
Transition to RIPE DB v3.0

Transition to RIPE DB v3.0

João Luis Silva Damas

Database Group
RIPE NCC

Document: NewDB–4
Date: December 27, 2000

ABSTRACT

This document describes the issues involved in the transition from
RIPE DB v2.x to RIPE DB v3.0. We discuss issues resulting
from fundamental differences in software functionality and a mi-
gration plan aimed at minimizing service problems and user in-
convenience.

NewDB–4 Page 1

Transition to RIPE DB v3.0

Contents

1 Introduction 3

2 New features 3
2.1 RPSL 3

2.1.1 Reserved strings in RPSL 3
2.1.2 Transition issues derived from reserved strings 3
2.1.3 Differences with the current RPSL standard 4

2.2 Routing Policy System Security (rps-auth) 4
2.2.1 New attributes . 4
2.2.2 Modified attributes 5

2.3 MIME encapsulation of e-mail updates 6
2.4 New objects 7
2.5 Objects with modified syntax . 7
2.6 Other changes 7

2.6.1 Line continuation . 7
2.6.2 Relevance of attribute order 8
2.6.3 End of line comments 8
2.6.4 Empty attributes 9
2.6.5 Undocumented attribute aliases 9
2.6.6 Attributes to which the database can add data 9

2.7 New query types . 10
2.7.1 Queries for tool support. RAToolset 10
2.7.2 Membership of set objects in RPSL as implemented in RIPE

DB v3.0 . 10
2.7.3 New queries for in-addr.arpa domains 12

3 Interaction with other databases 12

4 Transition plan 13
4.1 Stages of the transition process . 13

A Templates for RPSL and rps-auth objects 15
A.1 Route object 15
A.2 Autonomous system object 15
A.3 Internet router object . 16
A.4 Autonomous system set object 16
A.5 Route set object 16
A.6 Router set object 17
A.7 Filter set object 17
A.8 Peering set object . 17
A.9 as-block object . 18

NewDB–4 Page 2

Transition to RIPE DB v3.0

1 Introduction

For the past few months the RIPE NCC has embarked in a project to rewrite the soft-
ware supporting the RIPE Database.

In this document we look at the new features introduced in the new version of the
software, analyzing how it impacts users. Finally, we present a transition plan for
moving operations from the current system to the new one.

For a description of the current database refer to the documentation for RIPE Database
versions before 3.0 [1, 2, 3].

2 New features

2.1 RPSL

One of the major differences in the new RIPE DB software is the language used to
express routing registry objects: RPSL.

RPSL (Routing Policy Specification Language[4]) is a language to enable the repre-
sentation of internet routing policies in databases such as the RIPE Database.

Currently, the RIPE database system uses the language known as RIPE 181 [2] as its
routing policy specification language. RPSL is a superset of RIPE 181 with somewhat
different syntax and much more functionality.

As a consequence of this change of language, the objects used to express routing policy
have been modified and some new objects have been defined.

For a list of templates of the new and modified RPSL objects, see Appendix A.

See section 4 for a description of the proposed transition to the new RIPE Database
with RPSL support.

2.1.1 Reserved strings in RPSL

The RPSL language defines a few reserved strings which can only appear in the names
of specific objects.

These are the prefixes AS-, RS- , RTRS-, FLTR- and PRNG- (case insensitive) which
can only appear in the names of as set, route set, router set, filter set and peering set
objects respectively. Furthermore each of these object types must have names starting
with these prefixes.

2.1.2 Transition issues derived from reserved strings

RIPE Database versions previous to v3.0 allowed the reserved strings mentioned above
to appear in any object name. This has resulted in the existence of objects that have

NewDB–4 Page 3

Transition to RIPE DB v3.0

names starting with these prefixes but are not of the corresponding object type. For ex-
ample, some maintainer names that were created for the purpose of protecting autnum
objects have names that look like AS-XXX-MNT.

