
A Novel Reconfigurable Hardware Architecture for
IP Address Lookup

Hamid Fadishei
Computer and IT Department

Amir-Kabir University of Technology
Tehran, Iran

fadishei@ce.aut.ac.ir

Morteza Saheb Zamani
Computer and IT Department

Amir-Kabir University of Technology
Tehran, Iran

szamani@ce.aut.ac.ir

Masoud Sabaei
Computer and IT Department

Amir-Kabir University of Technology
Tehran, Iran

sabaei@ce.aut.ac.ir

ABSTRACT
IP address lookup is one of the most challenging problems of
Internet routers. In this paper, an IP lookup rate of 263 Mlps
(Million lookups per second) is achieved using a novel
architecture on reconfigurable hardware platform. A partial
reconfiguration may be needed for a small fraction of route
updates. Prefixes can be added or removed at a rate of 2 million
updates per second, including this hardware reconfiguration
overhead. A route update may fail due to the physical resource
limitations. In this case, which is rare if the architecture is
properly configured initially, a full reconfiguration is needed to
allocate more resources to the lookup unit.

Categories and Subject Descriptors
C.2.6 [Computer – Communication Networks]:
Internetworking – routers.
B.7.1 [Integrated Circuits]: Types and Design Styles –
algorithms implemented in hardware.

General Terms
Algorithms, Design, Experimentation, Performance.

Keywords
IP Address Lookup, Longest Prefix Matching, Reconfigurable
Hardware, Hashing, Field-Programmable Gate Array (FPGA),
Application Specific Integrated Circuit (ASIC).

1. INTRODUCTION
Increasing number of Internet users and the advent of new
multimedia networking applications have resulted in growth of
traffic rates on backbone links. There are three key factors to be
considered in designing IP networks to maintain a good service:
links with large bandwidth, high speed data switching and high
packet forwarding rates. Currently, available optical data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ANCS’05, October 26–28, 2005, Princeton, New Jersey, USA.
Copyright 2005 ACM 1-59593-082-5/05/0010...$5.00.

transmission links and current data switching technology allow
easy handling of the first two factors. Therefore, deployment of
high performance routers to forward packets is the key to the
success of the next generation IP routers [1].

Many tasks must be done in IP packet forwarding: decreasing
time-to-live (TTL) of the packet, checking the packet checksum
for errors, updating the checksum etc. However, the bottleneck of
the packet forwarding operation is IP address lookup or
determining the corresponding output interface of the router
according to the packet destination address to send the packet.
When an Internet router routes a packet, it looks for its 32-bit
destination IP address to see if it matches the entries in the router.
Routing entries in the router are in different lengths and therefore
multiple matches may occur. The router must find the longest
match and use the corresponding output interface to send the
packet. This makes IP address lookup a challenging problem.

The rest of the paper is organized as follows. In Section 2, a brief
description of the prior works related to IP address lookup
problem is given. Two previous works, which use reconfigurable
hardware, are described in Section 3, after an introduction to
reconfigurable hardware. In Section 4, we present our proposed
approach whose implementation is explained in Section 5. Section
6 shows the results and comparisons. Section 7 concludes the
paper.

2. RELATED WORK
Many software and hardware IP address lookup approaches are
proposed by researchers. A successful approach proposed for this
problem must be:

• fast in performing IP lookup operations. Considering IP
packets of 1000 bits long on average, a 100 Gbps router needs
a lookup engine capable of working at a rate of 100 Mlps.

• fast in updating its routing database, i.e. adding or removing
prefixes. It must anticipate a burst of 100 or more update
operations per second [14].

• scalable in terms of routing tables growth caused by the
increasing number of Internet users.

• scalable for migrating from IPv4 to IPv6.

• efficient in terms of implementation costs, achieving above
objectives at a minimal cost.

Any IP address lookup approach can be scored according to the
above parameters [14].

ANCS (Symposium on Architecture for Networking and Communications Systems), October 2005, pp. 81-90

© ACM, (2005). This is the author's version of the work. It is posted here by permission of ACM for your personal use.

Not for redistribution. The definitive version was published in ANCS '05, http://doi.acm.org/10.1145/1095890.1095903

Binary trie which is the base of many existing schemes is a tree
data structure that is searched starting from its root and going
down to left or right depending on the value of the current bit of
the address being searched. Any time a prefix is seen at a node of
the trie, it is stored as the longest matching prefix up to now.

The basic trie structure needs up to w memory accesses per
lookup, where w is the number of distinct prefix lengths existing
in the routing database. The number of memory accesses to the
trie is optimized using path compression [11] and level
compression techniques [12]. The former uses multiple branches
from every node, checking multiple bits of the destination address
at each step. This results in better search performance at the cost
of more memory usage and worse update time because some
prefixes need to be expanded. The level compression technique,
on the other hand, removes the nodes with only one child but the
number of removed nodes must be stored somewhere for later
searches. This technique is only useful for sparse tries but not for
huge tries of backbone Internet routers in which there are not
many one-child nodes.

