
RIPE Database Query Reference Manual

Abstract
This document describes how queries work in version 1.68 of the RIPE Database. This version 
uses the Routing Policy Specification Language (RPSL) [1] to represent many of the database 
objects. It uses the Routing Policy System Security (RPSS) [2] for authorisation. This means 
better security for Internet Routing Registries (IRR). It makes use of RPSL next generation 
specifications [14]

Though this document is self-contained, you may also wish to read the RPSL [1] and RPSS [2] 
specifications. For a tutorial on RPSL, you can read the RPSL applications document [3] You 
may also want to read the “RIPE Database Update Reference Manual” [19  ]  . 

Intended Audience
This reference manual is for casual and advanced users who query the RIPE Database. If you are 
new to this database, you might find the “RIPE Database User Manual – Getting Started” [5] a 
more helpful place to start. 

Conventions Used in This Document
We use <label> for a placeholder or to indicate syntax.
We use [option] to indicate an optional text or command argument. 
We use a bold font to indicate an object type. 
We use “attribute:” to indicate an attribute of an object.
“RIPE Database” usually means the user interface rather than the information in the database. 
Where there may be any doubt, this manual will make clear what is being discussed.



Table of Contents

RIPE Database Query Reference Manual
Abstract
Intended Audience
Conventions Used in This Document
Table of Contents
Introduction
1.0 Database Objects and Attributes
2.0 Querying the RIPE Database
2.1 Queries Using Primary and Lookup Keys
2.2 Queries for IP Networks
2.2.1 Default Queries for IP Networks
2.2.2 Exact Match Queries
2.2.3 More and Less Specific Queries
2.2.3.1 More Specific Queries
2.2.3.2 Less Specific Queries
2.2.4 Less Specific Queries Referencing irt Objects
2.3 Queries for Autonomous Systems
2.4 Inverse Queries
2.5 Abuse Contacts
2.6 Grouping the RIPE Database Output
2.7 Filtering the RIPE Database Output
2.8 Query Support for Tools
2.8.1 IRRToolset Support
2.8.2 Persistent Connections and Keeping State
2.9 Getting All the Members of Set Objects
2.10 More and Less Specific Lookups from Reverse Domains
2.11 Access Control for Queries
2.12 Other Server Features
2.12.1 RIPE NCC Mirrors of Other Databases
2.12.2 The "-q" Query Flag
2.12.3 The "-t" Query Flag
2.12.4 The "v" Query Flag
2.12.5 The "-F" Query Flag
2.12.6 The "-K" Query Flag
2.12.5 The "-F" Query Flag
2.12.7 The "-T" Query Flag
2.12.8 The "-a" Query Flag
Tables of Query Types Supported by the RIPE Database
Table 2.1 Queries Using Primary and Lookup Keys
Table 2.2 Queries For IP Networks
Table 2.3 Query Flag Arguments to the "-i" Query Flag and the Corresponding Inverse Keys
Table 2.4 Query Support For Tools
Table 2.5 Miscellaneous Queries



Table 2.6 Informational Queries
Appendices
A1. RIPE Database Query Server Response Codes and Messages
A1.1 Query Errors
A1.2 Access Errors
A1.3 Connection Errors
A1.4 NRTM Errors
A1.5 Warnings
A2. Copyright Information
A2.1 Database Copyright
A2.2 RIPE NCC Copyright
Acknowledgements
References

 



Introduction
The RIPE Network Management Database (often called the “RIPE Database”) contains 
information about IP address space allocations and assignments, routing policies, reverse 
delegations and contacts in the RIPE NCC service region [16]. The data itself is a mix of registry 
information entered and maintained by the RIPE NCC and related data entered and maintained 
by RIPE NCC members and other users.

While the information in the RIPE Database is made freely available to the public, it is subject to 
the RIPE Database Terms and Conditions [22].

