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ABSTRACT 
IP address lookup is one of the most challenging problems of 
Internet routers. In this paper, an IP lookup rate of 263 Mlps 
(Million lookups per second) is achieved using a novel 
architecture on reconfigurable hardware platform. A partial 
reconfiguration may be needed for a small fraction of route 
updates. Prefixes can be added or removed at a rate of 2 million 
updates per second, including this hardware reconfiguration 
overhead. A route update may fail due to the physical resource 
limitations. In this case, which is rare if the architecture is 
properly configured initially, a full reconfiguration is needed to 
allocate more resources to the lookup unit. 

Categories and Subject Descriptors 
C.2.6 [Computer – Communication Networks]: 
Internetworking – routers.
B.7.1 [Integrated Circuits]: Types and Design Styles – 
algorithms implemented in hardware.

General Terms 
Algorithms, Design, Experimentation, Performance. 

Keywords 
IP Address Lookup, Longest Prefix Matching, Reconfigurable 
Hardware, Hashing, Field-Programmable Gate Array (FPGA), 
Application Specific Integrated Circuit (ASIC). 

1. INTRODUCTION
Increasing number of Internet users and the advent of new 
multimedia networking applications have resulted in growth of 
traffic rates on backbone links. There are three key factors to be 
considered in designing IP networks to maintain a good service: 
links with large bandwidth, high speed data switching and high 
packet forwarding rates. Currently, available optical data  
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transmission links and current data switching technology allow 
easy handling of the first two factors. Therefore, deployment of 
high performance routers to forward packets is the key to the 
success of the next generation IP routers [1]. 

Many tasks must be done in IP packet forwarding: decreasing 
time-to-live (TTL) of the packet, checking the packet checksum 
for errors, updating the checksum etc. However, the bottleneck of 
the packet forwarding operation is IP address lookup or 
determining the corresponding output interface of the router 
according to the packet destination address to send the packet. 
When an Internet router routes a packet, it looks for its 32-bit 
destination IP address to see if it matches the entries in the router. 
Routing entries in the router are in different lengths and therefore 
multiple matches may occur. The router must find the longest 
match and use the corresponding output interface to send the 
packet. This makes IP address lookup a challenging problem. 

The rest of the paper is organized as follows. In Section 2, a brief 
description of the prior works related to IP address lookup 
problem is given. Two previous works, which use reconfigurable 
hardware, are described in Section 3, after an introduction to 
reconfigurable hardware. In Section 4, we present our proposed 
approach whose implementation is explained in Section 5. Section 
6 shows the results and comparisons. Section 7 concludes the 
paper. 

2. RELATED WORK 
Many software and hardware IP address lookup approaches are 
proposed by researchers. A successful approach proposed for this 
problem must be: 

• fast in performing IP lookup operations. Considering IP 
packets of 1000 bits long on average, a 100 Gbps router needs 
a lookup engine capable of working at a rate of 100 Mlps.  

• fast in updating its routing database, i.e. adding or removing 
prefixes. It must anticipate a burst of 100 or more update 
operations per second [14]. 

• scalable in terms of routing tables growth caused by the 
increasing number of Internet users. 

• scalable for migrating from IPv4 to IPv6. 

• efficient in terms of implementation costs, achieving above 
objectives at a minimal cost. 

Any IP address lookup approach can be scored according to the 
above parameters [14]. 
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Binary trie which is the base of many existing schemes is a tree 
data structure that is searched starting from its root and going 
down to left or right depending on the value of the current bit of 
the address being searched. Any time a prefix is seen at a node of 
the trie, it is stored as the longest matching prefix up to now. 

The basic trie structure needs up to w memory accesses per 
lookup, where w is the number of distinct prefix lengths existing 
in the routing database. The number of memory accesses to the 
trie is optimized using path compression [11] and level 
compression techniques [12]. The former uses multiple branches 
from every node, checking multiple bits of the destination address 
at each step. This results in better search performance at the cost 
of more memory usage and worse update time because some 
prefixes need to be expanded. The level compression technique, 
on the other hand, removes the nodes with only one child but the 
number of removed nodes must be stored somewhere for later 
searches. This technique is only useful for sparse tries but not for 
huge tries of backbone Internet routers in which there are not 
many one-child nodes. 