These names are not allowed by RPSL. Therefore, these objects will need to be re-
named for conformance with the new standard.

2.1.3 Differences with the current RPSL standard

No admin-c, tech-c in route objects

The RPSL proposed standard calls for the addition of admin-c and tech-c attributes
to the route object, contrary to the current RIPE specification. The RIPE DB will not
support admin-c and tech-c in route objects.

Future revisions of RPSL will withdraw these two attributes from the route object.

Additionally, the admin-c attribute is mandatory in all other attributes, not only in the
autnum object.

2.2 Routing Policy System Security (rps-auth)

Apart from the changes introduced by RPSL itself, further changes have been intro-
duced to support the proposal specified in the Routing Policy System Security [5].

The RIPE Database implements the core functionality of this draft. For a complete
description, refer to the draft.

2.2.1 New attributes

mnt-routes

This new attribute may appear in the autnum, inetnum and route objects. Its arguments
are a maintainer name, optionally followed by a list of prefixes enclosed in curly braces
or the word “ANY”. The default is ANY or all more specific prefixes. For a complete
description see [5].

In an autnum object this attribute controls which maintainers can create route objects
containing the AS number as origin.

In inetnum and route objects it controls which maintainers can create route objects
with exact or more specific prefixes.

referral-by

The referral-by attribute is mandatory in maintainer objects. It stores the name of
the maintainer that created the maintainer object, meaning that it points to theparent
object. Currently all maintainers in the RIPE Database are created by the RIPE NCC
upon user request.

The RIPE NCC will therefore add an extra attribute to all maintainers automatically
when migrating data to the new Database:

NewDB–4 Page 4

Transition to RIPE DB v3.0

referral-by: RIPE-DBM-MNT

auth-override

This is a way of dealing with maintainers that have become unresponsive. This at-
tribute can only be set by the maintainer referred to in the referral-by.

Note: To enable software interoperability with other Internet Routing Registry databases,
this functionality will be present in RIPE DB v3.0. It will, however, not be used by the
RIPE NCC (the maintainer that has, so far, created all maintainers in the RIPE DB)
until a debate takes place in the RIPE working groups involved in Database develop-
ments.

2.2.2 Modified attributes

mnt-by

This attribute is mandatory in all objects except domains, persons and roles.

In the current RIPE database a lot of objects that need a maintainer according to this
definition, do not currently have one.

To solve this problem in a way that minimizes user inconvenience and exceptions in
the software, the RIPE NCC will create a new maintainer object in the database (see
figure 1).

The attribute “mnt-by: RIPE-NCC-NONE-MNT” (see figure 1) will be added to all
objects (except persons, roles and domains which are not involved in any way with
RPSL) which at the time of data migration do not have anymnt-by attributes.

This maintainer object will never be used for any sort of data protection or update
control and is created solely for the purpose of making data conformant and raising
user awareness about the convenience of acquiring a proper maintainer object.

mnt-lower

The mnt-lower attribute may now appear in more object types. Previously it was only
accepted in the inetnum, inet6num and domain objects.

Beginning with version 3.0 of the software it will also be accepted in route, as-block
and aut-num objects.

When it appears in a route object, it controls authorization for creation of new route ob-
jects with prefixes more specific (longer) than the one in the object where this attribute
appears.

When appearing in a as-block object it controls the creation of autnum or as-block ob-
jects contained in the range specified in the as-block object where the attribute appears.

When appearing in an autnum object it controls the creation of objects with hierarchi-
cal names containing this autnum. For an explanation of hierarchical names, refer to
[4].