1.0 Database Objects and Attributes 
The RIPE Database contains records of: 

● Allocations and assignments of IP address space (the IP address registry) 

● Reverse domain registrations 

● Routing policy information (the Internet Routing Registry) 

● Contact information - details of people who are registered as the contacts for the Internet 
number resources used in the operation of networks or routers and their organisations

The RIPE NCC maintains the Internet number resources in the database that it has allocated or 
assigned. These resource objects are tagged as “RIPE-REGISTRY-RESOURCE”. For other 
resource objects, tagged as “RIPE-USER-RESOURCE”,  the registered contacts (Registrants) 
and the holders of the referenced mntner objects maintain this data. 

A database object is defined in RPSL as a list of attribute-value pairs in plain text form. 
Attributes can be mandatory, optional or generated. Mandatory attributes will always be present 
in an instance of an object. Optional attributes may be present if considered necessary or useful 
by the creator of the object or if required by the business rules in the software. Generated 
attributes can be included by the creator of the object, but their values will always be checked 
and included, when necessary, by the database software.

The attributes are indexed in a number of ways to allow the queries to search the database. An 
attribute can be a primary key, lookup key, inverse key, or a combination of these, or a part of 
one of these.

The characteristics of an attribute are determined by the type of object the attribute appears in. 
These are shown for each object in the object templates. They can be listed using the query: 

whois –t <object-type>

There is also a detailed description available by querying:

whois –v <object-type>



2.0 Querying the RIPE Database
This section describes how you can find information by querying the RIPE Database. We 
describe the general format of a query and the query flags that you can use to change the default 
behaviour of a query.

We also describe how the database server automatically tracks query responses and limits how 
much contact information you can take from the RIPE Database. We do this to reduce the chance 
that someone will use the database to send spam e-mails to addresses that they find. There are 
four ways to query the database: 

● Using a whois client running the whois protocol [12]

● Using the web interface from the RIPE NCC website [20] 

● Using telnet to port 43 of the whois.ripe.net host 

● Using the REST API running at rest.db.ripe.net

There is a set of general rules about server responses:

The same response will be returned from the server for each of these four methods.

Output lines starting with the % sign are either a server response code or server messages (a 
comment, information message or an error with description). A message contains a white space 
after the % sign, while a server response code line starts right after the % sign. See Appendix A1, 
“RIPE Database Query Server Response Codes and Messages” for more information.

Do not write scripts to parse the messages. The text is subject to change at any time.

A database object in the output is terminated by an empty line. This is a line containing only a 
newline character (\n).

Two empty lines, each containing only a newline character (\n), mean the end of a server 
response.

The general format of a query is:

[optional query flags] <query argument>                 

The format of a query flag is:

-short_query_flag [optional query flag argument]

or

--long_query_flag [optional query flag argument]

You may list each query flag separately, as in:

-B –i tech-c --no-grouping ABC999-RIPE                  

You can also group together short query flags. In this case, only the last flag in a list may have a 
flag argument, as in:

-Bi tech-c --no-grouping ABC999-RIPE                

You can find a list of query flags and query flag arguments in Tables 2.1 to 2.6. 



2.1 Queries Using Primary and Lookup Keys

Most queries use the primary and lookup keys of an object as an argument to the query. You can 
find a list of these queries in Table 2.1 at the end of this section. 

2.2 Queries for IP Networks 

The RIPE Database provides information about IP networks allocated or assigned within the 
RIPE NCC service region [16]. This information is mainly stored as inetnum, inet6num, route 
and route6 objects. These objects store information about a single IP address or ranges of 
addresses. 

The route and route6 objects use “prefix notation” to specify the single address or range of 
addresses about which they contain information.

“Prefix notation” specifies ranges using two parts: the prefix and its length. 

● For IPv4, the prefix is a 32-bit integer written in dotted quad notation with the value of 
the lowest IP address in the range. The prefix length is a whole number in the range 0-32 
(for example 193.0.0.0/22 specifies the range of 1024 IPv4 addresses starting with, and 
including, 193.0.0.0). 

