

Crowdsourcing Router Geolocation

Emile Aben emile.aben@ripe.net

- What?
 - "normal" IP geolocation looks only at the edge
 - router geolocation = figuring out the rest

- Why?
 - Detect sub-optimal paths in traceroutes
 - Does a forward path traverse a specific country/region
 - In case of events?
 - Structurally?
 - Bulk analysis

Background

- Tons of interesting RIPE Atlas traceroutes
- Hard to put them on a map
- Naive router geolocation: Use Maxmind (or any other geoloc DB): Doesn't work!

IP	Geoloc
2001:2000:3018:50::1	EU
89.221.34.63	IT
4.69.148.30	US
83.217.227.13	ES
141.136.110.174	FR
173.194.39.215	Mountain View,CA,US
184.105.223.246	Fremont, CA, US

Background

- Tons of interesting RIPE Atlas traceroutes
- Hard to put them on a map
- Naive router geolocation: Use Maxmind (or any other geoloc DB): Doesn't work!

IP	Geoloc	Hostname
2001:2000:3018:50::1	EU	sfia-b2-v6.telia.net
89.221.34.63	IT	xe-1-0-2. sofia 1. sof .seabone.net
4.69.148.30	US	ae-11-11.car2. Sofia 1.Level3.net
83.217.227.13	ES	xe-0-2-0-2.r00. sofibu 01.bg.bb.gin.ntt.net
141.136.110.174	FR	xs-3-3-0. sof 10.ip4.tinet.net
173.194.39.215	Mountain View,CA,US	sof 01s01-in-f23.1e100.net
184.105.223.246	Fremont,CA,US	10ge1-1.core1. sof 1.he.net

- Find ways to geolocate Internet infrastructure better
- Ask the experts (you!) to participate
- Make collected data publicly available
 - so also for geoloc providers

- Not a competing service to existing geoloc
 - their data can be enhanced with router geoloc

Prior Art (RFC1925, rule 11)

- Existing router geoloc bits-and-pieces
 - rocketfuel (undns), IXmaps, ...
 - Problem: Unmaintained and/or complex and/or limited scope
- 'Visual traceroute'
 - Typically use edge geolocation service
- IETF draft google-self-published-geofeeds
 - Complementary
- CAIDA geoloc project
 - Cooperating

- Format:
 - Prefix, Country, Region, City, Postal:

```
193.0.24.0/21, GR, GR-I, Athens, 117 45
2001:67c:64::/48, GR, GR-I, Athens, 117 45
```

- Self-published by site
 - Currently you'll have to know where these feeds are

Potential template?

Proposed Geoloc Method

- Combine data-sources:
 - Existing edge geolocation
 - Hostnames from reverse DNS
 - 1.13 billion reverse DNS records in IPv4
 - Users could tag naming schemes
 - RTTs allow for some triangulation / speed-of-light constraints
 - IXP IPs/prefixes (when not remote-peering)
 - DNS LOC records
- Probabilistic answer: ie. 95% Athens, GR

- Signal propagation bound by speed of light
- In fiber ~ 100 km per 1 ms (round trip)

- One day of RIPE Atlas traceroutes:
 - 84122 IPs (v4/v6) seen
 - 40975 IPs within 10ms from the source = within 1000km

- Problem: High latency last mile
 - Would need to account for that

Detail: DNS LOC record (RFC 1876)

DNS record to map geographic location to a hostname

• nbg-s1-rou-1001.DE.eurorings.net. IN LOC 49 27 12.690 N 11 3 56.416 E 10.00m 1.00m 10000.00m

- Found 16 domains using it:
 - Western Europe incumbent telcos
 - Research & Education networks

Detail: Probabilistic answer?