Researchers implemented the trie in various ways both in
hardware and software. Some of them used the straightforward
node and pointer structures used in the software implementation
of the tree structures [4] [12]. Some others implemented the trie as
bit vectors [13] [18]. Trie was also implemented on
reconfigurable hardware as a reconfigurable finite-state machine
(FSM) [3] or a reconfigurable binary decision diagram (BDD)
[15]. The following section describes these two implementations
in details.

Modified versions of the binary search algorithm have been used
in IP address lookup problem [8] [21]. The modifications were to
make the standard binary search algorithm applicable to searching
for the longest matching prefix. These approaches were extended
to multi-way search. Both [8] and [21] had a good search time,
but were poor in terms of the time required to update the routing
table.

Content addressable memories (CAMs) were also used for IP
address lookup [10]. A CAM is a memory that can be searched for
a data item in parallel. There is a kind of CAM called ternary
CAM (TCAM) which can be given a mask to be used for the
desired length of data items in its search process. Therefore, if
prefixes are sorted by their length, the first match will be the
longest one. TCAMs are expensive and have a high cost of
updating routes because all prefixes must be kept sorted by length.

Trie requires large memory because it uses the IP address itself as
an index to the data structure. Hashing technique can also be used
for IP lookup where a hash function of each item is computed and
used as an index to a table to insert the item. To search for an
item, if its hash function is computed, we only need to search the
table row to which this hash value points.

Hashing is usually used for exact matching. For IP lookup, which
must find the longest matching prefix, prefixes of each length are
searched for exact matches with the IP address using hashing and
then, the longest match among them is chosen. Waldvogel et al
[19] used binary search to find the longest match among the hash
results for every length. However, in their scheme, it was not
necessary to use hashing for all lengths, but only some lengths
were searched for an exact match during the binary search. To
make this possible they added extra information to routing data.
However, the computation of this information lengthens the

update time. In [9], a hardware-based method uses hashing for all
lengths in parallel and finds the longest match among the results
using a priority encoder. The scheme in [19] is suitable for
software implementations while the method in [9] takes advantage
of parallelism in hardware. Our proposed scheme is an improved
version of [9] using the benefits of hardware reconfiguration.

3. RECONFIGURABLE HARDWARE AND
IP ADDRESS LOOKUP

Recently, reconfigurable hardware has been used for IP address
lookup. Reconfigurable hardware is a kind of hardware whose
functionality may change in response to the demands placed upon
the system while it is running. This gives us both the flexibility of
software and the performance of hardware.

This capability of hardware reconfiguration can be beneficial
from different aspects. Some of these benefits are listed below:

• As much performance as possible can be gained from limited
hardware resources by tuning configuration parameters on a
flexible hardware architecture.

• Hardwired data structures can be used to accelerate
performance by eliminating the drawbacks of traditional
memory storage-based data structures.

• The system cost can be reduced by fitting multiple features
and applications on a single reconfigurable hardware platform
or by partitioning an application into some stages being
configured serially on a smaller platform.

Some of currently available field-programmable gate arrays
support partial reconfiguration in a few microseconds and full
reconfiguration in a few milliseconds. This has made
reconfigurable systems more attractive to researchers due to their
capability of implementing reconfigurable hardware in real world.

References [3] and [15] used reconfigurable hardware to achieve
high performance trie implementations. Both approaches profited
from the second of the three advantages of reconfigurable
hardware mentioned above. As seen in Figure 1, the lookup
engine is a reconfigurable hardware containing the hardwired
routing data. Therefore, the engine performs high speed lookup
decisions with no memory accesses. However, any route update
should affect the hardwired data by reconfiguring the engine. This
task is done by the reconfiguration controller unit. It translates the
routing table updates to hardware reconfiguration information and
applies it to the reconfigurable platform. We use the first and the
second advantages of reconfigurable hardware.

Reconfigurable
Hardware

Reconfiguration
Controller

Routing Database

Input Packets

Output Packets

Figure 1. IP address lookup using reconfigurable hardware.

Desai et al [3] implemented the binary trie as a reconfigurable
finite-state machine. They considered the binary trie as an FSM,
the states of which represent the nodes of the trie and the links
represent the transitions between the states. Then, that huge FSM
was partitioned into smaller sub-FSMs to be implementable as an
ASIC. These sub-FSMs were cooperated via a main controller.
Each time the routing table needs an update, the trie must change
and this change must be reflected to the FSM with a hardware
reconfiguration. Sangireddy et al [15] used binary decision
diagrams to implement the binary trie as a reconfigurable BDD.
They partitioned the trie into five smaller tries according to the
bits of the result output interface and simplified the corresponding
BDDs and converted the resulted BDDs to logic implementable
on lookup tables of a reconfigurable FPGA. Like Desai's scheme,
any routing table update results in a reconfiguration that must be
applied to the architecture using a reconfiguration controller.

