graph.

If in the beginning of June 2001 we had a 1.15G addresses announced, in
the beginning of May 2002 the value almost reaches 1.2G IP addresses. This
appears to be a healthy grow in address space, which of course comes from
the fact that more IP space is allocated by the Internet registries.

Internet Registries allocated during the last year approximately 90M IP
addresses and the difference seen on the graph is 50M. This gap comes from
the fact that not all space that was requested and allocated is announced.

5.4.5 Prefixes after removing specifics and aggregation

This variable shows the number of prefixes after the process of removing
specifics followed by aggregation. Figure 5.6 shows the development over a
one year period on this variable.

By looking at this number we can see how contiguous the entire an-
nounced space is. If we assume that everything is perfect: Registries are
allocating contiguous space and all this space is announced, this number
should tend to a very low number. But, of course in the real world there is
no such thing as perfection, so this number is looking quite good, actually
from this perspective.

5.5. Ratios 59

Figure 5.6: Number of prefixes after removing specifics and aggregation
from May 2001 to May 2002

This number does not take into account the originating AS, so it shall
not be regarded as an indication of the aggregation that can be achieved in
a certain AS.

This gives some clues about a collective effort to efficiently allocate and
use (announce) IP space. Assuming that the space announced is actually
used, this gives an idea about the effort to allocate space that is used with a
purpose. To have a better view over these issues, some ratios are presented
in the following section.

5.5 Ratios

The variables presented in the previous section are basic variables. These
variables were collected in a process of RIS data analysis and their value was
stored in RRD databases.

Having these variables computed, we can further analyse them and we can
combine them to observe different other trends. In the following subsections
three such combinations are presented, but other are also possible.

5.5.1 Total prefixes versus Prefixes after specifics re-
moval and aggregation

This ratio (Figure 5.7) has an decreasing trend. This means that the number
of prefixes after specific removal and aggregation grows faster then the total

60 Chapter 5. Generated statistic plots

number of prefixes. This could be the result of multi-homing. But this aspect
has still to be researched further.

To provide their clients with multi-homing abilities, some ISPs are brak-
ing an aggregate, announcing some parts of this aggregate, to give the ability
for the client to announce its network also through another provider. This
would be a possible explanation for this decrease in this graph’s line.

Figure 5.7: Ratio - Total prefixes versus Prefixes after specifics removal and
aggregation from May 2001 to May 2002

5.5.2 Prefixes after aggregation versus Prefixes after
specifics removal

This ratio (Figure 5.8) shows a clear decreasing overall trend. This ratio
shows the efficiency of aggregation by the ASs as a cumulative figure. If
this ratio tends to 1 or is decreasing means that the ASs in whole are more
efficient in aggregating IP space.

As we have a decreasing trend line, it means that ASs are really good in
reorganising their managed address space so that more aggregation is done
there. This is a positive thing.

5.5.3 Prefixes after specifics removal versus Prefixes
after specifics removal and aggregation

This ratio (Figure 5.9) gives us information about the efficiency of space
allocation made to the ASs by the Regional Registries. The graph refers

5.5. Ratios 61

Figure 5.8: Ratio - Prefix after aggregation versus Prefixes after specifics
removal from May 2001 to May 2002

only to the space announced. If this ratio tends to be low, it means that the
allocated and announced IP space is contiguous and fully announced.

In our case we can see a small increase. This is fairly good behaviour,
knowing that registries try to keep up with ever growing demand for IP space.
It means that they are keeping up, and more, they are doing a good job, since
the increase trend is constant and not having huge hops.

Figure 5.9: Ratio - Prefixes after specifics removal versus Prefixes after
specifics removal and aggregation from May 2001 to May 2002

Chapter 6

Results and Perspectives

This chapter shows some examples of the output generated by the black
holes tracking system, but also explains what has to be done to improve
these results and gives some ideas to go further in researching black holes.

6.1 Black holes tracking status

As we have seen previously, the process of tracking black holes is based on
computing the difference in IP space between a reference point (containing all
the announcements on all the RRCs) and the space announced by a particular
peer.

In this case, I chose APNIC as the peer. The reasons behind this decision
were: a peer that gives full feeds was needed and a peer that would advertise
as many prefixes as possible was desirable. APNIC gives full feeds, and it
was also the peer to announce the biggest number of prefixes to RRC00.

Processed data is available starting from 17/04/2002. Data is computed
three times per day at fixed points in time: 00:00, 08:00 and 16:00. Every
time that the processing script starts it analyses the last BGP dump from
each RRC. The results are available online and one can select a specific date
and time for the black holes distribution graph to be generated on demand,
starting from the processed IP ranges file. All ranges are also displayed. In
the following three subsections we will focus on three examples of black holes
lists and the corresponding generated graphs.

A brief overview over the black holes results were included in the presen-
tation over the RIS status, given during the RIPE42 meeting in Amsterdam,
the Netherlands. An interesting feedback came from an Internet Exchange
operator who was checking up the black holes results during the meeting and
actually found an address range announced at his Internet exchange point.

63

64 Chapter 6. Results and Perspectives

He was aware of the fact that this address was supposed to be a black hole,
and should have been filtered by APNIC. This was, in a way, a situation were
the black hole was not used maliciously, but rather for operational purposes.
This was an interesting feedback and also a ”reality check” for the project.

6.1.1 Example 1

First example comes from a file that was generated on 21/04/2001 at 00:00.
Figure 6.1 shows the generated graph with the black holes over IP space and
Table 6.1 shows some statistics concerning the computed black holes list. The
full sequence of IP ranges that generated this graph is shown in Appendix
A.

Total space seen (/32 equivalents): 1192203620
Black holes (/32 equivalents): 6324744
Percentile of black holes : 0.53%

Table 6.1: Statistics for Example 1

As you can see from this table, the number of IP addresses that are
contained in the black holes space represents 0.53% out of the total IP space
announced. This means that we have restrained our search for black holes
to just this percentage of the IP space. Still, this does not mean that all the
space claim as black holes are black holes. As we have already seen, more
research needs to be carry out and to make this list even more narrow. We
will also see in the next two examples that this figure is not very typical for
a processing result. The typical value is around 0.03% - 0.04%.

If we look at the graph showing how black holes are distributed over the
IP space, we can see some high bars around 64.x.x.x, 80.x.x.x, 137.x.x.x,
154.x.x.x and 164.x.x.x. This means that in those areas black holes can be
observed that have 65536 addresses in an IP block. The thicker line around
80.x.x.x shows that in that area we have several 65536 IP blocks completely
covered with black holes. If we take a look at the full black holes list we can
see clearly that in that area we have several IP ranges that go beyond an IP
block.

There is an interesting distribution around 207.x.x.x where we have a
block covered up to approximately 32000 addresses. Around this point the
black holes distribution tends to rise from a low value, increase to this point
and then decrease again. Of course, it is very hard to find the ”logic” behind
such a distribution, but we will see that in this area the distribution seems
to be quite stable over time.

6.1. Black holes tracking status 65

25
.1

53
.0

.0
76

.2
04

.0
.0

12
8.