Researchers implemented the trie in various ways both in 
hardware and software. Some of them used the straightforward 
node and pointer structures used in the software implementation 
of the tree structures [4] [12]. Some others implemented the trie as 
bit vectors [13] [18]. Trie was also implemented on 
reconfigurable hardware as a reconfigurable finite-state machine 
(FSM) [3] or a reconfigurable binary decision diagram (BDD) 
[15]. The following section describes these two implementations 
in details. 

Modified versions of the binary search algorithm have been used 
in IP address lookup problem [8] [21]. The modifications were to 
make the standard binary search algorithm applicable to searching 
for the longest matching prefix. These approaches were extended 
to multi-way search. Both [8] and [21] had a good search time, 
but were poor in terms of the time required to update the routing 
table. 

Content addressable memories (CAMs) were also used for IP 
address lookup [10]. A CAM is a memory that can be searched for 
a data item in parallel. There is a kind of CAM called ternary 
CAM (TCAM) which can be given a mask to be used for the 
desired length of data items in its search process. Therefore, if 
prefixes are sorted by their length, the first match will be the 
longest one. TCAMs are expensive and have a high cost of 
updating routes because all prefixes must be kept sorted by length. 

Trie requires large memory because it uses the IP address itself as 
an index to the data structure. Hashing technique can also be used 
for IP lookup where a hash function of each item is computed and 
used as an index to a table to insert the item. To search for an 
item, if its hash function is computed, we only need to search the 
table row to which this hash value points. 

Hashing is usually used for exact matching. For IP lookup, which 
must find the longest matching prefix, prefixes of each length are 
searched for exact matches with the IP address using hashing and 
then, the longest match among them is chosen. Waldvogel et al 
[19] used binary search to find the longest match among the hash 
results for every length. However, in their scheme, it was not 
necessary to use hashing for all lengths, but only some lengths 
were searched for an exact match during the binary search. To 
make this possible they added extra information to routing data. 
However, the computation of this information lengthens the 

update time. In [9], a hardware-based method uses hashing for all 
lengths in parallel and finds the longest match among the results 
using a priority encoder. The scheme in [19] is suitable for 
software implementations while the method in [9] takes advantage 
of parallelism in hardware. Our proposed scheme is an improved 
version of [9] using the benefits of hardware reconfiguration. 

3. RECONFIGURABLE HARDWARE AND 
IP ADDRESS LOOKUP 

Recently, reconfigurable hardware has been used for IP address 
lookup. Reconfigurable hardware is a kind of hardware whose 
functionality may change in response to the demands placed upon 
the system while it is running. This gives us both the flexibility of 
software and the performance of hardware. 

This capability of hardware reconfiguration can be beneficial 
from different aspects. Some of these benefits are listed below: 

• As much performance as possible can be gained from limited 
hardware resources by tuning configuration parameters on a 
flexible hardware architecture.  

• Hardwired data structures can be used to accelerate 
performance by eliminating the drawbacks of traditional 
memory storage-based data structures.  

• The system cost can be reduced by fitting multiple features 
and applications on a single reconfigurable hardware platform 
or by partitioning an application into some stages being 
configured serially on a smaller platform. 

Some of currently available field-programmable gate arrays 
support partial reconfiguration in a few microseconds and full 
reconfiguration in a few milliseconds. This has made 
reconfigurable systems more attractive to researchers due to their 
capability of implementing reconfigurable hardware in real world. 

References [3] and [15] used reconfigurable hardware to achieve 
high performance trie implementations. Both approaches profited 
from the second of the three advantages of reconfigurable 
hardware mentioned above. As seen in Figure 1, the lookup 
engine is a reconfigurable hardware containing the hardwired 
routing data. Therefore, the engine performs high speed lookup 
decisions with no memory accesses. However, any route update 
should affect the hardwired data by reconfiguring the engine. This 
task is done by the reconfiguration controller unit. It translates the 
routing table updates to hardware reconfiguration information and 
applies it to the reconfigurable platform. We use the first and the 
second advantages of reconfigurable hardware. 