The reconfigurable architecture in Figure 1 makes an obvious
consideration necessary: incremental route updates which only
need a partial hardware reconfiguration must be made possible;
otherwise the huge rate of route updates can make the approach
impractical on a backbone router.

Desai et al [3] hope each route update to affect only one of the
many sub-FSMs but there is no guarantee for that. Sangireddy et
al [15] say that the small BDD differences corresponding to two
adjacent routing table snapshots result in small logic variations.
This makes incremental route updates probable but as difficult as
they do not offer any way to do that.

Another problem arises for large routing table sizes. Currently, a
backbone router may have as many routing prefixes as 100K
which needs a huge reconfigurable hardware platform for
hardwired implementation of the FSM or BDD corresponding to
its trie.

The proposed architecture in this paper can address both problems
by taking advantages of both traditional hashing scheme and
reconfigurable hardware. The problem of large hardwired data
size is addressed by only implementing the collided entries on
reconfigurable hardware. Other prefixes can be searched with a
single memory access to the main table. We also addressed the
problem of high route update cost by proposing a novel
reconfigurable search tree architecture for collision resolution.
The proposed architecture can be updated with partial
reconfigurations when adding or removing prefixes.

4. OUR PROPOSED APPROACH
First, we take a closer look at the basic hashing scheme used by
Lim et al [9]. Then we explain our improvements to reduce the
collisions of hashing operation and finally, the novel
reconfigurable search tree architecture to resolve the hash
collisions is presented.

4.1 The Basic Hashing Scheme
Hashing is useful in exact matching problems. For a longest
matching problem, such as IP address lookup, each existing length
of routing prefixes is searched for a match using hashing and the
longest one among the possible match results of each length is
chosen. This selection can be done using a priority encoder in
hardware. Figure 2 shows this method. Each engine searches one

existing length of prefixes for an exact match and reports the
result to the priority encoder. Figure 3 shows the structure of each
engine in which used memory words are marked. The hash value,
computed according to the first N bits of the address, is used as an
index to the main table. When inserting a new entry, the hash
value may point to a used word of the main table. For such a
collision, the new value must be stored in a subtable. When
searching in this structure, the row of the main table to which the
hash of the address points is inspected. We are done if a match is
found in the main table. Otherwise, search continues at the
subtable of this row of the main table if one exists. Subtables of
different rows may vary in size. A good hash function is the one
which distributes data elements uniformly in the main table’s
address space which results in the subtables of almost similar
sizes.

4.2 Multi-Column Main Table
Implementing parallel engines requires separate memories as their
main table. In the current technology, it is possible to include
multiple SRAM blocks on a chip easily. This on-chip memory
distribution can be more beneficial to improve the hashing
quality. A multi-column main table can be used in which each
column is implemented as a separate memory. The columns in the
main table are checked for a match in parallel in one memory
access time by a simple circuit. This reduces subtable sizes and
moves many collisions from subtables to the main table. Reducing
the size of subtables is important in our proposed scheme because
they are implemented in reconfigurable hardware. As mentioned
earlier, implementing the whole routing table as hardwired data,
as in [3] and [15], is hardly practical on a reconfigurable hardware
platform due to its big size. This also results in worse average
route update time because all update operations need a hardware
reconfiguration whose overhead is considerable on current
reconfigurable hardware platforms. Our proposed approach
addresses these two problems by holding the majority of routing
prefixes in the multi-column main tables. A two-column main
table is shown in Figure 4(a). It can be seen that the subtables are
shrunken but at the cost of using more memory space for the same
number of prefixes. Increasing the number of columns reduces
subtable sizes more. On the other hand, more memory space may
be wasted if the number of columns is increased (Figure 4(b)).
This increased memory usage can be justified for two reasons:

• If a good hash function is chosen to uniformly distribute
prefixes in the address space of the main table, a reasonable
number of columns can be decided for the main table so that
the main table is almost full and very few subtables are
needed.

• The multi-column main table still has less memory
requirements than many other implementations as the hashing
scheme well reduces the memory usage.

4.3 Reconfigurable Search Tree
Hash subtables are usually searched using binary search
algorithm. Conventional binary search tree is suitable for software
implementations but in hardware, memory allocation is a great
concern. Although it is not impossible, it is not easy, specially if
more complicated binary search trees such as AVL trees are used
to hold the tree balanced after update operations.

Engine 1, Length 8

Engine 2, Length 9

Engine 24, Length 32

P
riority

E
ncoder

...IP Address Longest Match

Match?

Match?

Match?

8

9

32

...... Hash

N Bits of IP
Address

Main Table Subtables

*

*
*

*

* * *

*

* * *

Figure 2. Using hashing for IP address lookup. Figure 3. Structure of each engine of Figure 2.

Hash

N Bits of IP
Address

Main Table Subtables

*

*
*

*

* * *

*

* * * Hash

N Bits of IP
Address

Main Table Subtables

*

*
*

*

* * *

*

* * *

(a) (b)

Figure 4. Multi-column main table; (a) 2 columns (b) 3 columns.