0.
0.

0
17

9.
51

.0
.0

23
0.

10
2.

0.
0

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

B
la

ck
 H

o
le

s
o

ve
r

IP
 s

p
ac

e

25
.1

53
.0

.0
76

.2
04

.0
.0

12
8.

0.
0.

0
17

9.
51

.0
.0

23
0.

10
2.

0.
0

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

Figure 6.1: Black holes example 1 - 21/04/2002 00:00

66 Chapter 6. Results and Perspectives

6.1.2 Example 2

The second example is the snapshot of black holes processed on 1st of May
2002. Figure 6.2 shows the generated plot. In Table 6.2 you can find the
black holes statistics for the list of IP ranges in Appendix B.

Total space seen (/32 equivalents): 1189775924
Black holes (/32 equivalents): 659192
Percentile of black holes : 0.06%

Table 6.2: Statistics for Example 2

The distribution of black holes in the plot is changed from that in the
previous example - representing the snapshot taken 10 days before this ex-
ample’s snapshot was taken.

Still, if we look closer we can see that dramatic changes of black holes
distribution appear in the first half of the IP space, but in the second half
we can see some similarities. Although there are more high bars, meaning
more black holes populated space, they are localised around the same areas.

The black holes computing process takes as input the last dump from
each of the RRCs. The dumps are taken at 8 hours intervals, the starting
point being the time when Zebra was started on each RRC box. This means
that the time of the dump is not the same of all the RRC box. The procedure
of computing the black holes induces errors related to the difference in time
stamps between RRC dumps. Still, a good approximation of black holes
behaviour can be observed over an 8 hour interval.

A part of the black holes ”moved” in this 10 days interval (from the time-
stamp of the first example to the one of the second), but some others were
persistent. The area around 207.x.x.x is particularly interesting because,
even if some changes can be observed, the shape of black holes distribution
is very similar. Where can this come from? This is very hard to tell at first
glance, but we can ask the question the other way around: Where this cannot
come from?

This behaviour is highly un-probable to be due to the problem of time
synchronisation between dumps, or prefixes that are announced and then
withdraws in a short period of time, or prefixes that appear in the black
holes list due to propagation delay.

We tend to think that this shows that in that area we have to deal with
real black holes that tend to be stable in shape. This is very interesting as
behaviour.

6.1. Black holes tracking status 67

25
.1

53
.0

.0
76

.2
04

.0
.0

12
8.

0.
0.

0
17

9.
51

.0
.0

23
0.

10
2.

0.
0

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

B
la

ck
 H

o
le

s
o

ve
r

IP
 s

p
ac

e

25
.1

53
.0

.0
76

.2
04

.0
.0

12
8.

0.
0.

0
17

9.
51

.0
.0

23
0.

10
2.

0.
0

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

Figure 6.2: Black holes example 2 - 01/05/2002 00:00

68 Chapter 6. Results and Perspectives

6.1.3 Example 3

Figure 6.3 shows another example of black holes on demand generated graph.
Table 6.3 shows the statistic for the list of black holes for this example,
presented in Appendix C.

Total space seen (/32 equivalents): 1174449176
Black holes (/32 equivalents): 408668
Percentile of black holes : 0.03%

Table 6.3: Statistics for Example 3

As you can see from this table, the black holes percentage over the IP
space are in this case 0.03. This is a typical value for the last two month of
black hole data. Black hole activity can be observed in the first half of the
IP space, also around 147.173.x.x and 158.197.x.x (high bars). In the second
half of the IP space, the ”shape” that we were talking about in the previous
examples is also present.

This example also shows that while some areas of the IP space tend to
have high black holes activity, others tend to be ”black holes free”.

6.2 Perspectives

This project is a research based one. I started along with the RIS team
to analyse this problem, and we have managed to narrow the results of the
search for black holes. A set of improvements can be added so that these re-
sults become even narrower and then one could start looking at the originated
prefix and AS of a particular black hole.

Here are some improvements and ideas of how to continue the search for
black holes:

• develop a tool to build the BGP table at a certain moment by applying
the updates collected by an RRC to a particular dump of that RRC.
This will allow a more accurate computation of black holes and even
on demand generation, based on virtually a time fully supplied by the
user.

• add more peers to be processed. Currently only the APNIC peer is
used. This gives the list of black holes only from APNIC’s perspective,
but adding more peers will allow one to observe if these black holes are
the same for another peer, and if not, how much the views differ.

6.2. Perspectives 69

25
.1

53
.0

.0
76

.2
04

.0
.0

12
8.

0.
0.

0
17

9.
51

.0
.0

23
0.

10
2.

0.
0

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

B
la

ck
 H

o
le

s
o

ve
r

IP
 s

p
ac

e

25
.1

53
.0

.0
76

.2
04

.0
.0

12
8.

0.
0.

0
17

9.
51

.0
.0

23
0.

10
2.

0.
0

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

Figure 6.3: Black holes example 3 - 15/05/2002 00:00

70 Chapter 6. Results and Perspectives

• plot black holes percentage over time and determine properties of black
holes (origin, life time, etc).

• modify drawspace so that it draws black holes just for a range of the IP
space. This would give one’s the opportunity to analyse more particular
areas of interest of the IP space.

• integrate the tools with the RISReport and use the new database struc-
ture rather then the dump files.

• save processed black holes in mysql database tables. This will allow a
faster access and a larger spectre of analysis to be done.

• modify getprefix tool (and the others accordingly) so that it gathers
more information about a prefix (like the originating AS). This will
give the possibility of identifying the AS that actually advertises the
prefix that is causing the black holes.

