Measurements on Intra-Domain Routing Instability

Zhang Shu
National Institute of Information and Communications
Technology, Japan

Routing WG, RIPE 49 Meeting Manchester, 9/21/2004

Overview

- Intra-domain routing instability
- Measurements on intra-domain routing instability
 - WIDE Internet and APAN-JP network
- Rtanaly
 - An system to detect and visualize intra-domain routing changes
- Summary

Intra-Domain Routing Instability

- Intra-domain routing instability
 - Unexpected routing changes within an IGP routing domain
 - Causes packet loss, increased router load, and wasted bandwidth
- Why focus on intra-domain routing?
 - Although intra-domain routing is just as important as inter-domain routing, research on IGP behaviors is still poor
 - Help operators better understand intra-domain routing instability

Measurement Methodology

- Data collection
 - Raw OSPF datacollected
 - Tcpdump
- Data analysis
 - Counting routing changes
 - Changes in the content of an LSA
 - LSA flush
 - Changes in AS-External LSAs were excluded

Measured Networks

WIDE Internet

- WIDE Project (http://www.wide.ad.jp)
- Connects hundreds of academic organizations
- About 50 routers in the OSPF backbone area

APAN-JP Network

- Part of the Asia-Pacific Advanced Network (http://www.jp.apan.net)
- Provides transit service among academic organizations in Asia-Pacific region
- Relatively small in scale, with no more than 10 routers in the backbone area

Measurement of the WIDE Internet (1/2) Router-LSA

Period: August 2000 - May 2004

Measurement of the WIDE Internet (2/2)

Period: August 2000 - May 2004

Measurement of the APAN-JP Network Router-LSA

Period: August 2003 - May 2004

Major LSA Oscillation Patterns

- Some LSA oscillation patterns and possible causes
 - Relatively frequent oscillation in short term
 - Congestion or interface/link problems
 - Frequent oscillation in short term
 - Misconfiguration of Router-ID or p2p interface/link problems
 - Relatively frequent oscillation in long term
 - Interface/link problems
 - Less frequent oscillation in long term
 - Interface/link problems

Relatively Frequent Oscillation in Short Term

A router in Fukuoka, 5/7/04

- This kind of oscillation was observed most often
- Most were caused by congestion, but could also be L2 problems

Frequent Oscillation in Short Term

An L3 switch, 6/12/03-6/13/03, lasted for about 18 hours

- Observed for several times
 - Most were caused by the misconfiguration of using the same router ID on two routers
 - Only one LSA flaps
 - Some were due to p2p interface/link problems
 - Two LSAs flap

Relatively Frequent and Less Frequent Oscillation in Long Term

A router in San Francisco, lasted for 5 months from last to this year

A router in Kyoto, persisted for 2 months this year

Most were caused by interface/link problems

Causes of the Instability

- Identified causes
 - Congestion
 - Part of them were caused by DDoS
 - Interface/link failure
 - Misconfiguration
 - Software bug

Rtanaly

- Rtanaly
 - A tool to detect and visualize IGP changes
- Features
 - Detects IGP changes in real-time and alert operators
 - Can also be used for offline data analysis
 - Visualization
 - Accessible through the web interface
 - Supports OSPFv2, OSPFv3 and IS-IS
 - xBSD and Linux
- Examples
 - http://rtanaly.koganei.wide.ad.jp/rtanaly
- Will be released early October, hopefully

Summary

- Intra-domain Routing instability measurements
 - Regardless of network scale, intra-domain routing instability can occur frequently and persistently
 - It is important to deploy a monitoring system on your own network
- Rtanaly
 - Detect and visualize Intra-domain routing changes in real-time

Acknowledgements

- My thanks to
 - WIDE Project and Nara Institute of Science and Technology
 - Operators of APAN-JP network

Thank you!