Reconfigurable 
Hardware

Reconfiguration 
Controller

Routing Database

Input Packets

Output Packets

Figure 1. IP address lookup using reconfigurable hardware. 



Desai et al [3] implemented the binary trie as a reconfigurable 
finite-state machine. They considered the binary trie as an FSM, 
the states of which represent the nodes of the trie and the links 
represent the transitions between the states. Then, that huge FSM 
was partitioned into smaller sub-FSMs to be implementable as an 
ASIC. These sub-FSMs were cooperated via a main controller. 
Each time the routing table needs an update, the trie must change 
and this change must be reflected to the FSM with a hardware 
reconfiguration. Sangireddy et al [15] used binary decision 
diagrams to implement the binary trie as a reconfigurable BDD. 
They partitioned the trie into five smaller tries according to the 
bits of the result output interface and simplified the corresponding 
BDDs and converted the resulted BDDs to logic implementable 
on lookup tables of a reconfigurable FPGA. Like Desai's scheme, 
any routing table update results in a reconfiguration that must be 
applied to the architecture using a reconfiguration controller. 

The reconfigurable architecture in Figure 1 makes an obvious 
consideration necessary: incremental route updates which only 
need a partial hardware reconfiguration must be made possible; 
otherwise the huge rate of route updates can make the approach 
impractical on a backbone router. 

Desai et al [3] hope each route update to affect only one of the 
many sub-FSMs but there is no guarantee for that.  Sangireddy et 
al [15] say that the small BDD differences corresponding to two 
adjacent routing table snapshots result in small logic variations. 
This makes incremental route updates probable but as difficult as 
they do not offer any way to do that. 

Another problem arises for large routing table sizes. Currently, a 
backbone router may have as many routing prefixes as 100K 
which needs a huge reconfigurable hardware platform for 
hardwired implementation of the FSM or BDD corresponding to 
its trie. 

The proposed architecture in this paper can address both problems 
by taking advantages of both traditional hashing scheme and 
reconfigurable hardware. The problem of large hardwired data 
size is addressed by only implementing the collided entries on 
reconfigurable hardware. Other prefixes can be searched with a 
single memory access to the main table. We also addressed the 
problem of high route update cost by proposing a novel 
reconfigurable search tree architecture for collision resolution. 
The proposed architecture can be updated with partial 
reconfigurations when adding or removing prefixes. 

4. OUR PROPOSED APPROACH 
First, we take a closer look at the basic hashing scheme used by 
Lim et al [9]. Then we explain our improvements to reduce the 
collisions of hashing operation and finally, the novel 
reconfigurable search tree architecture to resolve the hash 
collisions is presented. 

4.1 The Basic Hashing Scheme 
Hashing is useful in exact matching problems. For a longest 
matching problem, such as IP address lookup, each existing length 
of routing prefixes is searched for a match using hashing and the 
longest one among the possible match results of each length is 
chosen. This selection can be done using a priority encoder in 
hardware. Figure 2 shows this method. Each engine searches one 

existing length of prefixes for an exact match and reports the 
result to the priority encoder. Figure 3 shows the structure of each 
engine in which used memory words are marked. The hash value, 
computed according to the first N bits of the address, is used as an 
index to the main table. When inserting a new entry, the hash 
value may point to a used word of the main table. For such a 
collision, the new value must be stored in a subtable. When 
searching in this structure, the row of the main table to which the 
hash of the address points is inspected. We are done if a match is 
found in the main table. Otherwise, search continues at the 
subtable of this row of the main table if one exists. Subtables of 
different rows may vary in size. A good hash function is the one 
which distributes data elements uniformly in the main table’s 
address space which results in the subtables of almost similar 
sizes. 