Appendix A

Full black holes list for
21/04/2002 00:00

#start_ip #end_ip #number_of_ips

61.12.109.96 61.12.109.111 16

64.4.160.0 64.4.160.255 256

64.4.161.0 64.4.161.255 256

64.4.162.0 64.4.162.255 256

64.4.163.0 64.4.163.255 256

64.4.164.0 64.4.164.255 256

64.4.165.0 64.4.165.255 256

64.4.166.0 64.4.166.255 256

64.4.167.0 64.4.167.255 256

64.4.168.0 64.4.168.255 256

64.4.169.0 64.4.169.255 256

64.4.170.0 64.4.170.255 256

64.4.171.0 64.4.171.255 256

64.4.172.0 64.4.172.255 256

64.4.173.0 64.4.173.255 256

64.4.175.0 64.4.175.255 256

64.13.0.0 64.13.255.255 65536

64.149.0.0 64.149.255.255 65536

64.215.96.0 64.215.111.255 4096

66.184.0.0 66.184.127.255 32768

80.10.0.0 80.10.255.255 65536

80.11.248.0 80.11.255.255 2048

80.22.0.0 80.23.255.255 131072

80.26.192.0 80.31.255.255 344064

71

72 Appendix A. Full black holes list for 21/04/2002 00:00

80.36.0.0 80.39.255.255 262144

80.64.16.0 80.64.31.255 4096

80.64.48.0 80.64.63.255 4096

80.64.80.0 80.64.95.255 4096

80.64.112.0 80.64.127.255 4096

80.64.144.0 80.64.191.255 12288

80.64.208.0 80.64.223.255 4096

80.64.240.0 80.65.31.255 12288

80.65.48.0 80.65.63.255 4096

80.65.80.0 80.65.95.255 4096

80.65.144.0 80.65.159.255 4096

80.65.176.0 80.65.191.255 4096

80.65.208.0 80.65.223.255 4096

80.65.240.0 80.65.255.255 4096

80.66.16.0 80.66.31.255 4096

80.66.48.0 80.66.63.255 4096

80.66.80.0 80.66.95.255 4096

80.66.112.0 80.66.127.255 4096

80.66.144.0 80.66.159.255 4096

80.66.176.0 80.66.191.255 4096

80.66.208.0 80.66.223.255 4096

80.66.240.0 80.66.255.255 4096

80.67.16.0 80.67.31.255 4096

80.67.48.0 80.67.63.255 4096

80.67.65.0 80.67.95.255 7936

80.67.112.0 80.67.127.255 4096

80.67.144.0 80.67.159.255 4096

80.67.208.0 80.67.223.255 4096

80.67.240.0 80.67.255.255 4096

80.68.16.0 80.68.31.255 4096

80.68.48.0 80.68.63.255 4096

80.68.66.0 80.68.95.255 7680

80.68.112.0 80.68.127.255 4096

80.68.144.0 80.68.159.255 4096

80.68.176.0 80.68.191.255 4096

80.68.208.0 80.68.223.255 4096

80.69.16.0 80.69.31.255 4096

80.69.48.0 80.69.63.255 4096

80.69.80.0 80.69.95.255 4096

80.69.112.0 80.69.159.255 12288

80.69.176.0 80.69.191.255 4096

73

80.69.208.0 80.69.223.255 4096

80.69.240.0 80.69.255.255 4096

80.70.16.0 80.70.31.255 4096

80.70.48.0 80.70.63.255 4096

80.70.68.0 80.70.127.255 15360

80.70.144.0 80.70.191.255 12288

80.70.208.0 80.70.223.255 4096

80.70.240.0 80.70.255.255 4096

80.71.16.0 80.71.31.255 4096

80.71.48.0 80.71.63.255 4096

80.71.80.0 80.71.95.255 4096

80.71.112.0 80.71.127.255 4096

80.71.144.0 80.71.159.255 4096

80.71.176.0 80.71.191.255 4096

80.71.208.0 80.71.223.255 4096

80.71.240.0 80.71.255.255 4096

80.72.16.0 80.72.31.255 4096

80.72.48.0 80.72.63.255 4096

80.72.80.0 80.72.95.255 4096

80.72.112.0 80.72.127.255 4096

80.72.144.0 80.72.159.255 4096

80.72.176.0 80.72.191.255 4096

80.72.208.0 80.72.223.255 4096

80.72.240.0 80.72.255.255 4096

80.73.16.0 80.73.31.255 4096

80.73.48.0 80.73.63.255 4096

80.73.80.0 80.73.95.255 4096

80.73.112.0 80.73.127.255 4096

80.73.144.0 80.73.159.255 4096

80.73.176.0 80.73.191.255 4096

80.73.208.0 80.73.223.255 4096

80.73.240.0 80.73.255.255 4096

80.74.16.0 80.74.63.255 12288

80.74.80.0 80.74.95.255 4096

80.74.112.0 80.74.127.255 4096

80.74.144.0 80.74.159.255 4096

80.74.176.0 80.74.191.255 4096

80.74.208.0 80.74.223.255 4096

80.74.227.0 80.74.255.255 7424

80.75.16.0 80.75.63.255 12288

80.75.80.0 80.75.95.255 4096

74 Appendix A. Full black holes list for 21/04/2002 00:00

80.75.112.0 80.75.127.255 4096

80.75.144.0 80.75.159.255 4096

80.75.176.0 80.75.191.255 4096

80.75.208.0 80.75.223.255 4096

80.75.240.0 80.75.255.255 4096

80.76.16.0 80.76.31.255 4096

80.76.42.0 80.76.63.255 5632

80.76.80.0 80.76.95.255 4096

80.76.112.0 80.76.127.255 4096

80.76.144.0 80.76.159.255 4096

80.76.176.0 80.76.191.255 4096

80.76.208.0 80.76.223.255 4096

80.76.240.0 80.76.255.255 4096

80.77.16.0 80.77.31.255 4096

80.77.48.0 80.77.63.255 4096

80.77.80.0 80.77.95.255 4096

80.77.112.0 80.77.127.255 4096

80.77.144.0 80.77.191.255 12288

80.77.208.0 80.77.223.255 4096

80.77.240.0 80.77.255.255 4096

80.78.1.0 80.78.31.255 7936

80.78.48.0 80.78.63.255 4096

80.78.80.0 80.78.95.255 4096

80.78.144.0 80.78.159.255 4096

80.78.176.0 80.78.191.255 4096

80.78.208.0 80.78.223.255 4096

80.79.16.0 80.79.31.255 4096

80.79.48.0 80.79.63.255 4096

80.79.80.0 80.79.95.255 4096

80.79.112.0 80.79.127.255 4096

80.79.129.0 80.79.159.255 7936

80.79.176.0 80.79.191.255 4096

80.79.208.0 80.79.223.255 4096

80.79.240.0 80.79.255.255 4096

80.80.16.0 80.80.95.255 20480

80.80.144.0 80.80.159.255 4096

80.80.176.0 80.80.223.255 12288

80.80.240.0 80.80.255.255 4096

80.81.16.0 80.81.31.255 4096

80.81.48.0 80.81.63.255 4096

80.81.80.0 80.81.95.255 4096

75

80.81.144.0 80.81.159.255 4096

80.81.176.0 80.81.191.255 4096

80.81.208.0 80.81.223.255 4096

80.81.240.0 80.81.255.255 4096

80.82.16.0 80.82.31.255 4096

80.82.48.0 80.82.63.255 4096

80.82.80.0 80.82.95.255 4096

80.82.112.0 80.82.127.255 4096

80.82.144.0 80.82.159.255 4096

80.82.208.0 80.82.223.255 4096

80.82.228.0 80.82.255.255 7168

80.83.16.0 80.83.31.255 4096

80.83.48.0 80.83.63.255 4096

