

Tunnel Discovery in IPv6 Methods, results, and security

Lorenzo Colitti

Roma Tre University – RIPE NCC

Lorenzo Colitti

- Background on tunnels
- Tunnel discovery methods
- Current state of tunnels in the Internet
- Tunnel discovery in TTM
- Tunnels and security

What is a tunnel?

Lenath

Hdr checksum

Next Hdr Hop Limit

Flow Label

Fragment Offset

IPv4 Header

F.

Source Address

Destination Address

Source Address

TOS

Protocol

Ver

Ver

TTI

IHI

Identification

Class

Length

- Point-to-point link between two routers
- IPv6 uses IPv4 as its "link layer"
- IPv6 packets are encapsulated in raw IPv4 packets (Protocol = 41)
- Tunnel MTU ≤ IPv4 MTU 20

- Low performance
 - Heavy on routers
 - Encourage inefficient routing
- Difficult to troubleshoot
- Pose security problems
- To avoid them we must know they're there
 - Transparent to IPv6, "single-hop"
 - Traceroute doesn't see them
 - What can we do?
 - (What we can't do: DNS)

Finding tunnels

- Path MTU discovery can spot a tunnel
 - MTU of tunnel usually lower than native links
 - Certain MTU values typical of tunnels: 1480, 1280, 1476
- Allows us to find (first) tunnel in a path
 - Often we only want to see if there is a tunnel or not
- Does not distinguish between "short" and "long" tunnels
- Tool: findmtu (linux, freebsd, ...)
 - Finds MTU drops on path to user-specified destination

Terminal	
tt94# ./findmtu www.uniroma3.6net.garr.it	
1480 (2001:760:fff:2::11 1480, 2001:760:4::1 reached)	
tt94# ./findmtu www.kame.net	
1500 (2001:200:0:8002:203:4/ff:fea5:3085 reached)	
1194#	
	

- Tunnels provide no authentication mechanism
- If Z knows the IPv4 endpoints of the tunnel, it can source IPv6 packets from B
 - Z spoofs A's IPv4 address and sends an encapsulated packet to B
 - B thinks the packet is from A
 - Since B has a tunnel to A, it decapsulates the IPv6 packet and processes it normally
- As if Z had a direct L2 link to B

A B Z X Payload

Encapsulated IPv6 packet

- A = IPv4 address of A
- A = IPv6 address of A

Packet injection for discovery

• Allows Z to:

Ripe

- Confirm the presence of a tunnel
 - Inject a packet addressed to itself
- Discover the IPv6 addresses of the endpoints
 - Send hop limited source routed (or ping-pong) packets
- Find more tunnels from B
 - IPv6 packet size ≤ MTU of tunnel
 - But IPv4 packets can be fragmented
- A tunnel is a vantage point from which Z can explore the rest of the network

Encapsulated IPv6 packet A = IPv4 address of A A = IPv6 address of A

How many tunnels out there?

- We can measure from:
 - Tunnels in the 6bone registry
 - Over 4000 tunnels
 - ~43% nonexistent
 - ~32% down or filtered
 - ~1000 vantage points
 - Mostly in tunneled networks
 - IPv6-enabled TTM test-boxes
 - ~ 20 vantage points
 - Mostly in native networks
- Basic idea: find MTU from each vantage point to all prefixes in BGP table

- Scan all prefixes from all vantage points, aggregate values
- Results from Aug 2003
- Tunnels dominant

Riþe

ICC

- Cisco/Linux (1480) and BSD (1280) about the same
- GRE is much less common

Only 8% of paths are native

- The 6bone vantage points are biased towards tunnels as they are themselves tunnels.
- What about native networks?

MTU	# paths	%
1480	150946	39.4
1280	138358	36.1
1476	44404	11.6
1500	31525	8.2
1428	13619	3.6
Other	4104	1.1
Total	382956	100.0

How native is "native"?

- Look at IPv6 Internet from TTM boxes, GARR, RIPE NCC networks
- Find MTU to all BGP prefixes
 - Use same BGP table for all vantage points
 - Eliminate errors (unreachable, hop limit expired, ...) from routers in same /32
 - Find how many prefixes are definitely tunneled
 - This is a lower bound!
- Measured in Aug 2003 and in Jan 2004
 - Might be interesting to do on a regular basis?

