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1 Introduction

Double act:

• History of work at Loughborough

• Other Measurement projects

• Visualisation of Measurements

• Mathematical Modelling

• Applications
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2 Ancient History

• In 1994 JANET → SuperJanet, contract won by BT

• Built over SMDS—Switched Multi-megabit Data Service, and

ATM networks

• University Research Initiative—Managing Multiservice Networks
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2.1 URI—MMN

• 6 Universities:

– Loughborough EE

– University College London CS

– Imperial London CS

– Oxford Brookes University CMS

– Cambridge University CL

– Lancaster University CS

• 5 Years, £1.5 million

• 1994–1999
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2.2 MMN—Loughborough

• Performance Monitoring and Measurement

• Researched and built a delay measurement tool

• Active Sender

• Used GPS for synchronisation

• Accurate to about 10µs

5



3 Performance Monitoring
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3.1 What is performance?

• Loss

• Delay

• Throughput
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3.2 What causes performance problems?

• Routing misconfiguration

• Link or Node failure

• Aggressive Applications

– Peer-to-peer, video streaming, online gaming etc

• Denial of Service attacks
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3.3 Monitoring Project

Separate funding:

• To produce weekly and monthly reports on performance

• From 1996 to the present (and just renewed)

• Achieved many further developments
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4 Visualisation

• Tools to reduce working load of network operators

• FDV—Figurable Deformity Visualisation

• TMT—Trunk Monitoring Tool

10



4.1 FDV
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4.2 TMT

Trunk Monitoring Tool

• Uses SNMP to query trunk information from SMDS switches

• Presents this in a “single-look” view to operators.

• Deployed April 200
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4.3 Exceptions

Interesting Network Events

Detected by:

• Manual

• Rule-based

• Neural networks

All based on simple statistics, max in day, min in day, mean, max -

min, variance etc
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5 Other Monitoring Projects

• RIPE-NCC—Monitoring (mostly) European Delays

• SPRINT (US)—Monitoring for Traffic Engineering

• NLANR—Traceroute/ping delays

• Waikato (NZ) DAG hardware traffic capture

• Cambridge/Loughborough (EE) passive monitoring

• new UKLIGHTmas
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6 What to do next . . .

• Can statistics/mathematics improve such displays?

• Can we predict Internet performance like the weather?

• How do we model?
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7 Contents

• Motivation

• Traffic modelling review

• Mixing Weibull distributions

• Expectation Maximisation algorithm

• Experiments and results

• Applications and discussion
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8 Motivation:
The need to model network performance

• Metrics to define network performance

• Low-level quantities: delay and loss

• End-to-end network performance status

• Packet probes such as ping or one-way delay UDP packets
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9 Previous work:
Traffic modelling and delay distributions

• Network traffic shows self-similarity and long-range dependency.

• Current traffic strategies search for models compliant to these

empirical properties: fBm, fARIMA, FSD, etc.

• When inputting such traffics into routers, the queue distribution

exhibit heavy-tail distributions. Such distribution can be

approximated to Weibull for the particular case of fBm.

• Such result has been previously validated in a single hop scenario.

• Our aim is to model multiple-hop (or end-to-end) delays with a

combination of several Weibull distributions.
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10 Mixing Weibull distributions:
The Weibull distribution
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11 Mixing Weibull distributions:
Problem statement

• Let us assume we are given a sample of N delay measurements

x = [x1, .., xN ], which are supposed to be drawn from M Weibull

distributions: [p(x|θ1), .., p(x|θM )]

• The result is: p(x|model) =
∑M

j=1 αjp(x|θj)

• αj = weight of the j-th component of the mixture. Obviously,
∑

j αj = 1

• θj = [rj , sj ] shape and scale parameters of the j-th Weibull

distribution

• Finding α and θ appropriate to best fit delay histograms

represented by the measurements sample x
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12 Mixing Weibull distributions:
Expectation Maximisation

• To proceed, second random variable y, referred to as labels, is

necessary to complete the problem formulation.