80.83.80.0 80.83.127.255 12288

80.83.144.0 80.83.159.255 4096

80.83.176.0 80.83.191.255 4096

80.83.208.0 80.83.255.255 12288

80.84.16.0 80.84.31.255 4096

80.84.48.0 80.84.63.255 4096

80.84.80.0 80.84.95.255 4096

80.84.112.0 80.84.127.255 4096

80.84.144.0 80.84.159.255 4096

80.84.176.0 80.84.191.255 4096

80.84.208.0 80.84.223.255 4096

80.85.16.0 80.85.31.255 4096

80.85.48.0 80.85.63.255 4096

80.85.80.0 80.85.95.255 4096

80.85.112.0 80.85.127.255 4096

80.85.144.0 80.85.159.255 4096

80.85.176.0 80.85.191.255 4096

80.85.208.0 80.85.223.255 4096

80.85.240.0 80.85.255.255 4096

80.86.16.0 80.86.31.255 4096

80.86.48.0 80.86.63.255 4096

80.86.80.0 80.86.95.255 4096

80.86.112.0 80.86.127.255 4096

80.86.144.0 80.86.159.255 4096

80.86.176.0 80.86.191.255 4096

80.86.208.0 80.86.223.255 4096

80.86.240.0 80.86.255.255 4096

80.87.16.0 80.87.31.255 4096

76 Appendix A. Full black holes list for 21/04/2002 00:00

80.87.48.0 80.87.63.255 4096

80.87.80.0 80.87.127.255 12288

80.87.144.0 80.87.159.255 4096

80.87.176.0 80.87.191.255 4096

80.87.208.0 80.87.223.255 4096

80.87.240.0 80.87.255.255 4096

80.88.16.0 80.88.31.255 4096

80.88.48.0 80.88.95.255 12288

80.88.144.0 80.88.159.255 4096

80.88.176.0 80.88.191.255 4096

80.88.208.0 80.88.223.255 4096

80.88.240.0 80.89.31.255 12288

80.89.48.0 80.89.63.255 4096

80.89.80.0 80.89.95.255 4096

80.89.98.0 80.89.127.255 7680

80.89.176.0 80.89.191.255 4096

80.89.208.0 80.89.223.255 4096

80.89.240.0 80.89.255.255 4096

80.90.16.0 80.90.31.255 4096

80.90.48.0 80.90.63.255 4096

80.90.80.0 80.90.127.255 12288

80.90.144.0 80.90.159.255 4096

80.90.176.0 80.90.191.255 4096

80.90.240.0 80.90.255.255 4096

80.91.16.0 80.91.31.255 4096

80.91.48.0 80.91.63.255 4096

80.91.80.0 80.91.95.255 4096

80.91.112.0 80.91.159.255 12288

80.91.176.0 80.91.191.255 4096

80.91.208.0 80.91.223.255 4096

80.91.240.0 80.91.255.255 4096

80.92.16.0 80.92.63.255 12288

80.92.80.0 80.92.159.255 20480

80.92.176.0 80.92.191.255 4096

80.92.208.0 80.92.223.255 4096

80.92.240.0 80.92.255.255 4096

80.93.16.0 80.93.31.255 4096

80.93.48.0 80.93.63.255 4096

80.93.80.0 80.93.95.255 4096

80.93.112.0 80.93.127.255 4096

80.93.144.0 80.93.159.255 4096

77

80.93.176.0 80.93.191.255 4096

80.93.208.0 80.93.223.255 4096

80.93.240.0 80.93.255.255 4096

80.94.16.0 80.94.31.255 4096

80.94.48.0 80.94.63.255 4096

80.94.80.0 80.94.95.255 4096

80.94.112.0 80.94.159.255 12288

80.94.176.0 80.94.191.255 4096

80.94.194.0 80.94.223.255 7680

80.94.240.0 80.94.255.255 4096

80.95.16.0 80.95.31.255 4096

80.95.48.0 80.95.63.255 4096

80.95.80.0 80.95.95.255 4096

80.95.112.0 80.95.127.255 4096

80.95.144.0 80.95.159.255 4096

80.95.176.0 80.95.191.255 4096

80.95.208.0 80.95.223.255 4096

80.95.240.0 80.96.0.255 4352

80.96.2.0 80.96.2.255 256

80.96.5.0 80.96.5.255 256

80.96.11.0 80.96.11.255 256

80.96.15.0 80.96.15.255 256

80.96.24.0 80.96.24.255 256

80.96.27.0 80.96.27.255 256

80.96.32.0 80.96.47.255 4096

80.96.101.0 80.96.101.255 256

80.96.103.0 80.96.103.255 256

80.96.105.0 80.96.110.255 1536

80.96.118.0 80.96.119.255 512

80.96.124.0 80.96.127.255 1024

80.96.129.0 80.96.130.255 512

80.96.132.0 80.96.133.255 512

80.96.135.0 80.96.135.255 256

80.96.138.0 80.96.140.255 768

80.96.144.0 80.96.147.255 1024

80.96.152.0 80.96.153.255 512

80.96.156.0 80.96.160.255 1280

80.96.162.0 80.96.162.255 256

80.96.167.0 80.96.169.255 768

80.96.172.0 80.96.172.255 256

80.96.175.0 80.96.175.255 256

78 Appendix A. Full black holes list for 21/04/2002 00:00

80.96.177.0 80.96.177.255 256

80.96.188.0 80.96.188.255 256

80.96.192.0 80.96.192.255 256

80.96.195.0 80.96.195.255 256

80.96.202.0 80.96.203.255 512

80.96.206.0 80.96.206.255 256

80.96.208.0 80.96.210.255 768

80.96.214.0 80.96.215.255 512

80.96.220.0 80.96.220.255 256

80.96.232.0 80.96.232.255 256

80.96.234.0 80.96.235.255 512

80.96.251.0 80.96.251.255 256

80.97.0.0 80.97.5.255 1536

80.97.7.0 80.97.14.255 2048

80.97.112.0 80.97.191.255 20480

80.106.0.0 80.107.255.255 131072

80.110.0.0 80.110.255.255 65536

80.111.128.0 80.111.255.255 32768

80.124.0.0 80.125.255.255 131072

80.160.0.0 80.191.255.255 2097152

80.214.0.0 80.219.255.255 393216

80.227.48.0 80.227.95.255 12288

80.227.112.0 80.227.127.255 4096

80.227.160.0 80.227.255.255 24576

80.228.128.0 80.229.255.255 98304

80.234.32.0 80.234.127.255 24576

80.239.144.0 80.239.159.255 4096

80.239.176.0 80.239.191.255 4096

80.239.208.0 80.239.255.255 12288

80.240.16.0 80.240.63.255 12288

80.240.80.0 80.240.95.255 4096

80.240.112.0 80.240.127.255 4096

80.240.144.0 80.240.159.255 4096

80.240.176.0 80.240.191.255 4096

80.240.208.0 80.240.223.255 4096

80.240.240.0 80.240.255.255 4096

80.241.16.0 80.241.31.255 4096

80.241.48.0 80.241.63.255 4096

80.241.80.0 80.241.95.255 4096

80.241.112.0 80.241.127.255 4096

80.241.144.0 80.241.159.255 4096

79

80.241.176.0 80.241.191.255 4096

80.241.208.0 80.241.223.255 4096

80.241.240.0 80.242.0.255 4352

80.242.9.0 80.242.9.255 256

80.242.12.0 80.242.12.255 256

80.242.14.0 80.242.31.255 4608

80.242.48.0 80.242.63.255 4096

80.242.80.0 80.242.95.255 4096

80.242.112.0 80.242.127.255 4096

80.242.142.0 80.242.159.255 4608