We propose a novel reconfigurable search tree architecture the
nodes of which are the reconfigurable hardware logic blocks. This
is a fixed skeleton complete tree in which hardwired data
elements are stored in the reconfigurable hardware resources of
each node. Unlike the conventional binary search tree, a new
prefix can be inserted in any node of the tree, making partial
reconfiguration possible for update operations. Each node has a
simple logic; it stores a prefix and the next hop information
related to this prefix. Data flow direction in the tree is from child
to the root. Each node compares the prefix to be searched with its
hardwired prefix. The comparison result is reported to the parent
node. If a match is found in the child node, the next hop
information will be given to the parent node; otherwise, any node
which gets the next hop information from one of its children only
passes it to its parent. The final match result is obtained from the
root node. Figure 5 shows the structure of one node.
Reconfigurable areas are shown as shaded blocks. The node
operates as follows.

If the node gets a found_left signal from the left child, it transfers
the nhp_left value to its parent. Otherwise, if a found_right signal
is seen, the nhp_right value is transferred to the parent. If no
found signal is reported from neither the left nor the right child
and if the node is configured to have a valid data (configured with

Valid bit equal to 1), it compares the prefix_search with its
hardwired prefix value. If they match, the NHP value is sent to the
parent via nhp_out port. found_out signal goes up every time the
node wants to inform its parent that a valid nhp_out value is being
sent to it.

Figure 6 shows how the nodes are connected together to build the
tree. As seen in the figure, the simple structure of the tree makes
pipelining easy. Pipe registers (dashed blocks in Figure 6) can be
inserted between suitable levels of the tree. Anytime a prefix is
entered in the pipeline, all leaf nodes get a ‘0’ as the initial value
of found_left and found_right signals. After traversing the pipe
depth, prefix and the possible match result exit from the other side
simultaneously. Some nodes of the tree are empty and ready to
accept new inserted prefixes. These Passive Nodes (PNs) whose
internal Valid bit is configured to be zero, do not decide on data
stream and only pass it to their parent. Active Nodes (ANs) are
those having a valid (Prefix/NHP) pair and compare the prefix
being searched with their internal prefix value.

The amount of reconfigurable logic resources consumed by each
node depends on the size of Prefix and NHP fields. For example,
a tree node of length 24 utilizes 14 Virtex-II Pro FPGA slices in
our case while 7 slices are enough for each tree node of length 12.

prefix_search

=
ValidNHP

Prefix

S0
S1

0123

Q
fo

un
d_

rig
ht

fo
un

d_
le

ft

nh
p_

le
ft

nh
p_

rig
ht

fo
un

d_
ou

t

nh
p_

ou
t

MUX

AN AN PN AN

PN AN

AN

0 0 0 0 0 0 0 0 Prefix In

Prefix
Out

NHP Found?

P0P0P0P0P0

P1 P1 P1

P2P2

Figure 5. Structure of a node in the reconfigurable search tree. Figure 6. Building a reconfigurable search tree using the node in
Figure 5.

4.4 Update Scenario
Adding and removing prefixes to/from the reconfigurable search
tree has a bounded time of partially reconfiguring only some
portions of a node. When a prefix is to be removed from the tree,
only the Valid bit of the node containing the prefix is reconfigured
to zero. For adding a new prefix to the tree, any empty node (any
node with Valid bit equal to ‘0’) of the tree can be selected for the
insertion operation. The Prefix and NHP fields of this node are
reconfigured to have the proper values and Valid bit is
reconfigured to ‘1’.

Prefixes of all subtables of each length are integrated in a
reconfigurable search tree. This tree is searched in parallel with
the access to the main table. The reconfiguration controller
introduced in Figure 1 has the responsibility of tracking the used
and free nodes of the tree of each length. When an update
operation fails in the main hash table, the reconfiguration
controller is requested to continue the update operation in the
reconfigurable search tree. In fact, only a small fraction of route
updates are expected to need a reconfiguration because the
majority of prefixes settle on the main hash table and most of
update operations are done in the main table.

The reconfigurable search tree has a limited number of nodes.
When all nodes of the tree are in use, new insertion requests are
rejected. In such a situation, which is due to physical limitations,
more nodes must be allocated to the tree using a full hardware
reconfiguration. We will show that a proper number of nodes can
be decided for the tree of each engine so that the tree can stably
work for a long period of time without overflowing.

5. IMPLEMENTATION
The proposed architecture was synthesized on a Xilinx FPGA
from Virtex-II Pro family. These series of FPGAs support fast
partial reconfiguration and are well suited to our application.

5.1 The Overall Structure
Figure 7 shows the high level block diagram of a sample engine
with a main table with 4 columns on the left hand side and a
reconfigurable search tree with 7 nodes on the right hand side.
Dashed blocks in the figure are pipeline registers. We used cyclic
redundancy check (CRC) for the Hash block which was shown to
be a very good hash function [6]. To reach a better performance,
the hash function was implemented byte-wise and pipelined to be
able to compute one hash value per clock cycle [16].

