Introduction to IP Addressing and Regional Internet Registries

Mirjam Kühne
Community Builder, RIPE NCC

mir@ripe.net
• The RIPE NCC
 - Who we are and what we do
• The Regional Internet Registry System
 - How IP addresses are distributed
• IP policies
 - Who develops IP distribution policies
• IP address basics
 - IPv4 and IPv6
The RIPE NCC
About the RIPE NCC

• Established in 1992 by the RIPE community
 - Initially part of the academic network association
 - Since 1997 a membership association under Dutch law
 - Not for profit, independent, neutral, open
 - Main offices in Amsterdam; staff in Dubai and Moscow

• Funded by the membership
 - 11,500 members from 76 countries
 - Initially mostly ISPs and universities
 - Now also traditional industries, small Internet companies

• One of five Regional Internet Registries
RIPE NCC Activities

- **Member services**
 - Resource distribution (IPv4, IPv6, ASNs)
 - Resource certification
 - Trainings

- **Public services**
 - RIPE Database
 - Reverse DNS
 - Operating K-root server
 - Operator tools
 - Data sharing
 - Open meetings
The Internet Registry System
How it all Started: The IETF

- Internet Engineering Task Force
 - Not-for-profit, open to anybody
 - Builds technical Internet standards and protocols
 - BGP, DNS, traceroute, IP, SIP, DNSSEC, IPSEC, ..
- Standards are defined in RFC documents
- The IETF standardised TCP/IP
 - As part of that, need for registration arose
 - Therefore IETF standardised registration model
 - Defined in RFC1466 in May 1993
Jon Postel
(1943-1998)

“The Internet Assigned Numbers Authority”
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Designation</th>
<th>Date</th>
<th>WHOIS</th>
<th>RDAP</th>
<th>Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>000/8</td>
<td>IANA - Local Identification</td>
<td>1981-09</td>
<td></td>
<td></td>
<td>RESERVED</td>
<td>[2]</td>
</tr>
<tr>
<td>001/8</td>
<td>APNIC</td>
<td>2010-01</td>
<td>whois.apnic.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>002/8</td>
<td>RIPE NCC</td>
<td>2009-09</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>003/8</td>
<td>General Electric Company</td>
<td>1994-05</td>
<td>whois.arin.net</td>
<td></td>
<td>LEGACY</td>
<td></td>
</tr>
<tr>
<td>004/8</td>
<td>Level 3 Communications, Inc.</td>
<td>1992-12</td>
<td>whois.arin.net</td>
<td></td>
<td>LEGACY</td>
<td></td>
</tr>
<tr>
<td>005/8</td>
<td>RIPE NCC</td>
<td>2010-11</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>006/8</td>
<td>Army Information Systems Center</td>
<td>1994-02</td>
<td>whois.arin.net</td>
<td></td>
<td>LEGACY</td>
<td></td>
</tr>
<tr>
<td>088/8</td>
<td>RIPE NCC</td>
<td>2004-04</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>089/8</td>
<td>RIPE NCC</td>
<td>2005-06</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>090/8</td>
<td>RIPE NCC</td>
<td>2005-06</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>091/8</td>
<td>RIPE NCC</td>
<td>2005-06</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>092/8</td>
<td>RIPE NCC</td>
<td>2007-03</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>093/8</td>
<td>RIPE NCC</td>
<td>2007-03</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>094/8</td>
<td>RIPE NCC</td>
<td>2007-07</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>095/8</td>
<td>RIPE NCC</td>
<td>2007-07</td>
<td>whois.ripe.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>096/8</td>
<td>ARIN</td>
<td>2006-10</td>
<td>whois.arin.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>097/8</td>
<td>ARIN</td>
<td>2006-10</td>
<td>whois.arin.net</td>
<td></td>
<td>ALLOCATED</td>
<td></td>
</tr>
<tr>
<td>253/8</td>
<td>Future use</td>
<td>1981-09</td>
<td></td>
<td></td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>254/8</td>
<td>Future use</td>
<td>1981-09</td>
<td></td>
<td></td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>255/8</td>
<td>Future use</td>
<td>1981-09</td>
<td></td>
<td></td>
<td>RESERVED</td>
<td></td>
</tr>
</tbody>
</table>
IP Address Distribution