80.242.176.0 80.242.191.255 4096

80.242.208.0 80.242.223.255 4096

80.242.240.0 80.242.255.255 4096

80.243.16.0 80.243.31.255 4096

80.243.48.0 80.243.63.255 4096

80.243.80.0 80.243.95.255 4096

80.243.112.0 80.243.127.255 4096

80.243.136.0 80.243.159.255 6144

80.243.176.0 80.243.191.255 4096

80.243.208.0 80.243.223.255 4096

80.243.240.0 80.243.255.255 4096

80.244.1.0 80.244.31.255 7936

80.244.48.0 80.244.63.255 4096

80.244.80.0 80.244.95.255 4096

80.244.112.0 80.244.127.255 4096

80.244.144.0 80.244.159.255 4096

80.244.176.0 80.244.191.255 4096

80.244.208.0 80.244.223.255 4096

80.244.225.0 80.244.255.255 7936

80.245.16.0 80.245.31.255 4096

80.245.48.0 80.245.63.255 4096

80.245.80.0 80.245.95.255 4096

80.245.112.0 80.245.127.255 4096

80.245.144.0 80.245.159.255 4096

80.245.176.0 80.245.191.255 4096

80.245.208.0 80.245.223.255 4096

80.245.240.0 80.245.255.255 4096

80.246.16.0 80.246.31.255 4096

80.246.48.0 80.246.63.255 4096

80.246.80.0 80.246.95.255 4096

80.246.112.0 80.246.127.255 4096

80 Appendix A. Full black holes list for 21/04/2002 00:00

80.246.144.0 80.246.159.255 4096

80.246.176.0 80.246.191.255 4096

80.246.208.0 80.246.223.255 4096

80.246.240.0 80.246.255.255 4096

80.247.16.0 80.247.31.255 4096

80.247.48.0 80.247.63.255 4096

80.247.80.0 80.247.95.255 4096

80.247.112.0 80.247.127.255 4096

80.247.160.0 80.247.191.255 8192

80.247.213.0 80.247.223.255 2816

80.247.240.0 80.248.31.255 12288

80.248.36.0 80.248.63.255 7168

80.248.80.0 80.248.95.255 4096

80.248.128.0 80.248.159.255 8192

80.248.176.0 80.248.191.255 4096

80.248.208.0 80.248.255.255 12288

80.249.16.0 80.249.31.255 4096

80.249.48.0 80.249.63.255 4096

80.249.80.0 80.249.95.255 4096

80.249.112.0 80.249.127.255 4096

80.249.144.0 80.249.159.255 4096

80.249.176.0 80.249.191.255 4096

80.249.194.0 80.249.223.255 7680

80.249.240.0 80.249.255.255 4096

80.250.16.0 80.250.31.255 4096

80.250.48.0 80.250.63.255 4096

80.250.80.0 80.250.95.255 4096

80.250.112.0 80.250.127.255 4096

80.250.144.0 80.250.159.255 4096

80.250.176.0 80.250.191.255 4096

80.250.208.0 80.250.255.255 12288

80.251.16.0 80.251.31.255 4096

80.251.48.0 80.251.63.255 4096

80.251.80.0 80.251.95.255 4096

80.251.112.0 80.251.127.255 4096

80.251.144.0 80.251.159.255 4096

80.251.176.0 80.251.223.255 12288

80.251.240.0 80.251.255.255 4096

80.252.16.0 80.252.31.255 4096

80.252.48.0 80.252.63.255 4096

80.252.80.0 80.252.95.255 4096

81

80.252.112.0 80.252.127.255 4096

80.252.144.0 80.252.159.255 4096

80.252.176.0 80.252.191.255 4096

80.252.208.0 80.252.223.255 4096

80.252.240.0 80.252.255.255 4096

80.253.16.0 80.253.31.255 4096

80.253.48.0 80.253.63.255 4096

80.253.80.0 80.253.95.255 4096

80.253.112.0 80.253.127.255 4096

80.253.144.0 80.253.159.255 4096

80.253.162.0 80.253.167.255 1536

80.253.176.0 80.253.191.255 4096

80.253.208.0 80.253.223.255 4096

80.253.240.0 80.253.255.255 4096

80.254.16.0 80.254.31.255 4096

80.254.48.0 80.254.95.255 12288

80.254.112.0 80.254.127.255 4096

80.254.144.0 80.254.159.255 4096

80.254.208.0 80.254.223.255 4096

80.254.240.0 80.254.255.255 4096

80.255.16.0 80.255.31.255 4096

80.255.48.0 80.255.63.255 4096

80.255.80.0 80.255.127.255 12288

80.255.144.0 80.255.191.255 12288

80.255.208.0 80.255.223.255 4096

80.255.240.0 80.255.255.255 4096

81.10.128.0 81.10.255.255 32768

81.27.160.0 81.27.175.255 4096

135.173.9.0 135.173.9.255 256

137.67.0.0 137.67.255.255 65536

137.150.0.0 137.150.255.255 65536

154.150.0.0 154.150.255.255 65536

164.216.0.0 164.216.255.255 65536

164.221.96.0 164.221.183.255 22528

164.221.217.0 164.221.223.255 1792

167.224.0.0 167.224.15.255 4096

168.165.0.0 168.165.0.255 256

168.165.5.0 168.165.167.255 41728

168.165.173.0 168.165.173.255 256

168.165.175.0 168.165.252.255 19968

168.165.255.0 168.165.255.255 256

82 Appendix A. Full black holes list for 21/04/2002 00:00

170.169.122.0 170.169.122.255 256

192.0.2.0 192.0.2.255 256

192.31.174.0 192.31.174.255 256

192.42.62.0 192.42.62.255 256

192.50.25.0 192.50.25.255 256

192.71.254.0 192.71.255.255 512

192.77.189.0 192.77.189.255 256

192.102.65.0 192.102.65.255 256

192.102.67.0 192.102.67.255 256

192.102.68.0 192.102.68.255 256

192.102.69.0 192.102.69.255 256

192.102.70.0 192.102.70.255 256

192.102.71.0 192.102.71.255 256

192.102.72.0 192.102.72.255 256

192.102.73.0 192.102.73.255 256

192.102.74.0 192.102.74.255 256

192.102.75.0 192.102.75.255 256

192.149.125.0 192.149.125.255 256

192.152.29.0 192.152.29.255 256

192.168.200.0 192.168.200.255 256

192.231.201.0 192.231.201.255 256

193.108.89.0 193.108.89.255 256

193.108.152.0 193.108.152.255 256

193.111.72.0 193.111.73.255 512

193.188.137.0 193.188.137.255 256

193.253.0.0 193.253.0.255 256

193.253.1.0 193.253.1.255 256

194.14.69.0 194.14.69.255 256

194.56.124.0 194.56.125.255 512

194.56.126.0 194.56.126.255 256

194.69.168.0 194.69.177.255 2560

194.69.179.0 194.69.180.255 512

194.69.182.0 194.69.191.255 2560

194.69.228.128 194.69.228.255 128

194.124.215.0 194.124.215.255 256

194.125.252.0 194.125.253.255 512

194.125.254.0 194.125.255.255 512

194.153.154.0 194.153.154.127 128

198.22.254.0 198.22.254.255 256