NewDB–4 Page 5

Transition to RIPE DB v3.0

mntner: RIPE-NCC-NONE-MNT
description: This maintainer will never have auth other than NONE
remarks: This maintainer was created to deal with the fact that
remarks: mnt-by fields are mandatory in the RIPE Database.
remarks: All objects (except person, role and domain) which at
remarks: the time of transition to RIPE DB v3.0 did not have
remarks: any mnt-by attribute will have "mnt-by: RIPE-NCC-NONE-MNT"
remarks: added to them.
remarks: The RIPE NCC will never use this maintainer object to
remarks: enforce any sort of control over user’s objects.
remarks: It is intended solely to raise user awareness about the convenience
remarks: of obtaining a real maintainer object for themselves
remarks: while dealing with the new standards. More information is
remarks: available at http://www.ripe.net/db
remarks: The RIPE NCC strongly advises users to obtain their own
remarks: maintainer and substitute references to this maintainer.
remarks: *** NOTE: Remember that an update to an object protected by several
remarks: maintainer objects need only satisfy the authentication
remarks: of one of the maintainers in order to succeed. Therefore,
remarks: object protection is only as strong as the weakest
remarks: maintainer in the object.
admin-c: JLSD1-RIPE
auth: NONE
upd-to: ripe-dbm@ripe.net
mnt-by: RIPE-DBM-MNT
changed: ripe-dbm@ripe.net 19990909
source: RIPE

Figure 1: The maintainer object created for rps-auth[5] compliance.

2.3 MIME encapsulation of e-mail updates

Starting with RIPE Database v3.0, users will be able to send updates in MIME codified
e-mails.

This new feature is meant mainly to make the cryptographic signing of the message
easier when using mail agents that place the signature in a separate MIME part than
the rest of the message body.

It also allows the definition of scopes of authentication within the message (eg. parts
where different passwords apply) and nested signing of messages which may be nec-
essary under some conditions when updating objects whose authorization must be de-
rived from more than one party.

This last condition is a consequence of the implementation of the Routing Policy Sys-
tem Security standard [5]. One example of where nested signing may be required is
when registering a new route object, where authorization must be granted by the party
which has been allocated the IP address space and the party whose autonomous system
will be originating that route.

NewDB–4 Page 6

Transition to RIPE DB v3.0

2.4 New objects

This section gives an overview of the objects that have no equivalent in versions of
the RIPE Database prior to v3.0. It also notes objects that have changed name but
have the same purpose as objects in previous versions of the database (though possibly
with extended functionality). A full definition of these objects, their syntax and their
purpose can be found in the RPSL definition [4].

route-set

In previous versions of the database some of this object’s functionality was provided
by thecommunity object.

as-set

This object includes the functionality of theas-macro object present before v3.0

peering-set, filter-set, rtr-set

These objects have no equivalence in RIPE Database versions before 3.0.

as-block object

as-block is a new object introduced by the rps-auth draft in order to control delegation
of blocks of autonomous system numbers.

Templates for all the above objects are available in Appendix A.

2.5 Objects with modified syntax

Theaut-num, route andinet-rtr have had their functionality significantly expanded,
according to the RPSL [4] definition.

2.6 Other changes

Following is a description of changes derived from RPSL but that affect all objects in
the database.

For a full description of RPSL, refer to [4].

2.6.1 Line continuation

An attribute’s value can be split over multiple lines, by having a space, a tab or a
plus(‘+’) character as the first character of the continuation lines. The character ‘+’
allows attribute values to contain blank lines. For an example, see figure 2.

Note: From the above, it follows thatno white space is allowed before an attribute’s
name in an object.

NewDB–4 Page 7

Transition to RIPE DB v3.0

key-cert: PGPKEY-29FED809
method: PGP
owner: ripe <ripet@ripe>
fingerpr: 1241 433F ABCD EF01 2345 0666 3112 1999 0101 2000
certif: -----BEGIN PGP PUBLIC KEY BLOCK-----