4.2 Multi-Column Main Table 
Implementing parallel engines requires separate memories as their 
main table. In the current technology, it is possible to include 
multiple SRAM blocks on a chip easily. This on-chip memory 
distribution can be more beneficial to improve the hashing 
quality. A multi-column main table can be used in which each 
column is implemented as a separate memory. The columns in the 
main table are checked for a match in parallel in one memory 
access time by a simple circuit. This reduces subtable sizes and 
moves many collisions from subtables to the main table. Reducing 
the size of subtables is important in our proposed scheme because 
they are implemented in reconfigurable hardware. As mentioned 
earlier, implementing the whole routing table as hardwired data, 
as in [3] and [15], is hardly practical on a reconfigurable hardware 
platform due to its big size. This also results in worse average 
route update time because all update operations need a hardware 
reconfiguration whose overhead is considerable on current 
reconfigurable hardware platforms. Our proposed approach 
addresses these two problems by holding the majority of routing 
prefixes in the multi-column main tables. A two-column main 
table is shown in Figure 4(a). It can be seen that the subtables are 
shrunken but at the cost of using more memory space for the same 
number of prefixes. Increasing the number of columns reduces 
subtable sizes more. On the other hand, more memory space may 
be wasted if the number of columns is increased (Figure 4(b)). 
This increased memory usage can be justified for two reasons: 

• If a good hash function is chosen to uniformly distribute 
prefixes in the address space of the main table, a reasonable 
number of columns can be decided for the main table so that 
the main table is almost full and very few subtables are 
needed. 

• The multi-column main table still has less memory 
requirements than many other implementations as the hashing 
scheme well reduces the memory usage. 

4.3 Reconfigurable Search Tree 
Hash subtables are usually searched using binary search 
algorithm. Conventional binary search tree is suitable for software 
implementations but in hardware, memory allocation is a great 
concern. Although it is not impossible, it is not easy, specially if 
more complicated binary search trees such as AVL trees are used 
to hold the tree balanced after update operations. 
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We propose a novel reconfigurable search tree architecture the 
nodes of which are the reconfigurable hardware logic blocks. This 
is a fixed skeleton complete tree in which hardwired data 
elements are stored in the reconfigurable hardware resources of 
each node. Unlike the conventional binary search tree, a new 
prefix can be inserted in any node of the tree, making partial 
reconfiguration possible for update operations. Each node has a 
simple logic; it stores a prefix and the next hop information 
related to this prefix. Data flow direction in the tree is from child 
to the root. Each node compares the prefix to be searched with its 
hardwired prefix. The comparison result is reported to the parent 
node. If a match is found in the child node, the next hop 
information will be given to the parent node; otherwise, any node 
which gets the next hop information from one of its children only 
passes it to its parent. The final match result is obtained from the 
root node. Figure 5 shows the structure of one node. 
Reconfigurable areas are shown as shaded blocks. The node 
operates as follows. 

If the node gets a found_left signal from the left child, it transfers 
the nhp_left value to its parent. Otherwise, if a found_right signal 
is seen, the nhp_right value is transferred to the parent. If no 
found signal is reported from neither the left nor the right child 
and if the node is configured to have a valid data (configured with 

Valid bit equal to 1), it compares the prefix_search with its 
hardwired prefix value. If they match, the NHP value is sent to the 
parent via nhp_out port. found_out signal goes up every time the 
node wants to inform its parent that a valid nhp_out value is being 
sent to it. 

Figure 6 shows how the nodes are connected together to build the 
tree. As seen in the figure, the simple structure of the tree makes 
pipelining easy. Pipe registers (dashed blocks in Figure 6) can be 
inserted between suitable levels of the tree. Anytime a prefix is 
entered in the pipeline, all leaf nodes get a ‘0’ as the initial value 
of found_left and found_right signals. After traversing the pipe 
depth, prefix and the possible match result exit from the other side 
simultaneously. Some nodes of the tree are empty and ready to 
accept new inserted prefixes. These Passive Nodes (PNs) whose 
internal Valid bit is configured to be zero, do not decide on data 
stream and only pass it to their parent. Active Nodes (ANs) are 
those having a valid (Prefix/NHP) pair and compare the prefix 
being searched with their internal prefix value. 