IANA

Other RIRs

NIR

LIR/ISP

End Users

RIPE NCC

LIR/ISP (members)

End Users

End Users
The Regional Internet Registries (RIRs)

- All five RIRs are not-for-profit associations
- Funded by the membership
- Responsible for allocation and assignment of Internet Number Resources in their service regions
 - IPv4 addresses
 - IPv6 addresses
 - Autonomous System Numbers (ASN)
- Each RIR operates a whois database as a registry for these numbers
Public Registry Data

• Information in the registries is publicly available
 - Which entity uses a particular resource
 - How you can contact them

• Each of the RIRs operates a ‘whois database’
 - Commonly accessible via website or whois protocol
 - Use whois.iana.org to find the responsible registry

• Note: IPv4 and IPv6 are distributed in ranges
 - Operators can further distribute them to customers
 - Level of detail on these customer assignments may vary
Registration of Internet Number Resources

- Ensures global uniqueness of IPs and ASNs
- Provides contact details for network operators
 - In case you need to troubleshoot or arrange connectivity

- Function originally performed by John Postel
 - Became known as the “Internet Assigned Numbers Authority” (IANA)

- IANA functions are now operated by ICANN
 - Under a contract with NTIA (US Government)
 - Maintains the global pool of Internet Number Resources
Regional Address Policies

- Each RIR has its own Policy Development Process
- Regional community decides on regional policies for address allocation, assignment and registration
- Communities are open to everyone to participate
 - You don’t have to live in a specific service region
 - You don’t have to be a member of an RIR
- Decisions are made by rough consensus
 - No voting
- RIRs implement policy and operate accordingly
Réseaux IP Européens was formed in 1989 by a small group of academics in Europe. The goal was to promote IP. It was not a legal entity. Two RIPE Meetings per year with WGs were organized. RIPE set up RIPE NCC as a secretariat. Only later, RIPE NCC became a RIR.
IPv4 & IPv6
(IP) Address Properties

- Every entity handling packets needs to be able to read and understand the address
 - Fixed format
 - Machine readable
- The address has to be unambiguous
 - Globally unique
Dual Function

• Addresses can be used for two things:
 - Identify the sender and recipient
 - Tells where the packet needs to go

• IP address
 - One single number for both functions

• IP address changes when you change network
IPv4 Protocol Basics

- IPv4 address is 32 bits long
 - In total \(2^{32}\) addresses (4,294,967,296)
 - But some needed for network structure
IPv6 Protocol Basics

- Functionally the same as IPv4, just more addresses
- IPv6 address is 128 bits long
 - \(2^{128}\) addresses available
 - 340282366920938463463374607431768211456 options
- Incompatible with IPv4 (design decision)
Deploying IPv6: The Plan

- Standard work on IPv6 finished in 1998
- IPv6 and IPv4 are not compatible
 - You can use both protocols at the same time on the same network without interference
 - You can “retrofit” IPv6 onto existing networks
- Computers which have both can choose whether to use IPv4 or IPv6
 - Depending on the peers capability
- When both are available: use IPv6
 - This will gradually phase out IPv4
Chickens and Eggs

• IPv6 suffers from a classic bootstrapping problem

• For applications to support IPv6 you need the network to deliver packets
 - Networks don’t supply IPv6 connectivity because there are not that many applications that support it

• Content and Services need to adopt IPv6, but there are no users who can access using IPv6
 - There are no users, because there is no content
RIRs and IPv6

• Encouraging the adoption of IPv6 for over 10 years
 - IPv6 resource allocation started late nineties

• Capacity building at different levels
 - High level information for decision makers
 - Hands-on training for engineers
 - Online, in situ, brochures, webinars, conferences

• Cooperation with ISOC, IETF, ICANN, ITU-D, industry and governments
IPv6 is Taking Off

• APNIC, LACNIC and RIPE NCC have exhausted their pools of IPv4 addresses (starting in 2012)
 - ARIN has 0.29 of a /8 left (4.5 million addresses)

• Networks now have to deploy IPv6 to grow
 - Sustaining IPv4 becomes expensive
IPv6 Deployment in Europe

http://stats.labs.apnic.net/ipv6/
Questions?

mir@ripe.net

http://www.ripe.net
http://www.nro.net