● For IPv6 address ranges, the prefix length must be in the range 0-128 and is a 128-bit 
whole number, written in hexadecimal groups of two bytes separated by colons and with 
the possible use of shorthand notation for strings of consecutive 0s. 

The inetnum objects represent an IPv4 address space in range notation where the range is 
explicitly specified as two 32-bit whole numbers written in dotted quad notation separated by a 
dash (for example 193.0.0.0 - 193.0.3.255, this is the same range as in the above example).

The inet6num objects represent IPv6 address space. Only the standard IPv6 prefix notation is 
allowed (as described above).

When you query the database for information about IP addresses, you can specify query 
arguments as search keys with the following notations: 

● A prefix (this has the same meaning as above). 

● An explicit range (also as above). 

● A single IP number. This is interpreted as a range of just one address for IPv4 or a prefix 
length of one for IPv6. 

For IPv4 address space, the query argument can be specified with either prefix or range notation. 
When prefix notation is used, the server software converts this into range notation before it 
executes the query. An information message is included in the server output showing the 
conversions performed.

For IPv6 address space, the query argument can only be specified in prefix notation. You can find 
a list of queries for IP networks in Table 2.2 at the end of this section. The rest of this section 
describes how you can retrieve different types of information relative to a particular range of IP 
addresses.

We use three terms in these types of queries. These are all defined relative to the specified 
(reference) range: 



● An exact match refers to a range that is identical to the reference range. 

● A more specific range is contained within the reference range and is smaller. It contains 
fewer IP addresses than the reference range. We also call this a sub range. 

● A less specific range contains the whole of the reference range and is bigger. It has a 
greater number of IP addresses than the reference range. We also call this an 
encompassing range.

2.2.1 Default Queries for IP Networks

If you do not specify a query flag, and your query argument is a range of IP addresses in any one 
notation, the RIPE Database server will try to find an exact match for that range. If found, the 
exact match is returned. If an exact match cannot be found, the server looks for the smallest less 
specific range. This will be the smallest existing, encompassing range. 

2.2.2 Exact Match Queries

If you want to change the default behaviour, so that the server returns only an exact match, you 
need to use the “–x” query flag. This flag stops the server from looking for any less specific 
ranges if no exact match exists, not even the smallest encompassing range will be returned.

2.2.3 More and Less Specific Queries

If the exact match is not the information you wanted, you can modify the information returned 
by the database server, by using one of these query flags which provide two generic types of 
queries known as more and less specific queries:

“-M”, “-m”, “-L” and “-l”.

2.2.3.1 More Specific Queries

These refer to queries qualified by the use of the “-M” and “-m” query flags.

These will return information about ranges of IP addresses that are fully contained in the user-
supplied reference range and contain fewer addresses. More specific queries do not return the 
exact match. 

● “-M” - requests that the server should return all the sub-ranges completely contained 
within the reference range. When there are hierarchies of sub-ranges, all of these will be 
returned down to the smallest sub-ranges. 

● “-m” - requests that the server should return all sub-ranges that are completely contained 
within the reference range. When there are hierarchies of sub-ranges, only the top level of 
the hierarchies will be returned. These are usually called one level more specific ranges. 

2.2.3.2 Less Specific Queries

These refer to queries qualified by the use of the “-L” and “-l” query flags.



These will return information about ranges of IP addresses that fully contain the user-supplied 
reference range and may contain a greater number of addresses. 

● “-L” - requests that the server returns the exact match, if any, and all encompassing 
ranges that are bigger than the reference range and that fully contain it. 

● “-l” - requests that the server does NOT return the exact match. It returns only the 
smallest of the encompassing ranges that is bigger than the reference range and that fully 
contains it. This is usually referred to as the “one level less specific range”. 

2.2.4 Less Specific Queries Referencing irt Objects

In this section, “inet(6)num” is used to mean “inetnum or inet6num”. This is to make the text 
clearer.