The amount of reconfigurable logic resources consumed by each 
node depends on the size of Prefix and NHP fields. For example, 
a tree node of length 24 utilizes 14 Virtex-II Pro FPGA slices in 
our case while 7 slices are enough for each tree node of length 12. 
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4.4 Update Scenario 
Adding and removing prefixes to/from the reconfigurable search 
tree has a bounded time of partially reconfiguring only some 
portions of a node. When a prefix is to be removed from the tree, 
only the Valid bit of the node containing the prefix is reconfigured 
to zero. For adding a new prefix to the tree, any empty node (any 
node with Valid bit equal to ‘0’) of the tree can be selected for the 
insertion operation. The Prefix and NHP fields of this node are 
reconfigured to have the proper values and Valid bit is 
reconfigured to ‘1’. 

Prefixes of all subtables of each length are integrated in a 
reconfigurable search tree. This tree is searched in parallel with 
the access to the main table. The reconfiguration controller 
introduced in Figure 1 has the responsibility of tracking the used 
and free nodes of the tree of each length. When an update 
operation fails in the main hash table, the reconfiguration 
controller is requested to continue the update operation in the 
reconfigurable search tree. In fact, only a small fraction of route 
updates are expected to need a reconfiguration because the 
majority of prefixes settle on the main hash table and most of 
update operations are done in the main table. 

The reconfigurable search tree has a limited number of nodes. 
When all nodes of the tree are in use, new insertion requests are 
rejected. In such a situation, which is due to physical limitations, 
more nodes must be allocated to the tree using a full hardware 
reconfiguration. We will show that a proper number of nodes can 
be decided for the tree of each engine so that the tree can stably 
work for a long period of time without overflowing. 

5. IMPLEMENTATION 
The proposed architecture was synthesized on a Xilinx FPGA 
from Virtex-II Pro family. These series of FPGAs support fast 
partial reconfiguration and are well suited to our application. 

5.1 The Overall Structure 
Figure 7 shows the high level block diagram of a sample engine 
with a main table with 4 columns on the left hand side and a 
reconfigurable search tree with 7 nodes on the right hand side. 
Dashed blocks in the figure are pipeline registers. We used cyclic 
redundancy check (CRC) for the Hash block which was shown to 
be a very good hash function [6]. To reach a better performance, 
the hash function was implemented byte-wise and pipelined to be 
able to compute one hash value per clock cycle [16].  

There is a Match block for each memory bank. It compares the 
prefix being searched with the value in the memory bank row to 
which the hash of the address points. If the memory contains valid 
data and if it matches the prefix, the corresponding Select node 
input is triggered. 

Select nodes implement a simple logic: if they find a valid data in 
one of their two inputs, they pass the data; otherwise they hold 
their output at invalid state. Using this property, we can build a 
pipelined selection tree to find the possible match in the main 
table with N columns with a latency of log2(N) and a throughput 
of one operation per clock cycle. In our implementation, we put 
pipeline registers between every two levels of the selection tree 
because Select nodes have a short delay. This halves the tree 
latency without affecting the pipeline clock. Select nodes have 
another useful property: Their left input has a higher priority than 
the right one when both inputs have valid data. This implies an 
overall priority from left to right in the inputs of the selection tree. 
Therefore, it can also be used as the priority encoder in Figure 2 
to find the longest match among the results of all engines. 

Search process advances in the main table in parallel with the 
reconfigurable search tree. The number of pipe stages of both 
parts must be equalized using additional pipe stages for the 
shorter one. For example, two extra pipe stages are added to the 
reconfigurable search tree in Figure 7. 
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The possible match results of the main table and the 
reconfigurable search tree go into a Select node to generate the 
output result of the engine. The results of all engines must go into 
a selection tree which finds the longest match. Again, additional 
pipe stages may be needed between the output of some engines 
and the input of the selection tree to make the latency of all 
engines equal. 