- Crowdsourced info can be conflicting
 - UserA: ams-ix.br2.sof2.example.com is in Amsterdam,NL
 - UserB: ams-ix.br2.sof2.example.com is in Sofia,BG
- Overlapping city names
 - Bakel, NL vs. Bakel, SN
 - 5 cities named San Jose (US,PH,CR)
- A probabilistic answer could capture ambiguity

Proposed Geoloc Method

- Combine data-sources:
 - Existing edge geolocation
 - Hostnames from reverse DNS
 - 1.13 billion reverse DNS records in IPv4
 - Users could tag naming schemes
 - RTTs allow for some triangulation / speed-of-light constraints
 - IXP IPs/prefixes (when not remote-peering)
 - DNS LOC records
- Probabilistic answer: ie. 95% Athens, GR

Proposed Method - Crowdsource

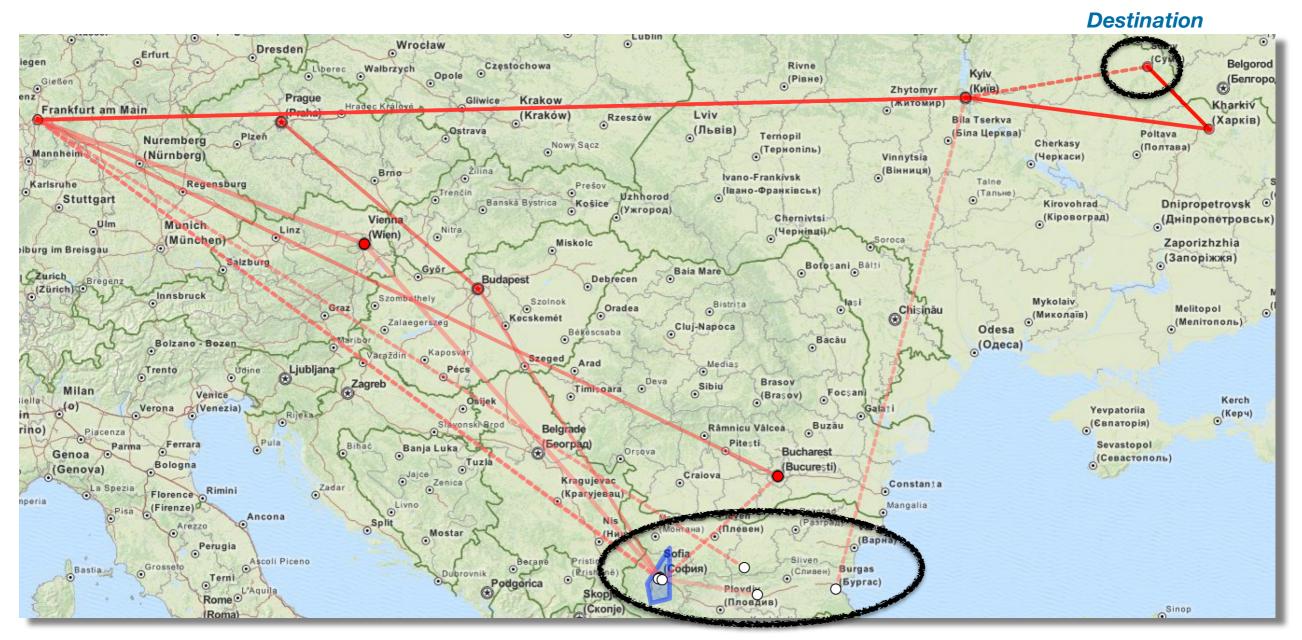
- Combine data-sources:
 - Existing edge geolocation
 - Hostnames from reverse DNS
 - 1.13 billion reverse DNS records in IPv4
 - Users could tag naming schemes
 - RTTs allow for some triangulation / speed-of-light constraints
 - IXP IPs/prefixes (when not remote-peering)
 - DNS LOC records
- Probabilistic answer: ie. 95% Athens, GR

 Having a computer guess just based on hostname, doesn't work very well yet (BG -> UA):