An irt object represents a Computer Security Incident Response Team (CSIRT). It includes 
contact and security information. It is optionally referenced from inet(6)num objects using the 
“mnt-irt:” attribute (even though the irt object is not a mntner). This shows which CSIRT is 
responsible for handling computer and network incidents for that address range.

A reference to an irt object does not apply only to the inet(6)num object that contains the 
reference. It also applies to all the inet(6)num objects that are “more specific” to the one 
containing the reference. Not every inet(6)num object needs to contain a reference to the irt 
object. The irt reference only needs to be placed in the least specific encompassing object to 
apply to a whole hierarchy of objects. This makes it easier to apply and maintain.

There may be more than one inet(6)num object in a hierarchy referencing an irt object. In this 
case, the one referenced from the smallest encompassing object is the one that applies to the 
range in question.

There is a “-c” query flag to make it easy to find the inet(6)num object containing the reference 
to an irt object for any specific range.

This flag makes the server search up the hierarchy from the range specified as the query 
argument. The search will stop when the first object is found containing a reference to an irt 
object. This can either be the specified range or an encompassing inet(6)num object. The query 
will return the inet(6)num object found for the specified range. The irt object will also be 
returned along with the usual contact data objects.

Sometimes, no inet(6)num object is found in the hierarchy containing a reference to an irt 
object. In this the query will return only the inet(6)num object found for the specified range. 

2.3 Queries for Autonomous Systems

AS numbers can be either 32 bit or 16 bit. They are both described by a 32 bit number. From the 
point of view of the RIPE Database there is no difference. The difference is mainly historical.

2.4 Inverse Queries

Inverse queries are performed using an object’s inverse key as an argument to a query. The query 
flag “-i” (or --inverse) must also be specified with appropriate query flag arguments. Inverse 



keys are defined in the templates of the RIPE Database objects. These can be listed using the 
query:

whois –t <object type>         

Table 2.3, at the end of this section, gives a complete listing of the inverse query flag arguments.

By performing this type of query, the user requests all objects to be returned by the database that 
reference the specified query argument in the attribute(s) specified in the query flag arguments.

As an example:

whois -i admin-c <nic-handle>                 

will return all objects where the “admin-c:” attribute contains the <nic-handle> specified as the 
query argument.

You can specify several query flag arguments to request searches against several attributes in 
objects. If you want to do this, the query flag arguments should be entered as a comma-separated 
list with no white spaces. All the attributes searched must contain the same type of value. In 
other words, all the values must be maintainers or nic-handles or one of the other values listed in 
Table 2.3.

As an example:

whois --inverse mb,mnt-lower <mntner name>                  

will return all objects where the “mnt-by:” or the “mnt-lower:” attributes contain the <mntner 
name> specified as the query argument. 

2.5 Abuse Contacts 

There are many attributes in objects within the RIPE Database containing e-mail addresses. 
These addresses cover a number of functions. A growing concern to engineers and administrators 
that maintain networks is receiving spam and abuse complaints that are sent to every e-mail 
address displayed. This will get the message to the right person, but it also causes more spam and 
abuse to people who are not responsible for solving these problems.

To solve this issue, an “abuse-c:" attribute is available in the organisation object. This optional 
attribute references a role object which is required to contain an optional “abuse-mailbox:” 
attribute. Any Internet resource object (inetnum, inet6num, aut-num) that references this 
organisation object is then “covered” by this abuse email address.

By default, any query for an Internet resource object will return the related abuse email address. 
This appears in the query output as a comment line (starting with the % ’ characters).

There is also a “-b” query flag to find the “abuse-mailbox:” attributes for any specific range. It 
returns the resource primary key with any abuse contact email address found. Also the prefix of 
any corresponding route or route6 objects, followed by the “abuse-mailbox:” attributes. 

If no abuse contact is found in any encompassing objects then no object summaries will be 
returned.

A complaint will not be handled any quicker by copying your message to any other e-mail 
address found in the database.

The “-b” query flag cannot be used with many other query flags. 



