

IPv6 adoption at IIJ

Matsuzaki 'maz' Yoshinobu <maz@iij.ad.jp>

History of IIJ's IPv6 services

- 1999
 - IPv6 over IPv4 tunnel service (experimental)
- 2000
 - IPv6 native service (leased line, experimental)
- 2001
 - IPv4/IPv6 dual stack service (leased line)
 - IPv6 data center service
- 2011
 - IPv6 PPPoE service over NTT FLETS (FTTH)
- 2012
 - IIJmio IPv4/IPv6 dual stack service (mobile)

IPv6 mobile service (MVNO)

- Offering SIM / eSIM
 - MVNO of NTTdocomo and KDDI au
- IP addressing
 - A public IPv6 (/64) + private IPv4 (/32)
 - Depending on users' APN PDP type configuration

Business Model

- IIJ sells bandwidth, or the ability to transfer data
 - Basically, we don't care what is carried, I mean IPv4 or IPv6
- Our customers can select protocol(s), or
 - IPv4 only
 - IPv4/IPv6 dual stack
 - IPv6 only

History of IIJ's IPv6 backbone

- Initially we started with dedicated backbone
- 1998
 - PC based router(kame stack)
 - Tunnel and Ethernet
- 2000
 - Cisco c72xx series
 - Tunnel, Ethernet and T1 line
- 2005
 - Started to migrate to IPv4/IPv6 dual stack backbone

Dual stack backbone

• All our backbone nodes are IPv6 enabled

Addressing

- /128 for loopback interfaces
- /64 for links
 - /127 is used on several inter-router links
- Enterprises
 - -/48
- Consumers
 - -/48,/56
- See also ripe-690

https://www.ripe.net/publications/docs/ripe-690

IPv6 Interface ID

2001:0db8:0000:0000:0000:0000:00001

- We assign unique 64bit ID to every router
 - A router uses the ID as its interface id on every interface
 - No correlate with IPv4 address
- Exception
 - Customer facing interface

- /127

Global Unicast Address of Routers

- Inter-router link does not require public address inside AS
 - OSPFv3 uses link-local address to exchange LSAs
 - Only loopback interface needs to have a public address
- But we configure public address on every interface
 - To be able to ping to check the interface availability

link-local Unicast Address of Routers

- fe80::/64
- AS IS
 - We don't touch
 - Most routers use Modified EUI-64 format address
- A virtual address for vrrp/hsrp is another story
 - For user convenience, we use a simple address like fe80::1

Route aggregation inside AS

- Not so aggressive at this moment
 - We allocate /56 to every POP for links inside POP
 - But currently, # of IPv6 prefix << # of IPv4 prefix</p>

IPv6 routing table name is default(0) global scope - 186092 entries Number of prefixes: /8: 1, /16: 1, /19: 1, /20: 14, /21: 3, /22: 7, /23: 7, /24: 31 /25: 8, /26: 16, /27: 20, /28: 203, /29: 4293, /30: 603, /31: 315, /32: 23047 /33: 3160, /34: 2709, /35: 1043, /36: 6259, /37: 975, /38: 1755, /39: 1551, /40: 14559 /41: 940, /42: 3456, /43: 1078, /44: 15929, /45: 1994, /46: 3416, /47: 4046, /48: 86450 /49: 15, /51: 4, /52: 32, /53: 1, /54: 1, /56: 93, /57: 2, /60: 243 /61: 1, /64: 2548, /112: 9, /120: 6, /126: 161, /127: 144, /128: 4942

routing protocols

IPv4

- OSPFv2
 - Mostly area 0
 - Max-metric on startup
- BGP4
 - Peer over IPv4
 - Route-Reflector

IPv6

- OSPFv3
 - Area 0 only
 - Max-metric on startup
- BGP4+
 - Peer over ipv6 global
 - Route-Reflector (the same as IPv4)

Router ID

- Routing protocols usually require 32bit ID
 - Even a routing protocol for IPv6
 - We use IPv4 address of loopback interface as its router ID
- Every routers has IPv4 address in our network

OSPFv3 link cost

- We set the same link cost value as IPv4's.
 - The network topology is almost same.
 - Working fine $\textcircled{\odot}$

• When we had to use RIPng as IGP (no choice at that time), these were so much trouble.

BGP4+ nexthop attribute

- AS IS
 - We keep the nexthop attribute heard from eBGP peers
 - No nexthop-self
 - The same policy as our IPv4's
- We are importing prefixes of IXs and PNIs into OSPFv3
 - The same policy as our IPv4's

BGP4+ multipath

- Well-known load sharing methods
 - Relax BGP best path selection a bit to allow multiple paths to be used at the same time
 - We have been using IPv4 for a long time and are using IPv6 as well
- Still confusing multipath behavior
 - Actually non-standard
 - Vendor-specific

Management

- Remote access to routers' vty
 - IPv4/IPv6 dual stack
 - Permit access only from a stepping host
- Other services
 - Mostly IPv4 only
 - AAA, snmp, syslog, ntp, flow export

Availability Check

- PING!
 - Both IPv4 and IPv6
 - Dual stack routers receive ping twice as much

iij.ad.jp DNS

iij.ad.jp.	IN	NS dns0.iij.ad.jp.
iij.ad.jp.	IN	NS dns1.iij.ad.jp.
dns0.iii.ad.ip.	IN	A 210.130.0.5
dns0.iij.ad.jp.	IN	AAAA 2001:240::105
dns1.iij.ad.jp.	IN	A 210.130.1.5
dns1.iij.ad.jp	IN	AAAA 2001:240::115

iij.ad.jp SMTP

iij.ad.jp.	IN	MX 10 omgi.iij.ad.jp.
omgi.iij.ad.jp. omgi.iij.ad.jp. omgi.iij.ad.jp. omgi.iij.ad.jp.	IN IN IN IN	 A 202.214.79.36 A 202.32.225.116 AAAA 2001:240:bb46:8143::64 AAAA 2001:240:bb5f:86c::1:64

iij.ad.jp WEB

www.iij.ad.jp. IN A 202.232.2.180 www.iij.ad.jp. IN AAAA 2001:240:bb81::10:180

IPv6 related Publication

- IIJ had published our deployment schedule on its web site
 - http://www.iij.ad.jp/service/IPv6schedule/ (not exists anymore)
 - Status and schedule of IPv6 adoption for each service
- This helped our customers to plan their IPv6 adoption

Japanese Broadband Subscribers

• Mostly FTTH

https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2022/2022-index.html

• Rapid increase of 5G subscribers

maz@iij.ad.jp

Measurements of IPv6 adoption

- Cooperate with providers to publish data
 - TF was formed by telecom operators, government, and academia to address IPv4 address exhaustion
- Encouraged each operator to adopt IPv6

NGN IPv6 Users Ratio(%) from 2012.12 to 2017.03