Version: 5.0i
+

n6vQClCbAkbTCD1mpF1Bn5x8vYlLIhkmuquiXsNV6TILOwACAgf8Di3P62C9vXWM
nUDg+R9BUCuj5RlKIgG71Ix0wBoAtLNjZOd3iEH1/D4mk1J0RfE+p69bqxaZijSr
7F+5m8BPoXmcSPDFfUOGotmGBv2hmG+IfxASPAeG6RbaWkS0dVGKZJsEbyC/NTOm
tTMsbd2NBBzx3Is9iE/85u/xEv9xEavDEmZbj6LHwG9fiyPzp2gJz1xPZfcoRfRg
Eikzsmjs6ZkIA9eM11zwnzcj2h25S2wOuslKYo4QJzxLctD6oesmqMUpFFmIDnT2
Drf1tnE3bjK400dGBGlQhOvYJPjnjRgEdtUH/77/8bSgmJUGp7QiUXV6YSBTdXBw
b3J0IDxzdXBwb3J0QHVrLnF1emEuY29tPokASwQQEQIACwUCNtRAtQQLAwIBAAoJ
EPM5y/N5MI41wBAAniuKAoWqx/fbGoT8yk3xK2jjKX/8AKC97GdMQVSVRx/Anllg
MQznV0T3WLkCDQQ21EC1EAgA9kJXtwh/CBdyorrWqULzBej5UxE5T7bxbrlLOCDa
AadWoxTpj0BV89AHxstDqZSt90xkhkn4DIO9ZekX1KHTUPj1WV/cdlJPPT2N286Z
4VeSWc39uK50T8X8dryDxUcwYc58yWb/Ffm7/ZFexwGq01uejaClcjrUGvC/RgBY
K+X0iP1YTknbzSC0neSRBzZrM2w4DUUdD3yIsxx8Wy2O9vPJI8BD8KVbGI2Ou1WM
uF040zT9fBdXQ6MdGGzeMyEstSr/POGxKUAYEY18hKcKctaGxAMZyAcpesqVDNmW
r27W1SdQJPFHZQCfYqJ+Hs674MaoFrnzgDWFvlLm7Gg=
-----END PGP PUBLIC KEY BLOCK-----

notify: ripe@ripe.net
mnt-by: A-MNT
changed: ripe@ripe.net 19990909
source: RIPE

Figure 2: Example RPSL object with an attribute spanning multiple lines

2.6.2 Relevance of attribute order

When displaying the object on a query the attributes must appear in the same order as
the user sent them to the database. This is very useful for example when using multiple
remarks lines to comment on the values of the following or preceding attributes. For
an example, see figure 3.

route: 193.0.0.0/23
remarks: This route is announced out of AS3333
origin: AS3333
remarks: It is maintained by the RIPE NCC
mnt_by: RIPE-NCC-MNT
...

Figure 3: Example RPSL object with multiple occurrences of an attribute

2.6.3 End of line comments

RPSL offers the possibility of including comments on any attribute value. This is done
by typing the # character followed by the desired comment. Any text found after the

NewDB–4 Page 8

Transition to RIPE DB v3.0

person: Joao Luis Silva Damas # This is the name
address: RIPE Network Coordination Centre (NCC) # The address
address: Singel 258
address: 1016 AB Amsterdam
address: The Netherlands
phone: +31 20 535 4444
fax-no: +31 20 535 4445
e-mail: joao@ripe.net
nic-hdl: JLSD1-RIPE # Acid free
notify: joao@ripe.net
changed: roderik@ripe.net 19970926
source: RIPE

Figure 4: Example of an object using end of line comments

character is considered a comment and not parsed for syntax. For an example, see
figure 4.

2.6.4 Empty attributes

In the past, some updates have been sent to the database in which some object con-
tained attributes with no values, that is, only the attribute name was present in the
object.

This is a syntax error but has been handled silently by the database by deleting the
problematic parts and proceeding with the update.

With the increasing need for security and in order to be able to preserve data as it was
sent by the user, the RIPE DB v3.0 software will treat these syntax errors as real errors,
resulting in failed updates if it encounters such data.

2.6.5 Undocumented attribute aliases

Currently the RIPE Database software silently corrects some mis-spellings in attribute
names, converting them to proper ones and proceeding with the update.

For the same reasons as above this can no longer be the case. The database will not
alter any values sent by the user.