The powerful language constructs of VHDL allowed us to write a 
flexible and synthesizable code. Pipeline stage balancing and tree 
node instantiation of the reconfigurable search trees and the 
selection trees were handled automatically. This was done after 
determining the number of reconfigurable search tree nodes and 
the size and the number of main table memory banks for each 
engine via some VHDL generic parameters. This is important as it 
can help to perform automated full reconfigurations when a 
reconfigurable search tree overflows. 

5.2 Flexible Architecture Description 
We proposed a flexible architecture with some initial 
configuration parameters. Initially, it is not necessary to 
implement engines of all lengths. Our routing table may lack 
some lengths which allows us to remove these engines from the 
design. 

Another parameter is the size of the hash main table. If you 
compare Figures 3, 4(a) and 4(b) you will see that the number of 
columns and rows of the main table affects total memory usage 
and subtable sizes. As said before, a reasonable size of the main 
table must be decided to trade-off between the memory wasted in 
the main table and the size of subtables. After determining the 
space to be allocated to the main table, the number of rows and 
columns which make that space are to be decided. The granularity 
of distributed memory elements on the target chip is effective to 
this decision. 

In addition, the number of nodes for each engine in its 
reconfigurable search tree must be determined. The number of 
nodes must be greater than the number of collided prefixes to 
allow further prefix additions to the tree. 

These decisions are dependent on the number of prefixes and 
routing data distribution which varies in different routers. 
Therefore, having a flexible architecture which permits tuning of 
the above parameters is useful. Parameters can be tuned easily by 
setting some VHDL generic parameters according to the routing 
table characteristics of a particular Internet router once. Then, the 
architecture is synthesized on a suitable reconfigurable hardware 
platform. 



5.3 Automated Generation of Parameters 
To make the analysis of the proposed architecture simple, we 
defined three basic parameters described as follows. The first 
parameter describes the ratio of memory space allocated to the 
main table of any length to the existing prefixes of this length. 
This parameter is referred as MPR. Using this parameter, the total 
size of the main table will be determined for a particular routing 
table. The number of rows and columns which make that space 
are determined according to the second parameter called WHR.
This parameter defines the width to height ratio of the main table. 
After determining the size of the main table, prefixes can be 
inserted into the main table and the number of collided entries is 
determined. To allow further prefix additions, we allocate more 
nodes than the collided entries for the reconfigurable search tree. 
This defines the third parameter as RCR which is the ratio of the 
number of node in the reconfigurable search tree to the number of 
collided entries. 

These parameters can be used after tuning to automatically adjust 
the flexible architecture for a particular routing table. 

6. EXPERIMENTAL RESULTS 
We used a snapshot of rrc08 routing database [22] taken in 12:00 
PM, March 1 2004 to tune the three basic parameters for this 
particular router. Figure 8 shows the distribution of 89979 
prefixes of this snapshot. After tuning the parameters, a series of 
20 snapshots of the week following that date was examined for 
the tuned architecture. Figures 9(a) and 9(b) show the prefix count 
variations of the whole routing table and length 24 during that 
week. 

We expect a well adjusted architecture to waste few memory 
places in order to have a main table usage of nearly 100%. In the 
case of reconfigurable search tree, a nearly 100% usage implies 
the optimum resource usage. However it may overflow the tree 
and result in the rejection of further addition operations unless a 
full reconfiguration is done and the tree is enlarged. 

6.1 Stability
Our reconfigurable search tree has a limited number of nodes. If it 
overflows, further prefix additions are not possible and a full 
reconfiguration is needed. We show if the architecture adjustment 
is performed properly, this case will be rare. 

Starting from an initial set of parameter values, we set MPR=1.1 
to make the main table slightly larger than the number of prefixes. 
In order to use the same ratio for the size of the reconfigurable 
search tree RCR is set to 1.1. The main table aspect ratio is set by 
WHR=0.1. 

