“A Message About IPv6”

Marco Hogewoning | April 2016 | CSA Summit
Who Is The RIPE NCC?

- The Regional Internet Registry for Europe, Middle East and parts of Central Asia
 - We distribute and register IPv4 addresses, IPv6 addresses and Autonomous System Numbers (ASN)
- Not-for-profit membership organisation
 - We serve over 13,000 members holding resources
- We also provide services like infrastructure data and measurements, k-root DNS service and trainings
Why IPv6?
IPv4 Has Run Out

• IPv4 has limited address space (32 bits)
 - Nearly all 4 billion unique addresses are in use

• Small quantities remain at the Regional Internet Registries
 - Every RIPE NCC member can request one single (additional) address block of 1024 addresses (/22)
 - Alternatively you can transfer unused addresses between members and even between some RIR regions
Status of RIPE NCC IPv4 Pool

(https://www.ripe.net/publications/ipv6-info-centre/about-ipv6/ipv4-exhaustion/ipv4-available-pool-graph)
IPv4 Address Markets

• IPv4 address blocks can be transferred between RIPE NCC members
 - Usually involves some monetary compensation
 - Several “IPv4 address brokers” active in this market

• RIPE NCC’s role is very limited
 - We are not part of the commercial transaction
 - We will update the registry to reflect transfers
 - Keeping an accurate registry is most important
The Alternative: IP Version 6

- Developed in the late nineties as a solution to the imminent depletion of IPv4 addresses
- Uses 128 bit addresses instead of 32 bits
 - 340 282 366 920 938 463 463 374 607 431 768 211 456
 - Consider this address space being “unlimited”
- Protocol has been standardised since 1998
 - Requires little or no changes in other layers
 - DNS, SMTP, IMAP etc all work the same
Deploying IPv6: The Plan

• Gradually add IPv6 capabilities next to IPv4
 - IPv4 and IPv6 are not compatible with each other
 - They can run next to each other without interference

• Dual stacked hosts can speak both protocols
 - Use IPv4 or IPv6 depending on the other party
 - Prefer to use IPv6 when it is available on both ends

• IPv4 would slowly disappear from networks
 - Before the actual depletion of IPv4 address space
A Temporary Solution: NAT

• Network Address Translation (NAT) allows to share a single IPv4 address across devices
 - Very common in residential and enterprise networks
 - Very effective in extending the life of IPv4

• Similar solution can also be used by ISPs
 - “Carrier Grade NAT (CGN)” shares IPv4 addresses between different customers
 - Very popular in mobile networks
 - Increasingly used in fixed (wired) access networks
Hidden Costs of NAT

- Sharing an address has side effects
 - Single black list entry can block thousands of users
 - Single white list entry can open up to a whole ISP

- NAT hinders innovation
 - Needs to understand new protocols and applications
 - Applications need to try and predict NAT behaviour

- Privacy and security risks
 - All traffic is passing through a single point
 - A NAT sees and can record everything you do
IPv6 at End Users

IPv6 Capable Rate by country (%)

http://stats.labs.apnic.net/ipv6/
IPv6 Leaders in Access Market

- Belgium 50.6%
- Switzerland 30.7%
- Germany 22.2%
- Luxembourg 16.5%
- Austria 10.9%

Others include:
PT (28%), GR (25%), FI (21%), UK (7%), US (30%) and BR (11%)
IPv6 Enabled Content

• Big players include Google, Facebook and Netflix offering all services over IPv6

• Regular hosting is lacking behind
 - Lot more parties involved in the value chain
 - IPv6 often needs code changes in websites
 - Perceived as higher risk

• Noticeable parties in Germany offering IPv6 include: 1&1, Hetzner, Hosting.de and Strato
Email Over IPv6?

• Out of top 10 providers only Freenet and Gmail offer MX records on an IPv6 address
 - Could still involve a lot of messages on a single MX

• Decisions involving mail over IPv6
 - You only need a few IPv4 addresses for MXes
 - Perceived as even higher risk than hosting
 - Concerns about spam filtering and security
Benefits of IPv6
Larger address space, more addresses!
Benefits Of Not Doing IPv4

• There is absolutely no need to share addresses
 - You can use a new IPv6 address for every email you send

• Reducing the risk of having a tainted address
 - IPv4 addresses are being “recycled”
 - Old reputation profiles and blacklists can work against you

• Reducing costs
 - IPv4 addresses now represent a value
 - Acquiring additional IPv4 has a cost
 - Sharing addresses also can be costly
IPv6 Black and White Listing

• The large IPv6 space has its benefits
 - Allows to create hierarchical addressing plans
 - Creating different “zones” becomes easy
 - Requires less maintenance

• You need to aggregate IPv6 addresses
 - The space is too large for individual entries
 - The “natural” boundary is at 64 bits
 - An IPv6 /64 subnet equals a single IPv4 address
Aggregation in the RIPE Database

“Every customer in this range gets a /48 subnet”
Teaser: RIPE NCC Training

• RIPE NCC offers a number of IPv6 courses
 - One day basic to start planning your deployment
 - Two day advanced technical training

• RIPE NCC Academy IPv6 e-learning
 - Online training in interactive environment
 - Certificate when completing the course

https://www.ripe.net/training
Come and Meet Our Community

https://ripe72.ripe.net
Questions
marcoh@ripe.net