There is a Match block for each memory bank. It compares the
prefix being searched with the value in the memory bank row to
which the hash of the address points. If the memory contains valid
data and if it matches the prefix, the corresponding Select node
input is triggered.

Select nodes implement a simple logic: if they find a valid data in
one of their two inputs, they pass the data; otherwise they hold
their output at invalid state. Using this property, we can build a
pipelined selection tree to find the possible match in the main
table with N columns with a latency of log2(N) and a throughput
of one operation per clock cycle. In our implementation, we put
pipeline registers between every two levels of the selection tree
because Select nodes have a short delay. This halves the tree
latency without affecting the pipeline clock. Select nodes have
another useful property: Their left input has a higher priority than
the right one when both inputs have valid data. This implies an
overall priority from left to right in the inputs of the selection tree.
Therefore, it can also be used as the priority encoder in Figure 2
to find the longest match among the results of all engines.

Search process advances in the main table in parallel with the
reconfigurable search tree. The number of pipe stages of both
parts must be equalized using additional pipe stages for the
shorter one. For example, two extra pipe stages are added to the
reconfigurable search tree in Figure 7.

AN AN

Memory
Bank 4

Match

PN AN

PN AN

AN

Memory
Bank 3

Memory
Bank 2

Memory
Bank 1

MatchMatchMatch

Hash

SelectSelect

Select

Select

Prefix

NHP

Figure 7. Structure of a sample engine used for each particular length of prefixes.

The possible match results of the main table and the
reconfigurable search tree go into a Select node to generate the
output result of the engine. The results of all engines must go into
a selection tree which finds the longest match. Again, additional
pipe stages may be needed between the output of some engines
and the input of the selection tree to make the latency of all
engines equal.

The powerful language constructs of VHDL allowed us to write a
flexible and synthesizable code. Pipeline stage balancing and tree
node instantiation of the reconfigurable search trees and the
selection trees were handled automatically. This was done after
determining the number of reconfigurable search tree nodes and
the size and the number of main table memory banks for each
engine via some VHDL generic parameters. This is important as it
can help to perform automated full reconfigurations when a
reconfigurable search tree overflows.

5.2 Flexible Architecture Description
We proposed a flexible architecture with some initial
configuration parameters. Initially, it is not necessary to
implement engines of all lengths. Our routing table may lack
some lengths which allows us to remove these engines from the
design.

Another parameter is the size of the hash main table. If you
compare Figures 3, 4(a) and 4(b) you will see that the number of
columns and rows of the main table affects total memory usage
and subtable sizes. As said before, a reasonable size of the main
table must be decided to trade-off between the memory wasted in
the main table and the size of subtables. After determining the
space to be allocated to the main table, the number of rows and
columns which make that space are to be decided. The granularity
of distributed memory elements on the target chip is effective to
this decision.

In addition, the number of nodes for each engine in its
reconfigurable search tree must be determined. The number of
nodes must be greater than the number of collided prefixes to
allow further prefix additions to the tree.

These decisions are dependent on the number of prefixes and
routing data distribution which varies in different routers.
Therefore, having a flexible architecture which permits tuning of
the above parameters is useful. Parameters can be tuned easily by
setting some VHDL generic parameters according to the routing
table characteristics of a particular Internet router once. Then, the
architecture is synthesized on a suitable reconfigurable hardware
platform.

5.3 Automated Generation of Parameters
To make the analysis of the proposed architecture simple, we
defined three basic parameters described as follows. The first
parameter describes the ratio of memory space allocated to the
main table of any length to the existing prefixes of this length.
This parameter is referred as MPR. Using this parameter, the total
size of the main table will be determined for a particular routing
table. The number of rows and columns which make that space
are determined according to the second parameter called WHR.
This parameter defines the width to height ratio of the main table.
After determining the size of the main table, prefixes can be
inserted into the main table and the number of collided entries is
determined. To allow further prefix additions, we allocate more
nodes than the collided entries for the reconfigurable search tree.
This defines the third parameter as RCR which is the ratio of the
number of node in the reconfigurable search tree to the number of
collided entries.

These parameters can be used after tuning to automatically adjust
the flexible architecture for a particular routing table.

6. EXPERIMENTAL RESULTS
We used a snapshot of rrc08 routing database [22] taken in 12:00
PM, March 1 2004 to tune the three basic parameters for this
particular router. Figure 8 shows the distribution of 89979
prefixes of this snapshot. After tuning the parameters, a series of
20 snapshots of the week following that date was examined for
the tuned architecture. Figures 9(a) and 9(b) show the prefix count
variations of the whole routing table and length 24 during that
week.

We expect a well adjusted architecture to waste few memory
places in order to have a main table usage of nearly 100%. In the
case of reconfigurable search tree, a nearly 100% usage implies
the optimum resource usage. However it may overflow the tree
and result in the rejection of further addition operations unless a
full reconfiguration is done and the tree is enlarged.