Reachability

Not all prefixes are reachable by all boxes

Lorenzo Colitti

• Even the "best" networks are \geq 62% tunneled

January 2004: is it better now?

- Tunnel percentage stable at $\sim 75\%$

Lorenzo Colitti

Ripe

14

Tunnel discovery in TTM

- TTM uses tunnel discovery to better qualify other measurements
 - A high delay might be caused by a tunnel
- Uses path MTU discovery to detect tunnels
 - Find MTU from every testbox to every other testbox
 - Measurements once per hour
- Query data via web interface
 - Can choose set of testboxes, time
 - Full history (for now)
 - Click on MTU value shows traceroute with MTU values

TTM testbox MTU matrix

	tt01 tt103 tt25 tt35 tt52 tt56 tt72 tt73 tt77 tt85 tt86 tt94															
		tt01	tt103	tt13	tt25	tt35	tt42	tt52	tt55	tt56	tt72	tt73	tt77	tt85	tt86	tt94
	tt01		<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>
	tt103	<u>1280</u>		<u>1280</u>												
	tt13	<u>1500</u>	<u>1280</u>		<u>1480</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>
	tt25	<u>1476</u>	<u>1280</u>	<u>1476</u>		<u>1476</u>	<u>1428</u>	<u>1476</u>	<u>1476</u>	<u>1280</u>	<u>1476</u>	<u>1428</u>	<u>1480</u>	<u>1476</u>	<u>1476</u>	<u>1476</u>
	tt35	<u>1480</u>	<u>1280</u>	<u>1500</u>	<u>1476</u>		<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1500</u>	<u>1462</u>	<u>1476</u>	<u>1476</u>	<u>1480</u>
	tt42	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>		<u>1500</u>								
Source	tt52	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1280</u>		<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1500</u>	<u>1462</u>	<u>1476</u>	<u>1476</u>	<u>1500</u>
estbox	tt55	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1280</u>	<u>1500</u>		<u>1280</u>	<u>1500</u>	<u>1500</u>	<u>1462</u>	<u>1476</u>	<u>1476</u>	<u>1500</u>
	tt56	<u>1476</u>	<u>1476</u>	<u>1476</u>	<u>1280</u>	<u>1476</u>	<u>1280</u>	<u>1476</u>	<u>1476</u>		<u>1476</u>	<u>1476</u>	<u>1476</u>	<u>1476</u>	<u>1476</u>	<u>1476</u>
	tt72	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1500</u>	<u>1480</u>		<u>1500</u>	<u>1462</u>	<u>1476</u>	<u>1476</u>	<u>1500</u>
	tt73	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1280</u>	<u>1500</u>		<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>
	tt77	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1476</u>	<u>1476</u>	<u>1500</u>	<u>1476</u>	<u>1476</u>	<u>1280</u>	<u>1476</u>	<u>1500</u>		<u>1500</u>	<u>1500</u>	<u>1500</u>
	tt85	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1280</u>	<u>1476</u>	<u>1500</u>	<u>1280</u>	<u>1476</u>	<u>1280</u>	<u>1476</u>	<u>1476</u>	<u>1500</u>		<u>1500</u>	<u>1500</u>
	tt86	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1476</u>	<u>1476</u>	<u>1500</u>	<u>1476</u>	<u>1478</u>	<u>1280</u>	<u>476</u>	<u>1476</u>	<u>1500</u>	<u>1500</u>		<u>1500</u>
	tt94	<u>1500</u>	<u>1280</u>	<u>1500</u>	<u>1480</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1500</u>	<u>1280</u>	<u>1500</u>	1500	<u>1500</u>	<u>1500</u>	<u>1500</u>	
Legend	d:	na	tive		tunnel		nov	value			(Clic	k fo	or tra	ace	rout
Michael Swoboda _ RIPE 47, 27 January 2004 _ <u>michael@ripe.net</u>																