Note that these values are initialized once in order to be able to 
adjust the architecture according the first routing table snapshot. 
Then, other snapshots in sequence are examined on the 
architecture to see its behavior. Figure 10(a) shows variations of 
the main table usage and the reconfigurable search tree usage for 
these initial parameter values. To easily refer to this set of 
parameters and other following parameter sets, we summarized 
them in Table 1. As seen in the figure, after 4 days, the tree 
overflowed in the 12th routing table snapshot. It was expected due 
to the small value of RCR=1.1. 
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Figure 9. Prefix count variations of (a) the whole routing table 
and (b) length 24 of rrc08 during a week. 

We assume a bigger RCR=1.5 value in the next parameter set (B). 
In addition, we increased MPR to 1.3 to allow more prefixes to 
settle on the main table. The result is shown in Figure 10(b). As 
seen in the graph, no tree overflows occurred in the one week 
duration. However, the tree usage is very sensitive to the prefix 
count variations shown in Figure 9(b). The 13th snapshot causes a 
peak in both graphs. Table 2 shows the cause of this sensitivity. 
This table shows the resource usage of the architecture for the 
different parameter sets. For parameter set B, the number of the 
nodes in the tree is 81 which is very small. 



Table 1. Parameter sets used to evaluate the architecture. 

Parameter Set MPR WHR RCR 

A 1.1 0.1 1.1 

B 1.3 0.1 1.5 

C 1.0 0.1 1.5 

D 1.3 0.05 1.5 

To investigate the affect of a small value for MPR, the third 
parameter set with MPR=1.0 was chosen. As seen in Figure 10(c), 
this results in a near-full main table. The reconfigurable search 
tree has a safe distance from overflowing varying around 70% 
usage. However, Table 2 shows a big reconfigurable search tree 
as a result of this parameter set C which has implementation 
problems due to its large number of nodes. 

As the last experiment, the parameter set B was changed by 
reducing the previous value of WHR to half. This reduces the 
number of the main table columns and increases the number of 
rows. This is useful when the hardware platform offers bigger on-
chip distributed memories and a lot of memory may be wasted 
when separate small memory blocks are needed. However, this 
increased the amount of collided entries by near 1% which is 
negligible in the graph. On the other hand, the number of 
reconfigurable search tree nodes was increased from 81 to 499 in 
Table 2. The increase in the number of tree nodes reduces the 
sensitivity of variations in the tree usage to the variations in the 
number of prefixes. Figure 10(d) shows that the tree usage varies 
safely below 70% in this case. This shows that it is possible to 
adjust the architecture to be stable against routing table updates so 
that no reconfigurable search tree overflows happens after routing 
table updates for a long period of time. 

Engine 24, MPR=1.1, WHR=0.1, RCR=1.1
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Engine 24, MPR=1.3, WHR=0.05, RCR=1.5
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Figure 10. Variations of the reconfigurable search tree (RCST) usage and the main table usage of the engine of length 24 for the
parameter values of Table 1. 



6.2 Resource Usage 
Table 2 shows the memory requirements of the architecture for 
prefixes of length 24 and the whole routing table for different 
parameter sets of Table 1. The number of nodes in the 
reconfigurable search tree which implies the amount of logic 
resources needed on the reconfigurable hardware platform is also 
shown in this table. 

We synthesized the architecture according to the parameter sets B 
and D whose simulation showed better results. Xilinx Virtex-II 
Pro Family FPGA xc2vp100 [23] was used as the target 
reconfigurable hardware platform. This family of FPGAs offer 
distributed on-chip SRAM blocks of size 18 KBits. Therefore, all 
the main table columns were instantiated as a quantum of this 
size. This causes more memory usage which can be seen when 
comparing Table 3 with Table 2. FPGA slice utilization can also 
be seen in Table 3. This includes slices used for both search and 
update logic as well as the reconfigurable search trees.  

Table 2. Resource requirements for the architectures with 
different parameters of Table 1. 