 Having a computer guess just based on hostname, doesn't work very well yet (BG -> UA):

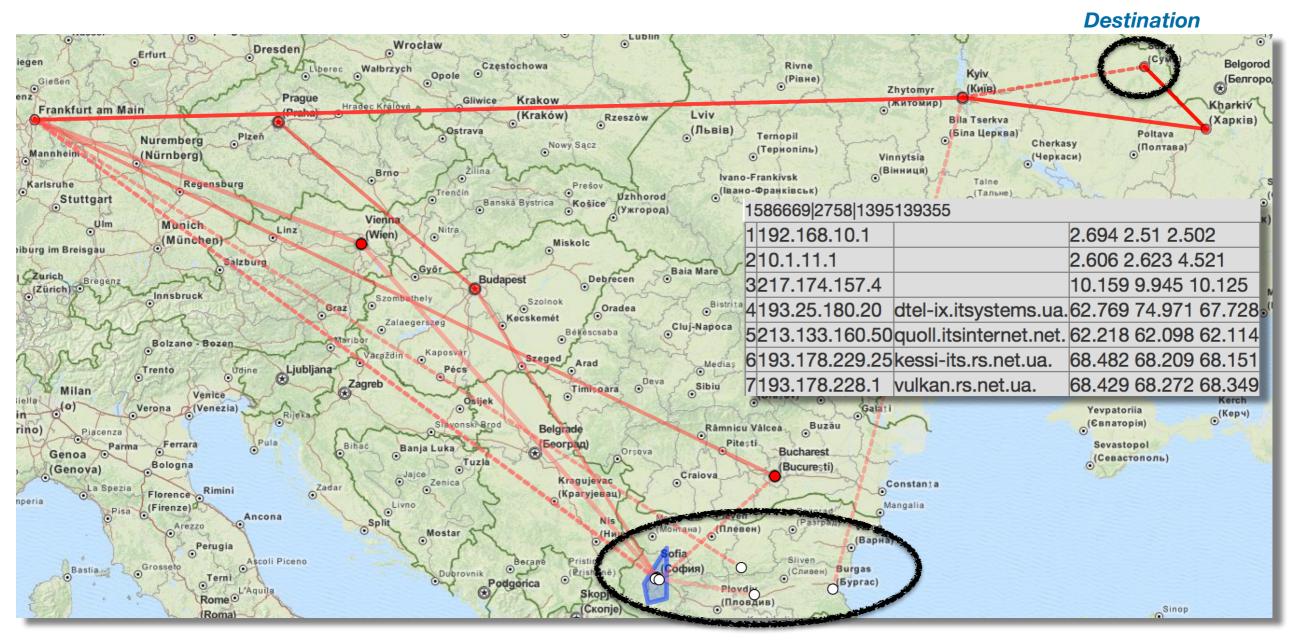
Ambiguity in Hostnames

- Lots of people use IATA-airport codes, but
 - atm Altamira, BR (IATA) or ATM link?
- Mixed naming schemes
 - fra07s29-in-x10.1e100.net (IATA) vs. ea-in-f99.1e100.net
- Almost IATA-schemes
- Different languages
 - Wien vs. Vienna
- Different abbreviations
 - nyc vs. nyk for New York



How to Improve: Crowdsource

- What you give:
 - Info on your network
 - Info on other networks


- What you get back:
 - Better router geolocation for everybody

Sources

Sources

Open Questions

- How to crowd-source exactly?
 - Regular expressions: ^([a-z]{3})\d+.*\.1e100\.net
 - Pro: Can capture everything
 - Con: Not exactly user-friendly
 - Tag to city: sof = Sofia,BG
 - Pro: More user-friendly/closer to how info is stored already
 - Con: Can be ambiguous

- Exploring this idea because:
 - Could give you better tools/viz in RIPE Atlas
 - Could give you data to build your own tools on
 - Could give geolocation providers data to make their data better

Let us know what you think!