Example: symmetric route

		from tt103	to tt103							
Нор	IPv6 address	Hostname	AS	MTU	Hop	IPv6 address	Hostname	AS	MTU	
0	2001:240:0:400::2497:101	tt103.ripe.net			12	2001:240:0:400::2497:101	no response	2497	1280	
1	2001:240:0:400::1	no response	2497	1500	11	2001:240:0:400::1	no response	2497	1280	
2	2001:240::204	no response	2497	1280	10	<u>2001:240:100::204</u>	otm6-gate0.IIJ.Net	2497	1280	
3	2001:240:100::2	no response	2497	1280	9	2001:240:100:fffd::ff	no response	2497	1280	
4	2001:240:100:fffd::21	no response	2497	1280	8	2001:504:1::a500:2497:1	no response	N/A	1500	
5	2001:504:1::a500:3257:1	ge-1-0-0.nyc10.ip6.tiscali.net	N/A	1280	7	2001:668:0:2::331	so-3-0-0.nyc10.ip6.tiscali.net	3257	1500	
6	2001:668:0:2::330	so-3-0-0.nyc30.ip6.tiscali.net	3257	1280	6	2001:668:0:2::1a0	so-1-0-0.nyc30.ip6.tiscali.net	3257	1500	
7	2001:668:0:2::1a1	so-1-0-0.nyc31.ip6.tiscali.net	3257	1280	5	2001:668:0:2::1e1	so-7-0-0.nyc31.ip6.tiscali.net	3257	1500	
8	2001:668:0:2::1e0	so-4-0-0.lon12.ip6.tiscali.net	3257	1280	4	2001:668:0:2::31	so-2-0-0.lon12.ip6.tiscali.net	3257	1500	
9	2001:668:0:2::30	so-6-0-0.ams10.ip6.tiscali.net	3257	1280	3	2001:7f8:1::a500:3257:1	ams-ix.ip6.tiscali.net	2914/5417	1500	
10	2001:7f8:1::a501:2859:2	telecity.ams-ix.ipv6.network.bit.nl	2914/5417	1280	2	2001:7b8::205:8500:120:7c1f	jun1.sara.ipv6.network.bit.nl	12859	1500	
11	2001:7b8::290:6900:1cc6:d800	jun1.kelvin.ipv6.network.bit.nl	12859	1280	1	2001:7b8:3:32::1	no response	12859	1500	
12	2001:7b8:3:32:201:2ff:feb0:c737	tt52.ripe.net	12859	1280	0	2001:7b8:3:32:201:2ff:feb0:c737	tt52.ripe.net			
		to tt52	K	f	from tt52					
Lege	nd: native tun	nel/unknown route invali	d			Native				

By comparing traces in opposite directions, we can see both the start and the end of a tunnel

Michael Swoboda

RIPE 47, 27 January 2004

Tunnels and security

Α

7

E.

- Packet injection is bad for security
- Z can source arbitrary IPv6 packets from B
 - More effective than IPv6 spoofing
 - Bypasses IPv6 filtering
 - Z can use its real IPv6 source address and receive replies
 - More effective than source routing
 - When packet arrives at B, Hop Limit is untouched
 - ND packets can be spoofed
 - Can't be turned off on routers

Encapsulated IPv6 packet

- A = IPv4 address of A
- A = IPv6 address of A

B

Tunnels and security (2)

- Packet injection allows Z to:
 - Bypass firewalls / ingress filters
 - Spoof ND packets
 - Redirect, L2 address spoofing, ...
 - Not tested, but possibly dangerous
 - ...
- What can be done?
 - IPv4 filtering helps
 - But not for interdomain tunnels
 - Don't trust tunnels and keep them at the edge
 - Use GRE / keyed GRE tunnels

A B Z X Payload

Encapsulated IPv6 packet

- A = IPv4 address of A
- A = IPv6 address of A

- Tunnel discovery @Roma Tre: <u>http://www.dia.uniroma3.it/~compunet/tunneldiscovery/</u>
- Tunnel discovery in TTM: <u>http://www.ripe.net/ttm/Plots/pmtu/tunneldiscovery.cgi</u>
- RIS IPv6 update counts
 <u>http://www.ris.ripe.net/ipv6-updates/</u>

Lorenzo Colitti