As above the objects must really be syntactically correct in order for the update to
succeed.

2.6.6 Attributes to which the database can add data

There are a few attributes to which the RIPE Database software can add data not ini-
tially included by the user.

NewDB–4 Page 9

Transition to RIPE DB v3.0

These are the attributes of typegenerated, which are added to the object by the database.
These appear within thekey-cert object (method, owner andfingerprint attributes) and
the inet6num object (status).

This is also the case for thechanged attribute which appears on all objects. When the
user does not provide adate, but only an e-mail address, the database will add the date
corresponding to the time where the object was processed.

Users verifying the authenticity of these objects must keep in mind that, in these cases,
the object sent in the update message, where the PGP signature (if any) appears, may
not be identical to the one stored in the database. This kind of verification is only
possible if the user has access to the original update message.

2.7 New query types

2.7.1 Queries for tool support. RAToolset

� -x flag

This flag applies to lookups for inet(6)num and route objects. It specifies that
only objects with an exact match should be returned. By default (without this
flag) the database will return the smallest less specific range if it does not find
an exact match for an IP address range or prefix.

� -K flag

Requests that only the object’s primary keys are to be returned. The exception
are the set objects, where themembers attributes will also be returned. By de-
fault the server will return full objects. This flag doesnot apply to person and
role objects.

� -l flag

This flag requests that the serverNOT return the exact match but only thesmall-
est of the IP ranges that arebigger than the user supplied range and thatfully
contains it. This is usually referred to as theone level less specific range.

� -q flag

This flag is a way of retrieving information about the server. Currently it sup-
ports two arguments:

� version - Returns the server version.
� sources - Returns the list of sources (databases) currently used for queries.

This query is most useful when using persistent connections (request by issuing
the -k flag).

2.7.2 Membership of set objects in RPSL as implemented in RIPE DB v3.0

RPSL introduces a much more complex and flexible set-member relationship than was
previously available in RIPE 181.

In RPSL[4] there are two ways in which an object can be a member of a set object.

NewDB–4 Page 10

Transition to RIPE DB v3.0

route-set: RS-FOO route: 193.0.0.0/22
mbrs-by-ref: MNT-FOOBAR origin: AS3333
... member-of: RS-FOO

mnt-by: MNT-FOOBAR
...

route: 192.168.0.0/24
origin: AS3333
member-of: RS-FOO
...

as-set: AS-BAR aut-num: AS3333
members: AS3333 ...
...

Figure 5: A few objects illustrating membership relations for RPSL set objects

The first one is by listing objects in amembers attribute in the set object. This is the
kind of member relationship present in RIPE 181[2] (eg. as-list in as-macro objects).

The other way of specifying a membership relation is through the use of themember-of
attribute. This attribute can be used in theroute, aut-num and inet-rtr. The value of
themember-of identifies a set object that this object wants to be a member of.

However, specifyingmember-of is not enough. The set object must also have ambrs-
by-ref attribute listing the maintainer of the object wanting to be a member of the
set. The set owner must validate the membership claim of an object with amember-
of attribute, and it does that by matching themnt-by line of the object with one the
maintainers in thembrs-by-ref attribute of the set object.

In the example shown in figure 5, objectroute: 193.0.0.0/22 is a member ofRS-FOO,
since it has amember-of attribute referencingRS-FOO and is mnt-by the maintainer
referenced inRS-FOO’s mbrs-by-ref attribute.

Objectroute: 192.168.0.0/24 is not a member ofRS-FOO because, even though it has a
member-of attribute referencingRS-FOO it is not maintained by the proper maintainer
object.

Objectaut-num: AS3333 is a member ofAS-BAR becauseAS-BAR explicitly says so.

The Database software prevents the insertion of objects withmember-of attributes that
are not maintained by maintainer objects not listed in thembrs-by-ref attribute of the
referenced set object.