198.73.212.0 198.73.215.255 1024

198.80.179.0 198.80.179.255 256

83

198.102.161.0 198.102.161.255 256

198.102.250.0 198.102.250.255 256

198.183.227.0 198.183.227.255 256

198.235.148.0 198.235.148.255 256

199.33.7.0 199.33.7.255 256

199.164.200.0 199.164.200.255 256

199.242.0.0 199.242.3.255 1024

199.242.4.0 199.242.5.255 512

199.242.6.0 199.242.6.255 256

199.246.230.0 199.246.230.255 256

199.246.231.0 199.246.231.255 256

199.246.232.0 199.246.232.255 256

199.246.233.0 199.246.233.255 256

199.246.234.0 199.246.234.255 256

199.246.235.0 199.246.235.255 256

199.246.236.0 199.246.236.255 256

199.246.237.0 199.246.237.255 256

199.246.238.0 199.246.238.255 256

199.246.239.0 199.246.239.255 256

199.246.240.0 199.246.240.255 256

199.246.241.0 199.246.241.255 256

199.246.242.0 199.246.242.255 256

199.246.243.0 199.246.243.255 256

199.246.244.0 199.246.244.255 256

199.246.245.0 199.246.245.255 256

199.246.246.0 199.246.246.255 256

199.246.247.0 199.246.247.255 256

199.246.248.0 199.246.248.255 256

199.246.249.0 199.246.249.255 256

199.246.250.0 199.246.250.255 256

199.246.251.0 199.246.251.255 256

199.246.252.0 199.246.252.255 256

199.246.253.0 199.246.253.255 256

199.249.191.0 199.249.191.255 256

200.189.35.0 200.189.38.255 1024

202.2.61.0 202.2.61.255 256

202.12.240.136 202.12.240.139 4

202.14.195.0 202.14.195.127 128

202.14.195.128 202.14.195.255 128

202.39.80.0 202.39.95.255 4096

202.68.0.0 202.68.21.255 5632

84 Appendix A. Full black holes list for 21/04/2002 00:00

202.68.23.0 202.68.31.255 2304

202.68.32.0 202.68.47.255 4096

202.68.48.0 202.68.55.255 2048

202.86.64.0 202.86.95.255 8192

202.127.64.0 202.127.67.255 1024

202.127.68.0 202.127.68.255 256

202.127.69.0 202.127.69.255 256

202.127.70.0 202.127.71.255 512

202.177.200.0 202.177.201.255 512

203.1.106.224 203.1.106.239 16

203.3.48.24 203.3.48.27 4

203.5.144.0 203.5.159.255 4096

203.7.194.0 203.7.194.127 128

203.7.194.192 203.7.194.223 32

203.12.37.192 203.12.37.199 8

203.12.193.192 203.12.193.207 16

203.13.198.212 203.13.198.215 4

203.21.141.0 203.21.141.127 128

203.21.141.128 203.21.141.159 32

203.21.141.160 203.21.141.191 32

203.21.141.192 203.21.141.223 32

203.21.141.224 203.21.141.255 32

203.22.189.0 203.22.189.255 256

203.23.255.0 203.23.255.127 128

203.25.176.0 203.25.176.255 256

203.26.63.0 203.26.63.255 256

203.26.126.128 203.26.126.191 64

203.26.152.32 203.26.152.63 32

203.26.152.64 203.26.152.95 32

203.26.152.128 203.26.152.159 32

203.26.152.192 203.26.152.223 32

203.26.152.224 203.26.152.255 32

203.26.189.64 203.26.189.95 32

203.27.118.0 203.27.118.15 16

203.27.118.64 203.27.118.79 16

203.27.118.96 203.27.118.127 32

203.34.73.0 203.34.73.63 64

203.55.43.0 203.55.43.127 128

203.57.38.0 203.57.38.255 256

203.62.176.0 203.62.176.255 256

203.87.27.128 203.87.27.255 128

85

203.101.24.212 203.101.24.215 4

204.68.155.0 204.68.155.255 256

204.69.190.0 204.69.190.255 256

204.89.214.0 204.89.214.255 256

204.127.0.0 204.127.15.255 4096

204.127.32.0 204.127.47.255 4096

204.127.64.0 204.127.71.255 2048

204.174.112.0 204.174.112.255 256

204.225.156.0 204.225.156.255 256

204.238.255.0 204.238.255.255 256

205.166.4.0 205.166.4.255 256

205.172.179.0 205.172.179.255 256

206.195.121.32 206.195.121.63 32

206.224.32.0 206.224.63.255 8192

207.116.0.0 207.116.127.255 32768

207.254.150.0 207.254.150.255 256

207.254.159.0 207.254.159.255 256

207.254.161.0 207.254.161.255 256

207.254.168.0 207.254.168.255 256

207.254.169.0 207.254.169.255 256

207.254.170.0 207.254.170.255 256

207.254.171.0 207.254.171.255 256

207.254.172.0 207.254.172.255 256

207.254.173.0 207.254.173.255 256

207.254.174.0 207.254.174.255 256

207.254.185.0 207.254.185.255 256

209.146.0.0 209.146.9.255 2560

209.146.11.0 209.146.13.255 768

209.146.15.0 209.146.18.255 1024

209.146.20.0 209.146.28.255 2304

209.146.30.0 209.146.30.255 256

209.146.32.0 209.146.64.255 8448

209.146.66.0 209.146.82.255 4352

209.146.85.0 209.146.95.255 2816

209.146.97.0 209.146.111.255 3840

209.146.113.0 209.146.114.255 512

209.146.116.0 209.146.127.255 3072

210.18.203.0 210.18.203.255 256

212.63.192.0 212.63.223.255 8192

213.203.160.0 213.203.191.255 8192

213.232.106.0 213.232.107.255 512

86 Appendix A. Full black holes list for 21/04/2002 00:00

213.232.114.0 213.232.114.255 256

213.244.124.0 213.244.127.255 1024

217.21.192.0 217.21.207.255 4096

217.75.32.0 217.75.47.255 4096

217.78.67.0 217.78.67.255 256

217.78.68.0 217.78.68.255 256

217.119.132.0 217.119.143.255 3072

217.169.64.0 217.169.79.255 4096

Appendix B

Full black holes list for
01/05/2002 00:00

#start_ip #end_ip #number_of_ips

64.215.96.0 64.215.111.255 4096

65.40.192.0 65.40.199.255 2048

68.67.80.0 68.67.95.255 4096

68.67.192.0 68.67.255.255 16384

81.10.128.0 81.10.255.255 32768

131.120.0.0 131.120.255.255 65536

135.173.9.0 135.173.9.255 256

136.243.0.0 136.243.255.255 65536

140.165.0.0 140.165.255.255 65536

144.124.0.0 144.124.255.255 65536

155.70.128.0 155.70.159.255 8192

164.221.96.0 164.221.183.255 22528

164.221.217.0 164.221.223.255 1792

168.165.0.0 168.165.0.255 256

168.165.5.0 168.165.167.255 41728

