IPv6 on your servers; fun or frightening?

Nathalie Trenaman
Introduction

• What is a RIPE Atlas Anchor?
 - Soekris net6501-70
 - Well known target and powerful probe
 - 80 anchors installed
 - 200 probes targeting each anchor with measurements
 - Measurements between anchors
Requirements

- Capable of 10Mbit bandwidth (less needed today)
- RJ45 network connection
- Static IPv4 and IPv6 address - unfiltered
 - RIPE NCC needs unrestricted access
- IPv6 address needs to be public
- IPv6 connection needs to be native
IPv6 Installation Challenges

• The hardware is purchased by the host
• The software is on a USB stick
 - With host provided network info
• Anchor is configured to boot from USB stick

```
--ip=  
  IP address for the interface.

--ipv6=  
  IPv6 address for the interface.

--gateway=  
  Default gateway, as an IPv4 or IPv6 address.
```

• Silly bug
• Is fixed in CentOS7
IPv6 Installation Challenges

- Anchor provisioning needs to be done over IPv4 and RIPE NCC remotely configures the IPv6 part of the network later.

- Anchors will do SLAAC “out-of-the-box”, this needs to be disabled anyway when we do the manual configuration.
Host IPv6 Installation Challenges
Example 1

• Starting point:
 - SLAAC provided address, gateway via RA
 - gateway address was link-local

• We pushed the static IPv6 config and connectivity was lost…
 - global unicast gateway address we received from host did not respond to Neighbor Solicitations:

```
[root@nl-ams-as12345678 ~]# ndisc6 2001:db8:123:a:192:0:2:1 eth0
Timed out.
Timed out.
Timed out.
Timed out.
No response.
```
Example 1

• Yet we are receiving incoming packets on the anchor!
• So the gateway works OK, but is not configured with a global address, or is configured not to respond to NS for that address
• It turned out that the host gave us the wrong gateway address
 - They use 2 different IPv6 addressing schemes
 - One embeds the IPv4 address
 - One uses ::1/64 as gateway
Example 2

- The host had working IPv6, ICMPv6 was working fine
- It turned out that TCP/UDP was not allowed

```bash
bla@loki:~$ mtr -u -nrc 10 nl-bla-as1234567.anchors.atlas.ripe.net
Start: Mon Dec 9 15:57:29 2013
HOST: loki Loss% Snt Last Avg Best Wrst StDev
 1.|-- 2001:67c:2e8:13::2 0.0% 10 2.1 3.2 1.9 7.8 1.7
 2.|-- 2001:db8:1::b800:2308:1 0.0% 10 2.0 4.2 2.0 15.1 4.0
 3.|-- ???.0 100 10 0.0 0.0 0.0 0.0 0.0
```

- Host forgot to modify edge filters for IPv6
Example 3

- Host gave us an IPv6 address ending on all zeroes
 - 2001:db8:3bda:666::/64
- The router on their subnet did not respond to NS that originate from the “subnet-zero” address
- 2001:db8:3bda:666::2 worked fine

- RFC4291 section 2.6.1 provided clarity
 - Subnet Router Anycast Address
Example 3

• Juniper kindly rejected the all-zeros IPv6 address:

```
[edit interfaces ge-3/0/8 unit 666 family inet6]
'address 2001:db8:3bda:666::0'
   Cannot assign address 0 on subnet
error: configuration check-out failed
```

• Lesson learned: The all-zeros IPv6 address is not a normal IPv6 address
Example 4

- This anchor had an invalid router advertisement for an ethernet link

```bash
[bla@nl-aaa-as2345678 ~]$ sudo rdisc6 eth0
Soliciting ff02::2 (ff02::2) on eth0...
Hop limit : 64 (0x40)
Stateful address conf. : No
Stateful other conf. : No
Router preference : medium
Router lifetime : 1800 (0x00000708) seconds
Reachable time : unspecified (0x00000000)
Retransmit time : unspecified (0x00000000)
Source link-layer address: 74:8E:F8:BC:07:89
MTU : 1500 bytes (valid)
Prefix : 2001:db8:102:200::/56
Valid time : 2592000 (0x00278d00) seconds
Pref. time : 604800 (0x00093a80) seconds
from fe80::768e:f8ff:febc:0789
```
Example 4

- [RFC2462] “An IPv6 address prefix used for SLAAC of an Ethernet interface must have a length of 64 bits”

- We saw different variations for the same problem:
 - /32
 - /56
 - /128

- Because we override SLAAC with manual configuration, this problem is easy to solve
Example 4

- In CentOS, it is not difficult to switch off SLAAC if you know where to look.

- Change the `/etc/sysconfig/network` file
 - Change `NETWORKING_IPV6=no` to `NETWORKING_IPV6=yes`
 - Add:
 - `IPV6_AUTOCONF=no`
 - `IPV6_DEFAULTGW=2001:db8::1` (use your own gateway!)
Example 4

• Then, change the `/etc/sysconfig/network-scripts/ifcfg-eth0` file

• Add:

 • IPV6INIT=yes

 • IPV6ADDR=2001:db8::10

 • This is your picked manual address!

• run “service network restart”

• Now you have a static address configured and SLAAC switched off.
Example 5

- This host had a broken gateway
- Pings and traces did not succeed

[bla@nl-aaa-as2345678 ~]$ sudo traceroute6 -I jp-tyo-as2500.anchors.atlas.ripe.net
traceroute to jp-tyo-as2500.anchors.atlas.ripe.net (2001:200::6002::a10:1a2), 30 hops max, 80 byte packets
1 2001:db8:2381:fffe::1 (2001:db8:2381:fffe::1) 1.836 ms !N 2.265 ms !N 2.505 ms !N

- Also broken to other destinations within the same provider
- Default route for IPv6 was missing
Example 6

- This host was using a tunnel instead of native IPv6
- Also, they blocked the ICMPv6 message “packet too big”
- We found this out because the size of packets we could deliver was 1480 bytes - instead of the 1500 configured on the wire
- When a packet bigger than 1480 bytes was sent, we did not receive the “packet too big” message, with a suggestion for a different MTU size
- Outbound packets of 1500 bytes were dropped..
Conclusions
Lessons learned...

• There are still IPv6 related software bugs in current mainstream server OSes

• Common mistakes are being made

• IPv6 is still not as well understood as IPv4
Questions?