RIPENCC, Oregon Route Views & AMSIX

Comparative analysis of BGP update metrics

Alexander Tudor, Agilent Labs RIPE 46, Amsterdam, September 1, 2003

Agenda

Rationale

- Metric Taxonomy
- Methodology
- Results
- Conclusions
- Credits

•Rationale •Metric Taxonomy •Methodology

- Results
- Conclusions
- Credits

- •Degree of similarity amongst collection points
- •Effects of single/multi hop & keep alive on/off
- •Geographic correlation

Metric Taxonomy

Methodology

Results

Conclusions

Credits

Metric Taxonomy

announcements

- •# withdrawals
- •# AS path changes (per peer prefix sum)

Metric Taxonomy

Methodology

Results

Conclusions

Credits

Methodology I

•Collection points:

- RIPENCC multi hop, keep alive off
- Oregon Route Views multi hop, keep alive on
- AMSIX single hop, keep alive on

•Select time period with following characteristics:

- continuous collection at all three points
- small # of erroneous update packets (illegal attributes, type 14 usually)
- contains traffic originating in all three geographies
- daily prefix activity

•Extract metrics data vectors (one measurement point every 15 minutes)

•Compute time cross-correlation & compare metric distributions

Methodology II

•Rationale •Metric Taxonomy •Methodology •Results •Conclusions •Credits

- •Study period is April 3 through 5, 2003
- •All peers included at each location
- •< %0.1 updates lost due to illegal update attribute packets</p>
- •132 prefixes were active daily (9 beacons)
- •7x/16, 2x/18, 4x/19, 3x/20, 4x/21, 5x/22, 7x/23, 100x/24
- •60x ARIN, 29x APNIC, 31x RIPE, 12x LACNIC

announcements

3000

1500

500

0.5

0.1

<u>-</u>

0.9

0.7

ß ö

c,

ö

normalized values

coefficient 0.3

Comparative Analysis of BGP **Update Metrics**

RIPE 46 Amsterdam September 1, 2003

normalized values

0.4

Metric Taxonomy

Methodology

- Results
- Conclusions
- Credits

Results - Withdrawals

Comparative Analysis of BGP Update Metrics RIPE 46 Amsterdam September 1, 2003

Metric Taxonomy

- Methodology
- Results
- •Conclusions
- Credits

Results – AS path changes

Comparative Analysis of BGP Update Metrics RIPE 46 Amsterdam September 1, 2003

Conclusions – I

•Rationale •Metric Taxonomy •Methodology •Results •Conclusions •Credits

•There is strong cross-correlation between the time series of all metrics at all three collection points

•The strongest cross-correlation occurs at zero lag (good metric synchronization within 15 minutes)

•Some metrics have better distribution similarity (withdrawals and AS path changes vs. announcements)

 Metrics are well synchronized independent of single/multi hop, keep alive on/off & geography

•Multi/single hop metric distributions similarities are weaker

Conclusions – II

•Rationale •Metric Taxonomy •Methodology •Results •Conclusions •Credits

Announcements:

- are better time correlated between multi-hop collectors (0.9 vs. 0.6)
- AMSIX has higher median values than either RIPENCC or Oregon
- quantile-quantile plot shows high degree of similarity between multi-hop locations;weaker similarity between single/multi hop

•Withdrawals:

- time correlate well (0.9) in all cases
- quantile-quantile plot shows strong distribution similarity between multi-hop locations; weaker similarity between single/multi hop

•AS path changes:

- time correlate well (0.9) in all cases
- quantile-quantile plot shows strong distribution similarity in all cases

Conclusions III – So What ?

Rationale
Metric Taxonomy
Methodology
Results
Conclusions
Credits

•Prefix metrics at all locations are interchangeable

- •Metrics are independent of geography in 15 minute buckets
- •Metrics are not sensitive to number of peers or their type (full-feed or partial)

•RIPENCC RIS team

- Oregon Route Views team
- •Jonathan Li, Agilent Labs

Results – Distribution Densities

Comparative Analysis of BGP Update Metrics RIPE 46 Amsterdam September 1, 2003

Results – Community changes

Comparative Analysis of BGP Update Metrics RIPE 46 Amsterdam September 1, 2003