6.1 Stability
Our reconfigurable search tree has a limited number of nodes. If it
overflows, further prefix additions are not possible and a full
reconfiguration is needed. We show if the architecture adjustment
is performed properly, this case will be rare.

Starting from an initial set of parameter values, we set MPR=1.1
to make the main table slightly larger than the number of prefixes.
In order to use the same ratio for the size of the reconfigurable
search tree RCR is set to 1.1. The main table aspect ratio is set by
WHR=0.1.

Note that these values are initialized once in order to be able to
adjust the architecture according the first routing table snapshot.
Then, other snapshots in sequence are examined on the
architecture to see its behavior. Figure 10(a) shows variations of
the main table usage and the reconfigurable search tree usage for
these initial parameter values. To easily refer to this set of
parameters and other following parameter sets, we summarized
them in Table 1. As seen in the figure, after 4 days, the tree
overflowed in the 12th routing table snapshot. It was expected due
to the small value of RCR=1.1.

rrc08 Prefix Distribution

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Length

P
re

fix
es

Figure 8. Prefix distribution of a snapshot of rrc08 routing
table.

rrc08 Prefix Count

89000

89500

90000

90500

91000

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0
0:

00

8:
00

16
:0

0
0:

00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

Week Hours (2004/3/1 to 2004/3/7)

P
re

fi
xe

s

(a)

rrc08, Length 24 Prefix Count

48000

48200

48400

48600

48800

49000

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0
0:

00

8:
00

16
:0

0
0:

00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0
Week Hours (2004/3/1 to 2004/3/7)

P
re

fi
xe

s

(b)

Figure 9. Prefix count variations of (a) the whole routing table
and (b) length 24 of rrc08 during a week.

We assume a bigger RCR=1.5 value in the next parameter set (B).
In addition, we increased MPR to 1.3 to allow more prefixes to
settle on the main table. The result is shown in Figure 10(b). As
seen in the graph, no tree overflows occurred in the one week
duration. However, the tree usage is very sensitive to the prefix
count variations shown in Figure 9(b). The 13th snapshot causes a
peak in both graphs. Table 2 shows the cause of this sensitivity.
This table shows the resource usage of the architecture for the
different parameter sets. For parameter set B, the number of the
nodes in the tree is 81 which is very small.

Table 1. Parameter sets used to evaluate the architecture.

Parameter Set MPR WHR RCR

A 1.1 0.1 1.1

B 1.3 0.1 1.5

C 1.0 0.1 1.5

D 1.3 0.05 1.5

To investigate the affect of a small value for MPR, the third
parameter set with MPR=1.0 was chosen. As seen in Figure 10(c),
this results in a near-full main table. The reconfigurable search
tree has a safe distance from overflowing varying around 70%
usage. However, Table 2 shows a big reconfigurable search tree
as a result of this parameter set C which has implementation
problems due to its large number of nodes.

As the last experiment, the parameter set B was changed by
reducing the previous value of WHR to half. This reduces the
number of the main table columns and increases the number of
rows. This is useful when the hardware platform offers bigger on-
chip distributed memories and a lot of memory may be wasted
when separate small memory blocks are needed. However, this
increased the amount of collided entries by near 1% which is
negligible in the graph. On the other hand, the number of
reconfigurable search tree nodes was increased from 81 to 499 in
Table 2. The increase in the number of tree nodes reduces the
sensitivity of variations in the tree usage to the variations in the
number of prefixes. Figure 10(d) shows that the tree usage varies
safely below 70% in this case. This shows that it is possible to
adjust the architecture to be stable against routing table updates so
that no reconfigurable search tree overflows happens after routing
table updates for a long period of time.

Engine 24, MPR=1.1, WHR=0.1, RCR=1.1

50
60

70
80
90

100

110
120

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

Week Hours (3/1/04 to 3/7/04)

U
sa

g
e

P
er

ce
n

t

RCST Usage Main Table Usage

Engine 24, MPR=1.3, WHR=0.1, RCR=1.5

50
60

70
80
90

100

110
120

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

Week Hours (3/1/04 to 3/7/04)

U
sa

g
e

P
er

ce
n

t

RCST Usage Main Table Usage

(a) (b)

Engine 24, MPR=1.0, WHR=0.1, RCR=1.5

50
60

70
80
90

100

110
120

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

Week Hours (3/1/04 to 3/7/04)

U
sa

g
e

P
er

ce
n

t

RCST Usage Main Table Usage

Engine 24, MPR=1.3, WHR=0.05, RCR=1.5

50
60

70
80
90

100

110
120

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

0:
00

8:
00

16
:0

0

Week Hours (3/1/04 to 3/7/04)

U
sa

g
e

P
er

ce
n

t

RCST Usage Main Table Usage

(c) (d)

Figure 10. Variations of the reconfigurable search tree (RCST) usage and the main table usage of the engine of length 24 for the
parameter values of Table 1.