168.165.173.0 168.165.173.255 256

168.165.175.0 168.165.252.255 19968

168.165.255.0 168.165.255.255 256

170.169.122.0 170.169.122.255 256

170.217.0.0 170.217.255.255 65536

192.0.2.0 192.0.2.255 256

192.23.157.0 192.23.157.255 256

192.42.62.0 192.42.62.255 256

192.50.25.0 192.50.25.255 256

87

88 Appendix B. Full black holes list for 01/05/2002 00:00

192.71.29.0 192.71.29.255 256

192.76.121.0 192.76.121.255 256

192.77.189.0 192.77.189.255 256

192.88.9.0 192.88.9.255 256

192.88.10.0 192.88.10.255 256

192.88.89.0 192.88.89.255 256

192.88.90.0 192.88.90.255 256

192.88.93.0 192.88.93.255 256

192.88.94.0 192.88.94.255 256

192.98.98.0 192.98.98.255 256

192.102.83.0 192.102.83.255 256

192.108.80.0 192.108.87.255 2048

192.121.45.0 192.121.45.255 256

192.148.166.0 192.148.166.255 256

192.197.68.0 192.197.68.255 256

193.108.8.0 193.108.15.255 2048

193.108.89.0 193.108.89.255 256

193.110.110.0 193.110.110.255 256

193.110.111.0 193.110.111.255 256

193.188.137.0 193.188.137.255 256

193.253.0.0 193.253.0.255 256

193.253.1.0 193.253.1.255 256

194.55.144.0 194.55.145.255 512

194.69.168.0 194.69.177.255 2560

194.69.179.0 194.69.180.255 512

194.69.182.0 194.69.191.255 2560

194.69.228.128 194.69.228.255 128

194.85.64.0 194.85.71.255 2048

194.124.215.0 194.124.215.255 256

194.125.254.0 194.125.255.255 512

194.132.24.0 194.132.25.255 512

194.153.154.0 194.153.154.127 128

196.32.153.0 196.32.153.255 256

198.51.172.0 198.51.172.255 256

198.143.128.0 198.143.159.255 8192

199.74.151.0 199.74.151.255 256

199.74.152.0 199.74.152.255 256

199.124.16.0 199.124.23.255 2048

199.253.96.0 199.253.111.255 4096

200.34.128.0 200.34.128.255 256

200.34.192.0 200.34.192.255 256

89

200.68.168.0 200.68.168.255 256

200.68.170.0 200.68.170.255 256

200.85.224.0 200.85.239.255 4096

202.2.61.0 202.2.61.255 256

202.12.240.136 202.12.240.139 4

202.14.195.0 202.14.195.127 128

202.14.195.128 202.14.195.255 128

202.39.80.0 202.39.95.255 4096

202.47.32.0 202.47.63.255 8192

202.68.0.0 202.68.21.255 5632

202.68.23.0 202.68.31.255 2304

202.68.32.0 202.68.47.255 4096

202.68.48.0 202.68.55.255 2048

202.86.64.0 202.86.95.255 8192

202.127.64.0 202.127.67.255 1024

202.127.68.0 202.127.68.255 256

202.127.69.0 202.127.69.255 256

202.127.70.0 202.127.71.255 512

202.130.69.0 202.130.69.255 256

202.137.8.0 202.137.11.255 1024

202.144.233.0 202.144.233.255 256

202.177.200.0 202.177.201.255 512

203.1.72.0 203.1.75.255 1024

203.1.106.224 203.1.106.239 16

203.3.48.24 203.3.48.27 4

203.7.194.0 203.7.194.127 128

203.7.194.192 203.7.194.223 32

203.12.37.192 203.12.37.199 8

203.12.193.192 203.12.193.207 16

203.13.198.212 203.13.198.215 4

203.21.141.0 203.21.141.127 128

203.21.141.128 203.21.141.159 32

203.21.141.160 203.21.141.191 32

203.21.141.192 203.21.141.223 32

203.21.141.224 203.21.141.255 32

203.22.189.0 203.22.189.255 256

203.23.255.0 203.23.255.127 128

203.26.63.0 203.26.63.255 256

203.26.126.128 203.26.126.191 64

203.26.152.32 203.26.152.63 32

203.26.152.64 203.26.152.95 32

90 Appendix B. Full black holes list for 01/05/2002 00:00

203.26.152.128 203.26.152.159 32

203.26.152.192 203.26.152.223 32

203.26.152.224 203.26.152.255 32

203.26.189.64 203.26.189.95 32

203.27.50.0 203.27.50.255 256

203.27.118.0 203.27.118.15 16

203.27.118.64 203.27.118.79 16

203.27.118.96 203.27.118.127 32

203.28.126.0 203.28.126.255 256

203.31.226.0 203.31.226.255 256

203.32.4.0 203.32.4.255 256

203.34.73.0 203.34.73.63 64

203.34.255.0 203.34.255.255 256

203.55.43.0 203.55.43.127 128

203.57.38.0 203.57.38.255 256

203.62.176.0 203.62.176.255 256

203.87.27.128 203.87.27.255 128

203.101.24.212 203.101.24.215 4

204.29.160.0 204.29.160.255 256

204.127.0.0 204.127.15.255 4096

204.127.32.0 204.127.47.255 4096

204.127.64.0 204.127.71.255 2048

204.149.127.0 204.149.127.255 256

206.163.240.0 206.163.255.255 4096

206.195.121.32 206.195.121.63 32

207.116.0.0 207.116.127.255 32768

209.126.32.0 209.126.63.255 8192

212.63.192.0 212.63.223.255 8192

213.203.160.0 213.203.191.255 8192

213.232.106.0 213.232.107.255 512

213.232.114.0 213.232.114.255 256

216.82.88.0 216.82.89.255 512

216.82.92.0 216.82.93.255 512

216.82.96.0 216.82.96.255 256

216.82.100.0 216.82.101.255 512

216.82.109.0 216.82.109.255 256

216.174.120.0 216.174.127.255 2048

216.176.6.0 216.176.6.255 256

216.183.160.0 216.183.167.255 2048

216.183.180.0 216.183.181.255 512

216.183.182.0 216.183.182.255 256

91

217.21.192.0 217.21.207.255 4096

217.31.176.0 217.31.191.255 4096

217.75.32.0 217.75.47.255 4096

Appendix C

Full black holes list for
15/05/2002 00:00

#start_ip #end_ip #number_of_ips

61.0.80.0 61.0.95.255 4096

61.0.96.0 61.0.111.255 4096

61.0.128.0 61.0.159.255 8192

61.0.160.0 61.0.175.255 4096

62.212.192.0 62.212.223.255 8192

64.82.129.0 64.82.129.255 256

64.136.32.0 64.136.63.255 8192

64.215.96.0 64.215.111.255 4096

67.93.0.0 67.93.127.255 32768

67.93.128.0 67.93.191.255 16384

68.20.0.0 68.20.31.255 8192

68.20.32.0 68.20.63.255 8192

80.254.64.0 80.254.79.255 4096

81.10.128.0 81.10.255.255 32768

135.173.9.0 135.173.9.255 256

147.204.0.0 147.204.255.255 65536

158.197.0.0 158.197.255.255 65536