2.6 Grouping the RIPE Database Output 

There are two ways to order the results of a query.

One way is for the first part of the results to list the primary objects like inetnum and mntner. 
Then the second part of the results lists all the secondary objects associated with the primary 
objects, like organisation and person. If any of these secondary objects are referenced by more 
than one of the returned objects, it will only be listed once in the returned results.

The other way is to group the returned objects to show the association between the primary and 
secondary objects. In this way, each of the primary objects is followed immediately by all of its 
secondary objects. The secondary objects may appear more than once in this type of output. The 
default output is grouped. If you include the “-G” or “--no-grouping” query flag then the output 
will not be grouped. 

2.7 Filtering the RIPE Database Output 

A filtering process restricts some data from default query results. This applies to e-mail contact 
data. When a user is searching for abuse contact data, they sometimes take all e-mail addresses 
found in all objects returned from a query. This may include the correct address. However, it 
often also includes many other addresses for people who are not responsible for handling such 
complaints.

To help overcome this issue, some attributes containing e-mail addresses are filtered out of the 
default output. One exception to this is where a role object includes an “abuse-mailbox:” 
attribute. The abuse email address is never filtered. If you include the “-B” or “--no-filtering” 
query flag then the output will not be filtered 

When any attribute has been filtered out of an object in the query results returned to the user, a 
“Note:” is added to the output to warn the user. In addition, the “source:” attribute of each 
filtered object will have a comment added to the end of the line saying “# Filtered”. If this 
filtered output is cut and pasted into an update message, including this end of line comment on 
the “source:” attribute, the update will fail. This is because some mandatory attributes will be 
missing and the “source:” will not be recognised. Filtered output can therefore not be 
accidentally used for updates. 

The MD5 hash in the “auth:” attribute of mntner objects is always filtered when these objects 
are queried. This filtering cannot be turned off with any query flags. The only way to see an 
unfiltered mntner object is to query it for update in the Webupdates form and enter a valid 
password for the object.

2.8 Query Support for Tools 

There are several query types in the RIPE Whois Server that support various client tools. Other 
whois clients can also use these. 



2.8.1 IRRToolset Support 

The IRRToolset [6] is a third party suite of routing policy analysis tools. Some of the tools in this 
set access Routing Registry servers through an authorisation whois interface.

The RIPE Database Server includes support for these query types. This section describes the 
additions to the RIPE Database user interface that allow it to support the IRRToolset. The 
required queries are: 

● Return the prefixes of all route and route6 objects with a specified origin 

● Return only the primary keys of the route and route6 objects, not full objects 

● Return the prefixes of all route and route6 objects referenced in a given route-set 

● Return all the members (aut-num or as-set object) of a specified as-set 

● Return only the “members:” attributes, not the full object 

● Optionally, include support for expansion of the previous query, if the returned value 
contains references to as-sets, so that the result contains only a list of aut-num objects 

The RIPE Database server does not support this and it is up to the client to perform the 
expansion. The IRRToolset currently does the expansion. 

● Return route and route6 objects that exactly match a specified prefix 

● Return route and route6 objects that exactly match a specified prefix (as above), but 
return only the “route:” or “route6:” attributes 

Table 2.4, at the end of this section, gives details of query support for tools. 

2.8.2 Persistent Connections and Keeping State

If you are carrying out batched queries, your database client can request a persistent connection. 
The server will not close this connection after sending a reply to your client. This avoids having 
to set up a new TCP connection for every query.

The client can request this by sending the “-k” or “--persistent-connection” query flag to the 
server. This flag may be sent without a query argument to start the connection. It may also be 
included as a query flag with the first query.

During a persistent connection, the server operates a “stop-and-wait” protocol. This means that 
the next query cannot be sent until the reply has been received to the previous query. If you want 
to be able to send queries in batch mode, you must use the RIPE whois client.