6.2 Resource Usage
Table 2 shows the memory requirements of the architecture for
prefixes of length 24 and the whole routing table for different
parameter sets of Table 1. The number of nodes in the
reconfigurable search tree which implies the amount of logic
resources needed on the reconfigurable hardware platform is also
shown in this table.

We synthesized the architecture according to the parameter sets B
and D whose simulation showed better results. Xilinx Virtex-II
Pro Family FPGA xc2vp100 [23] was used as the target
reconfigurable hardware platform. This family of FPGAs offer
distributed on-chip SRAM blocks of size 18 KBits. Therefore, all
the main table columns were instantiated as a quantum of this
size. This causes more memory usage which can be seen when
comparing Table 3 with Table 2. FPGA slice utilization can also
be seen in Table 3. This includes slices used for both search and
update logic as well as the reconfigurable search trees.

Table 2. Resource requirements for the architectures with
different parameters of Table 1.

Memory (KBits) Tree Nodes
Parameter

Set Length
24

All
Lengths

Length
24

All
Lengths

A 1520 2650 970 3431

B 1778 3114 81 1161

C 1376 2403 3865 8775

D 1778 3124 499 1676

Table 3. FPGA resource utilization for synthesis with two
different parameter sets.

Parameter
Set Block RAMs Slices

B 276 (57%, 4968 KBits) 13950 (30%)

D 254 (52%, 4572 KBits) 14274 (31%)

6.3 Performance
Table 4 shows the performance of search and update operations
for the synthesized pipelined architecture in terms of millions of
operations per second (MOPS). Search pipeline depth is also
reported. It is equal to the deepest engine depth plus the depth of
the selection tree which is used to find the longest match among
all engines match results.

Table 4. Search and update performance for the synthesized
architecture.

Parameter
Set

Search
Throughput

(MOPS)

Search
Pipeline
Depth

Main
Table

Update
(MOPS)

Overall
Update
(MOPS)

B 269.03 12 88.47 2.786

D 263.23 13 85.97 1.946

If an update operation fails in the main table, the reconfigurable
search tree must be updated using a partial reconfiguration to add
or remove a prefix. To calculate the total time for prefix update,
including this hardware reconfiguration overhead, we estimated
the tree update probability proportional to the number of the
prefixes in the tree. The target FPGA has a minimum partial
reconfiguration time of 27 microseconds for a frame i.e. a column
of logic resources inside the FPGA [23]. Although we only need
to reconfigure a small part of an FPGA frame, we have to
reconfigure at least one frame on this platform as the smallest
reconfiguration quantum. A reconfigurable hardware platform
with smaller reconfiguration quantum will result in a better update
performance.

Table 5 compares our proposed approach with some other works.
Memory requirements are expressed in terms of bits per prefix to
have a fair comparison. In fact, we took into account only the
prefixes in the main table to calculate the memory usage of our
proposed architecture. It requires less memory than other schemes
in Table 5. It requires less memory than parallel hashing scheme
because the pointers to the subtables of each row of the main table
are no longer needed.

Table 6 compares the lookup speed with some implementations.
Unlike Table 5 which compares simulation results, synthesis
results are compared in Table 6. Lookup performance is improved
in our scheme even though we support a much larger routing
database.

Table 5. The proposed architecture simulation results
compared with others.

Method
Memory
Required
(KBits)

Prefix
Count

Memory
Required

(Bits/Prefix)

Memory
Accesses

per
Lookup

Proposed
Scheme

3124 88303 35.38 1

DIR-24-8 [4] 264000 - - 1-2

Trie Bitmap
[13]

20000 41811 478.34 1-5

Indirect
Lookup [5]

3600 40000 90 1-3

Parallel
Hashing [9]

1512 37000 40.86 1-5

Multi-way
Search [8]

5600 30000 186.67 1-9

Table 6. The synthesized architecture performance compared
with others.

Implementation Prefix
Count

Lookup Speed
(Mlps)

Proposed Architecture 89979 263.23

Reconfigurable BDD [3] 33796 157.7

Reconfigurable FSM [15] 38367 22.22

FIPL (Parallel Trie Bitmap)
[18]

16564 9.09

7. CONCLUSION
A new reconfigurable architecture was proposed for IP address
lookup. To reduce the resource usage, which is the problem of
previously proposed reconfigurable hardware-based approaches,
not all prefixes - but only the hash operation collisions - are
implemented on the reconfigurable part of the system. This
approach also causes only a small fraction of route updates to
need hardware reconfiguration. This improves the update time.
Having an IP lookup performance of 263 Mlps, this architecture
can be used as a lookup engine for an Internet router forwarding
packets at a speed over 250 Gbps.

8. ACKNOWLEDGMENTS
This project was supported in part by Iran Telecommunications
Research Center (ITRC).

9. REFERENCES
[1] H. Chao, C. Lam, and E. Oki, “Broadband Packet Switching

Technologies”, John Wiley Publications, 2001, 365-405.