However, the “owner” of the set object can modify thembrs-by-ref attribute at any
time and invalidate the relationship with a series of objects that point to it using the
member-of attribute. The software will not prevent this operation since the member-
ship relationship shoudl be under the control of the “owner” of the set object.

NewDB–4 Page 11

Transition to RIPE DB v3.0

In order to minimize confusion, a whois query will validate the membership relation
at query time and return only the objects with a validmember-of relation.

Therefore to find out all the members of a specific set object, the user must issue a
whois query for the set object, extract the list of explicit members, with possible recur-
sion, and then issue an inverse query for the objects with the appropriatemember-of
values (recursively, that is including the ones pointing to possible set objects contained
in themembers attribute of the containing set object).

Tools such as the RAToolset include clients that perform this recursive expansion.

2.7.3 New queries for in-addr.arpa domains

Version 3.0 of the RIPE Database supports the -M, -m, -L and -l flags for lookups of
domain objects that are in the in-addr.arpa tree. For an example, see figure 6.

Query:

whois -L -Tdn 193.0.0.0/24

Output:

domain: 193.in-addr.arpa
descr: European Regional Registry
descr: 193.0.0.0/8 CIDR block
...
source: RIPE

domain: 0.0.193.in-addr.arpa
descr: Reverse for RIPE NCC address space
...
source: RIPE

Figure 6: Example of new query support for in-addr.arpa domain names.

3 Interaction with other databases

Version 3.0 of the RIPE DB will only support RPSL. All responses from the Database
will be in RPSL format. Updates to the database itself will need to be in RPSL al-
though during the transition process, updates in RIPE181 format will be accepted and
translated to RPSL for storage in the database (see below).

NewDB–4 Page 12

Transition to RIPE DB v3.0

The mirroring of other databases may need translation depending on the format in
which they are available.

The database files (except the person and role objects) will be available at ftp.ripe.net
as RPSL files. If there is enough community demand, the RIPE NCC can produce
software to backtranslate RPSL into RIPE 181, bearing in mind that some information
may be lost in the process due to the fact that RIPE 181 can only express a subset of
what RPSL can.

4 Transition plan

4.1 Stages of the transition process

1. Phase I

Near real time mirroring from the current database with translation to RPSL.
New server available for query from whois://rpsl.ripe.net New server provides
responses in RPSL format (for routing registry objects).

Estimated time for implementation: End January 2000. Completed.

2. Phase II

New server processes updates on a test database. The near real time mirror from
the production is maintained as above.

At the end of this phase, the RIPE NCC will scan the routing policies stored in
the database to find objects that have used fields other than the intended ones
to express policy in RIPE 181 comments (eg. by describing policy in remarks
fields) and contact the maintainers of the objects, where possible, in order to
raise awareness of the new functionality.

In this phase extensive testing will be carried out.

Estimated time for implementation: May 2000. Current phase.

3. Phase III

The new server goes into production and becomes the only server answering
whois queries.

This can only happen after extensive testing and confidence checks with the
RIPE community.

RIPE-181 input is accepted at< auto-dbm@ripe.net> and translated into RPSL
for storage, RPSL input is directly accepted at<auto-rpsl@ripe.net>

<auto-dbm@ripe.net> will accept creation and modification of objects. Dele-
tions need to be forwarded to<auto-rpsl@ripe.net> because of the interaction
between the requirement to exactly reproduce the object to be deleted and the
translation to RPSL taking place.

Estimated time for implementation:Subject to community consensus. Ex-
pected towards of the end of the year 2000 or early 2001.

NewDB–4 Page 13

Transition to RIPE DB v3.0

4. Phase IV

RPLS is accepted at<auto-dbm@ripe.net>, becoming the primary means of
updating the database. RIPE 181 input is accepted at<auto-181@ripe.net> as
a secondary means.

The duration of this phase should be short.

5. Phase V

Only RPSL input is accepted. Dependant on the previous phases.