Memory (KBits) Tree Nodes 
Parameter 

Set Length 
24

All
Lengths 

Length 
24

All
Lengths 

A 1520 2650 970 3431 

B 1778 3114 81 1161 

C 1376 2403 3865 8775 

D 1778 3124 499 1676 

Table 3. FPGA resource utilization for synthesis with two 
different parameter sets. 

Parameter 
Set Block RAMs Slices 

B 276 (57%, 4968 KBits) 13950 (30%) 

D 254 (52%, 4572 KBits) 14274 (31%) 

6.3 Performance 
Table 4 shows the performance of search and update operations 
for the synthesized pipelined architecture in terms of millions of 
operations per second (MOPS). Search pipeline depth is also 
reported. It is equal to the deepest engine depth plus the depth of 
the selection tree which is used to find the longest match among 
all engines match results. 

Table 4. Search and update performance for the synthesized 
architecture. 

Parameter 
Set 

Search 
Throughput 

(MOPS) 

Search 
Pipeline 
Depth 

Main 
Table 

Update 
(MOPS) 

Overall 
Update 
(MOPS) 

B 269.03 12 88.47 2.786 

D 263.23 13 85.97 1.946 

If an update operation fails in the main table, the reconfigurable 
search tree must be updated using a partial reconfiguration to add 
or remove a prefix. To calculate the total time for prefix update, 
including this hardware reconfiguration overhead, we estimated 
the tree update probability proportional to the number of the 
prefixes in the tree. The target FPGA has a minimum partial 
reconfiguration time of 27 microseconds for a frame i.e. a column 
of logic resources inside the FPGA [23]. Although we only need 
to reconfigure a small part of an FPGA frame, we have to 
reconfigure at least one frame on this platform as the smallest 
reconfiguration quantum. A reconfigurable hardware platform 
with smaller reconfiguration quantum will result in a better update 
performance. 

Table 5 compares our proposed approach with some other works. 
Memory requirements are expressed in terms of bits per prefix to 
have a fair comparison. In fact, we took into account only the 
prefixes in the main table to calculate the memory usage of our 
proposed architecture. It requires less memory than other schemes 
in Table 5. It requires less memory than parallel hashing scheme 
because the pointers to the subtables of each row of the main table 
are no longer needed. 

Table 6 compares the lookup speed with some implementations. 
Unlike Table 5 which compares simulation results, synthesis 
results are compared in Table 6. Lookup performance is improved 
in our scheme even though we support a much larger routing 
database. 

Table 5. The proposed architecture simulation results 
compared with others. 

Method 
Memory 
Required 
(KBits) 

Prefix 
Count 

Memory 
Required 

(Bits/Prefix)

Memory 
Accesses 

per 
Lookup 

Proposed 
Scheme 

3124 88303 35.38 1 

DIR-24-8 [4] 264000 - - 1-2 

Trie Bitmap 
[13] 

20000 41811 478.34 1-5 

Indirect 
Lookup [5] 

3600 40000 90 1-3 

Parallel 
Hashing [9] 

1512 37000 40.86 1-5 

Multi-way 
Search [8] 

5600 30000 186.67 1-9 

Table 6. The synthesized architecture performance compared 
with others. 

Implementation Prefix 
Count 

Lookup Speed 
(Mlps) 

Proposed Architecture 89979 263.23 

Reconfigurable BDD [3] 33796 157.7 

Reconfigurable FSM [15] 38367 22.22 

FIPL (Parallel Trie Bitmap) 
[18] 

16564 9.09 



7. CONCLUSION 
A new reconfigurable architecture was proposed for IP address 
lookup. To reduce the resource usage, which is the problem of 
previously proposed reconfigurable hardware-based approaches, 
not all prefixes - but only the hash operation collisions - are 
implemented on the reconfigurable part of the system. This 
approach also causes only a small fraction of route updates to 
need hardware reconfiguration. This improves the update time. 
Having an IP lookup performance of 263 Mlps, this architecture 
can be used as a lookup engine for an Internet router forwarding 
packets at a speed over 250 Gbps. 
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