[2] K. Compton, and S. Hauck, “Reconfigurable Computing: A
Survey of Systems and Software”, ACM Computing Surveys
(CSUR), Vol. 34, No. 2, June 2002, 171-210.

[3] M. Desai, R. Gupta, A. Karandikar, K. Saxena, and V.
Samant, “Reconfigurable Finite-State Machine Based IP
Lookup Engine for High-Speed Router”, IEEE Journal on
Selected Areas in Communications (JSAC), Vol. 21, No. 4,
May 2003, 501-512.

[4] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds”, IEEE Informatics and
Communications Conference (INFOCOM), Vol. 3, April
1998, 1240-1247.

[5] N. Huang, S. Zhao, J. Pan, and C. Su, “A Fast IP Routing
Lookup Scheme for Gigabit Switching Routers”, IEEE
Informatics and Communications Conference (INFOCOM),
Vol. 3, March 1999, 1429-1436.

[6] R. Jain, “A Comparison of Hashing Schemes for Address
Lookup in Computer Networks”, IEEE Transactions on
Communications, Vol. 40, No. 10, October 1992, 1570-1573.

[7] F. Kuhns, J. DeHart, A. Kantawala, R. Keller, J. Lockwood,
P. Pappu, D. Richard, D. Taylor, J. Parwatikar, E. Spitzangel,
J. Turner, and K. Wong, “Design and Evaluation of a High-
Performance Dynamically Extensible Router”, IEEE
DARPA Active Networks Conference and Exposition
(DANCE), May 2002, 42-46.

[8] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups
Using Multiway and Multicolumn Search”, IEEE/ACM
Transactions on Networking (TON), Vol. 7, No. 3, June
1999, 324-334.

[9] H. Lim, J. Seo, and Y. Jung, “High Speed IP Address
Lookup Architecture Using Hashing”, IEEE

Communications Letters, Vol. 7, No. 10, October 2003, 502-
504.

[10] A. McAuley, P. Tsuchiya, and D. Wilson, “Fast Multilevel
Hierarchical Routing Table Lookup Using Content
Addressable Memory”, US Patent, No. 05386413, January
1995.

[11] D. Morrison, “PATRICIA- Practical Algorithm to Retrieve
Information Coded in Alphanumeric”, Journal of ACM
(JACM), Vol. 15, No. 4, October 1968, 514-534.

[12] S. Nilsson, and G. Karlsson, “IP-Address Lookup Using LC-
Tries”, IEEE Journal on Selected Areas in Communications
(JSAC), Vol. 17, No. 6, June 1999, 1083-1092.

[13] D. Pao, C. Liu, A. Wu, L. Yeung, and K. Chan, “Efficient
Hardware Architecture for Fast IP Address Lookup”, IEEE
Informatics and Communications Conference (INFOCOM),
Vol. 2, June 2002, 555-561.

[14] M. Ruiz-Sánchez, E. Biersack, and W. Dabbous, “Survey
and Taxonomy of IP Address Lookup Algorithms”, IEEE
Network Magazine, March/April 2001, 8-23.

[15] R. Sangireddy, and A. Somani, “High-Speed IP Routing with
Binary Decision Diagrams Based Hardware Address Lookup
Engine”, IEEE Journal on Selected Areas in
Communications (JSAC), Vol. 21, No. 4, May 2003, 513-
521.

[16] M. Sprachmann, “Automatic Generation of Parallel CRC
Circuits”, IEEE Conference on Design and Test of
Computers, Vol. 18, No. 3, May 2001, 108-114.

[17] V. Srinivasan, and G. Varghese, “Fast Address Lookups
Using Controlled Prefix Expansion”, ACM Transactions on
Computer Systems (TOCS), Vol. 17, No. 1, February 1999,
1-40.

[18] D. Taylor, J. Lockwood, T. Sproull, J. Turner, and D.
Parlour, “Scalable IP Lookup for Programmable Routers”,
IEEE Informatics and Communications Conference
(INFOCOM), Vol. 2, 2002, 562-571.

[19] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner,
“Scalable High Speed IP Routing Lookups”, ACM Special
Interest Group on Data Communications (SIGCOMM),
September 1997, 25-36.

[20] L. Wuu, and S. Pin, “A Fast IP Lookup Scheme for Longest-
Matching Prefix”, IEEE International Conference on
Computer Networks and Mobile Computing (ICCNMC),
October 2001, 407-412.

[21] N. Yazdani, and P. Min, “Fast and Scalable Schemes for the
IP Address Lookup Problem”, IEEE Conference on High
Performance Switching and Routing (HPSR), 2000, 83-92.

[22] Routing Information Service, Online,
http://www.ripe.net/ris/.

[23] Xilinx Virtex-II Pro FPGA Family Users Guide and
Datasheets, Online, http://www.xilinx.com.