NewDB–4 Page 14

Transition to RIPE DB v3.0

A Templates for RPSL and rps-auth objects

Note: These templates also reflect the modifications required to support the proposed
Routing Policy System Security functionality [5].

A.1 Route object

route: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
origin: [mandatory] [single] [primary/inverse key]
holes: [optional] [single] *** hole in RIPE 181 ***
member-of: [optional] [multiple] [inverse key] *** New in RPSL ***
inject: [optional] [multiple] *** New in RPSL ***
aggr-mtd: [optional] [single] *** New in RPSL ***
aggr-bndry: [optional] [single] *** New in RPSL ***
export-comps: [optional] [single] *** New in RPSL ***
components: [optional] [single] *** New in RPSL ***
remarks: [optional] [multiple]
cross-mnt: [optional] [multiple] [inverse key]
cross-nfy: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key] *** New in RPS auth ***
mnt-routes: [optional] [multiple] [inverse key] *** New in RPS auth ***
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.2 Autonomous system object

aut-num: [mandatory] [single] [primary/look-up key]
as-name: [mandatory] [single]
descr: [mandatory] [multiple]
member-of: [optional] [multiple] [inverse key] *** New in RPSL ***
import: [optional] [multiple] *** as-in in RIPE 181 ***
export: [optional] [multiple] *** as-out in RIPE 181 ***
default: [optional] [multiple]
remarks: [optional] [multiple]
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
cross-mnt: [optional] [multiple] [inverse key]
cross-nfy: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key] *** From RPS auth ***
mnt-routes: [optional] [multiple] [inverse key] *** From RPS auth ***
mnt-by: [mandatory] [multiple] [inverse key]

NewDB–4 Page 15

Transition to RIPE DB v3.0

changed: [mandatory] [multiple]
source: [mandatory] [single]

A.3 Internet router object

inet-rtr: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
alias: [optional] [multiple] *** New in RPSL ***
local-as: [mandatory] [single] [inverse key] *** localas in RIPE 181 ***
ifaddr: [mandatory] [multiple] [look-up key]
peer: [optional] [multiple] [inverse key]
member-of: [optional] [multiple] [inverse key] *** New in RPSL ***
remarks: [optional] [multiple]
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.4 Autonomous system set object

This object wasas-macro in RIPE 181

as-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
members: [optional] [multiple] *** as-list in RIPE 181 ***
mbrs-by-ref: [optional] [multiple] *** New in RPSL ***
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.5 Route set object

This object wascommunity in RIPE 181

route-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
members: [optional] [multiple] *** New in RPSL ***
mbrs-by-ref: [optional] [multiple] *** New in RPSL ***
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]

NewDB–4 Page 16

Transition to RIPE DB v3.0

admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.6 Router set object

New object in RPSL

rtr-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
members: [optional] [multiple]
mbrs-by-ref: [optional] [multiple]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.7 Filter set object

New object in RPSL

filter-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
filter: [mandatory] [single]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.8 Peering set object

New object in RPSL

peering-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
peering: [mandatory] [multiple]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]

NewDB–4 Page 17

Transition to RIPE DB v3.0

admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

A.9 as-block object

New object in RPS auth

as-block: [mandatory] [single] [primary/look-up key]
descr: [optional] [multiple]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-lower: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

References

[1] A. Magee. RIPE Database Documentation.http://www.ripe.net

[2] Tony Bates, Elise Gerich, Laurent Joncheray, Jean-Michel Jouanigot, Daniel
Karrenberg, Marten Terpstra, Jessica Yu. Representation of IP Routing Policies in
a Routing Registry,http://www.ripe.net

[3] Marek Bukowy, Janne Snabb. RIPE Database Documentation (Update for v2.2.1)
, http://www.ripe.net

[4] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D.
Karrenberg, M. Terpstra. Routing Policy Specification Language. RFC 2622

[5] C. Villamizar, C. Alaettinoglu, D. Meyer, S. Murphy. Routing Policy System
Security. RFC 2725

NewDB–4 Page 18