• p(yi = j|xi, Θ) = the probability of data xi being drawn from the

j-th component of the mixture. Obviously,

– p(xi|yi = j, Θ) = p(xi|θj), and

– p(yi = j|Θ) = αj

• With this formulation EM defines an iterative procedure to

obtain the maximum likelihood estimates, based on two steps:

– E-step: Q(Θ, Θ(t)) = E[log L(Θ|x, y)|x, Θ(t)]

– M-step: Θ(t+1) = arg maxΘ Q(Θ, Θ(t))
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13 Mixing Weibull distributions:
Computing EM

• Expanding E-step:

Q(Θ, Θ(t)) =
∑M

j=1

∑N
i=1

(

log p(xi|θj)
)

p(yi = j|xi, Θ
(t)) +

+
∑M

j=1

∑N
i=1

(

log αj

)

p(yi = j|xi, Θ
(t))

• Maximising:

∂Q(Θ, Θ(t))

∂αj
= 0

∂Q(Θ, Θ(t))

∂θj
= 0
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14 Mixing Weibull distributions:
EM applied to mixtures of Weibull distributions

1. Computing parameters: 2. Updating hidden probs

αj = 1
N

∑N
i=1 p(yi = j|xi, Θ)

rj =
(

PN
i=1

x
sj

i
p(yi=j|xi,Θ)

P

N
i=1

p(yi=j|xi,Θ)

)1/sj

p(yi = j|xi, Θ) =
αjp(x|θj)

P

M
k=1

αkp(xi|θk)

sj =
PN

i=1
p(yi=j|xi,Θ)

P

N
i=1

(

x
sj
i

r
sj
j

−1
)

log
(

xi
rj

)

p(yi=j|xi,Θ)

Table 1: EM procedure for mixtures of Weibull distributions.
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15 Mixing Weibull distributions
Convergence speed - Initialisation
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16 Mixing Weibull distributions
Convergence speed - After 1 iteration
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17 Mixing Weibull distributions
Convergence speed - After 2 iterations
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18 Mixing Weibull distributions
Convergence speed - After 3 iterations
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19 Mixing Weibull distributions
Convergence speed - After 4 iterations
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20 Mixing Weibull distributions
Convergence speed - After 5 iterations
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21 Mixing Weibull distributions
Convergence speed - After 10 iterations
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22 Mixing Weibull distributions
Convergence speed - After 15 iterations
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23 Mixing Weibull distributions
Convergence speed - After 25 iterations
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24 Mixing Weibull distributions
Convergence speed - After 50 iterations
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25 Mixing Weibull distributions
Convergence speed - After 100 iterations
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26 Experiments and results
Measurement testbed

• The following delay measurements, provided by RIPE NCCa,

have been utilised for this experiments.

245 24-hour exps.

≈ 3000 meas. per exp.







Total: ≈ 700, 000 measurements

• GPS accuracy ≈ few hundred of nanoseconds error.

• Matching error =

√
P

(hist-model)2
P

hist × 100%

ahttp://www.ripe.net
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27 Experiments and results
Full experiments model validation
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28 Experiments and results
Example of a five Weibull matching result
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29 Experiments and results
Example of Parameter Evolution
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30 Discussion

Two main conclusions arise from this work:

• A combination of Weibull distributions look very suitable to

match end-to-end delay histograms.

• The Weibull parameters impact the appearance of the Weibull

distribution.

– r is related to the location of the mode/maximum/peak for

that particular Weibull component.

– s concerns tail behaviour: the smaller the slower the tail

decays.

• Expectation Maximisation is a suitable algorithm to find the

parameters defining such model, both easily and optimally.
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31 Applications

Performance related applications:

• Traffic engineering.

• Fault tolerance and troubleshooting.

• Provisioning.

• Admission control.

• . . .
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