170.169.122.0 170.169.122.255 256

192.0.2.0 192.0.2.255 256

192.42.62.0 192.42.62.255 256

192.50.25.0 192.50.25.255 256

192.77.189.0 192.77.189.255 256

192.98.98.0 192.98.98.255 256

192.102.83.0 192.102.83.255 256

93

94 Appendix C. Full black holes list for 15/05/2002 00:00

192.124.181.0 192.124.181.255 256

192.197.51.0 192.197.51.255 256

193.58.210.0 193.58.210.255 256

193.58.211.0 193.58.211.255 256

193.58.212.0 193.58.212.255 256

193.108.89.0 193.108.89.255 256

193.111.226.0 193.111.226.255 256

193.188.137.0 193.188.137.255 256

193.253.0.0 193.253.0.255 256

193.253.1.0 193.253.1.255 256

194.69.168.0 194.69.177.255 2560

194.69.179.0 194.69.180.255 512

194.69.182.0 194.69.191.255 2560

194.69.228.128 194.69.228.255 128

194.102.116.0 194.102.116.255 256

194.102.117.0 194.102.117.255 256

194.102.192.0 194.102.192.255 256

194.124.215.0 194.124.215.255 256

194.125.254.0 194.125.255.255 512

194.132.24.0 194.132.25.255 512

195.35.80.0 195.35.80.255 256

199.80.103.0 199.80.103.255 256

200.34.192.0 200.34.192.255 256

200.82.144.0 200.82.147.255 1024

200.196.144.0 200.196.159.255 4096

202.2.61.0 202.2.61.255 256

202.12.240.136 202.12.240.139 4

202.14.164.0 202.14.164.255 256

202.20.68.0 202.20.68.255 256

202.39.80.0 202.39.95.255 4096

202.68.0.0 202.68.21.255 5632

202.68.23.0 202.68.31.255 2304

202.68.32.0 202.68.47.255 4096

202.68.48.0 202.68.55.255 2048

202.86.64.0 202.86.95.255 8192

202.127.64.0 202.127.67.255 1024

202.127.68.0 202.127.68.255 256

202.127.69.0 202.127.69.255 256

202.127.70.0 202.127.71.255 512

202.130.69.0 202.130.69.255 256

202.177.200.0 202.177.201.255 512

95

203.1.106.224 203.1.106.239 16

203.3.48.24 203.3.48.27 4

203.7.194.0 203.7.194.127 128

203.7.194.192 203.7.194.223 32

203.12.37.192 203.12.37.199 8

203.12.193.192 203.12.193.207 16

203.13.198.212 203.13.198.215 4

203.13.220.0 203.13.221.255 512

203.21.141.0 203.21.141.127 128

203.21.141.128 203.21.141.159 32

203.21.141.160 203.21.141.191 32

203.21.141.192 203.21.141.223 32

203.21.141.224 203.21.141.255 32

203.22.189.0 203.22.189.255 256

203.23.28.0 203.23.28.255 256

203.23.110.0 203.23.110.255 256

203.23.255.0 203.23.255.127 128

203.26.63.0 203.26.63.255 256

203.26.126.128 203.26.126.191 64

203.26.152.32 203.26.152.63 32

203.26.152.64 203.26.152.95 32

203.26.152.128 203.26.152.159 32

203.26.152.192 203.26.152.223 32

203.26.152.224 203.26.152.255 32

203.26.174.0 203.26.174.255 256

203.26.189.64 203.26.189.95 32

203.27.118.0 203.27.118.15 16

203.27.118.64 203.27.118.79 16

203.27.118.96 203.27.118.127 32

203.32.4.0 203.32.4.255 256

203.32.155.0 203.32.155.3 4

203.33.135.0 203.33.135.255 256

203.34.73.0 203.34.73.63 64

203.55.43.0 203.55.43.127 128

203.57.38.0 203.57.38.255 256

203.62.176.0 203.62.176.255 256

203.87.27.128 203.87.27.255 128

203.101.24.212 203.101.24.215 4

203.196.159.0 203.196.159.255 256

204.62.253.0 204.62.253.255 256

204.127.0.0 204.127.15.255 4096

96 Appendix C. Full black holes list for 15/05/2002 00:00

204.127.32.0 204.127.47.255 4096

204.127.64.0 204.127.71.255 2048

205.223.128.0 205.223.128.255 256

205.236.8.0 205.236.8.255 256

205.236.9.0 205.236.9.255 256

205.236.10.0 205.236.10.255 256

205.236.11.0 205.236.11.255 256

205.236.12.0 205.236.12.255 256

205.237.23.0 205.237.23.255 256

207.116.0.0 207.116.127.255 32768

207.182.114.0 207.182.114.255 256

207.182.192.0 207.182.192.255 256

207.245.136.0 207.245.136.255 256

207.245.138.0 207.245.138.255 256

212.63.192.0 212.63.223.255 8192

213.179.40.0 213.179.47.255 2048

213.203.160.0 213.203.191.255 8192

213.232.106.0 213.232.107.255 512

216.82.224.0 216.82.239.255 4096

217.21.192.0 217.21.207.255 4096

217.75.32.0 217.75.47.255 4096

217.113.224.0 217.113.239.255 4096

Bibliography

[1] The RIPE Official Website:
http://www.ripe.net

[2] Andrew S. Tanenbaum. Computer Networks, Prentice-Hall, 1996, ISBN
0-13-394248-1

[3] Ioan Jurca. Computer Network Programming, Editura de Vest, 2000,
ISBN 973-36-0331-7

[4] Geoff Huston, Telstra. Scaling Inter-Domain Routing. A view Forward,
The Internet Protocol Journal, December 2001

[5] Pete Loshin. Border Gateway Protocol RFCs, Morgan Kaufmann, 2000,
ISBN 0-12-455846-1

[6] Nick Feamster. Security for Wide Area Internet Routing, 2000,
http://www.acm.org/crossroads/columns/onpatrol/

[7] Shishir Gundavaram. CGI Programming, O´Reilly & Associates, Inc.,
1996, ISBN 1-56592-168-2

[8] Larry Wall, Tom Christiansen & Jon Orwant. Programming Perl, Third
Edition, O´Reilly & Associates, Inc., 2000, ISBN 0-596-00027-8

[9] René Brun & Co. ROOT. Users Guide, June 2001

[10] Alex van den Bogaerdt. Alex van den Bogaerdt’s RRDtool tutorial,
February 2001

[11] RIS Data Web Pages,
http://data.ris.ripe.net

[12] Multi-Threaded Routing Toolkit Web Pages,
http://www.mrtd.net

97

98 BIBLIOGRAPHY

[13] Fast Lexical Analyser Generator Web Pages,
http://www.gnu.org/software/flex/flex.html

[14] ROOT Web Pages,
http://root.cern.ch/

[15] RRDTool Web Pages,
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

[16] ImageMagick Web Pages,
http://www.imagemagick.org

[17] Tobias Oetiker. The Not So Short Introduction to LATEX , August 2001