To exit a persistent connection, send the “-k” or “--persistent-connection”  flag with no query 
argument or an empty query (\n) to the server. The connection will also time out after a period of 
inactivity. 



2.9 Getting All the Members of Set Objects 

In RPSL [3], an object can be a member of a set object in two ways. 

● You can list objects in a “members:” attribute in the set object. This is the kind of 
member relationship present in “Representation of IP Routing Policies in a Routing 
Registry” [4].

● You can use the “member-of:” attribute. You can use this in route, route6, aut-num and 
inet-rtr object types. The value of the “member-of:” attribute identifies a set object that 
this object wants to be a member of. 

However, just specifying “member-of:” is not enough. The referenced set object must also have a 
“mbrs-by-ref:” attribute. This lists the maintainer of the object that wants to be a member of the 
set. This means that the set owner must validate the membership claim of an object with a 
“member-of:” attribute. It does this by matching the “mnt-by” line of the object with one of the 
maintainers in the “mbrs-by-ref:” attributes of the set object. 

2.10 More and Less Specific Lookups For Reverse Domains

The RIPE Database supports IP network queries including the “-x”, “-M”, “-m”, “-L” and “-l” 
functionality for reverse delegation domains. To request that reverse delegation domains be 
queried for with the more (or less) specific query flags, you must also include the “-d” query 
flag. 

Note that there is no hierarchy allowed with reverse domain objects. These queries work on the 
address space hierarchies and return the corresponding domain object, if found, for any address 
space object.

2.11 Access Control for Queries 

The control mechanism is based on the amount of contact information (contained in person and 
role objects) that is returned because of any queries made. Limits are based on the IP address of 
a whois client sending queries to the database server. Sometimes an IP address may be acting as 
a proxy and submitting queries on behalf of other IP addresses (for example, a webserver 
providing an interface to the RIPE Database). The database server provides a facility for such 
proxy clients that allows accounting to be based on the IP address of the clients using the proxy 
to query the RIPE Database and not on the IP address of the proxy server. This is done using the 
“-V” flag as follows:

-V <version>,<ipv4-address>                   

where 

● <version> is a client tag that usually represents the software version that the proxy uses 

● <ipv4-address> is the IPv4 address of the client that queries the database using the proxy 

Not all users can use this “-V” flag. You must contact RIPE Database Administration and tell us 
why you need this facility. If we approve your request, we will add the IP address of the proxy 
server to an access control list. You can then use the “-V” flag, but only from your stated IP 
address.



Attempting to use the “-V” flag without approval may result in permanent denial of access to the 
RIPE Database. This denial of access will apply to the IP address that submits the query.

We restrict access to stop people using the RIPE Database to collect excessive amounts of 
contact data. If the amount of contact data returned by all your queries in a day (defined by 
Amsterdam time) exceeds defined limits, a temporary block on access is applied to that IP 
address. This block will be automatically released at midnight (Amsterdam time) to allow 
querying to continue. There is also a limit on the number of times an IP address can be blocked 
and recover. When this limit is reached, that IP address is permanently blocked from accessing 
the RIPE Database. This permanent block will not be automatically removed. The limits are 
defined in the RIPE Database Acceptable Use Policy [23]. 

There are many reasons why you could find yourself in this position. One is that you are mining 
the RIPE Database for contact data to use for non-agreed purposes. In this case, the denial of 
access is justified and your IP address will remain on the blocked list. However, there may be 
other reasons. Queries for object types other than person and role objects return contact 
information by default. Using the “-r” or “--no-referenced” flag to prevent contact data being 
included in your query results can turn off this default. Alternatively, you may have an error in a 
script that runs automatically, retrieving contact data that you did not know about. If you believe 
there was a genuine error or mistake that led to the permanent block, you need to contact RIPE 
Database Administration. Explain the error and tell us what steps you have taken to stop it 
happening again. RIPE Database Administration will decide whether to remove the block. It will 
remain on record that this IP address has been permanently blocked and unblocked. If another 
permanent block occurs, we will be less likely to consider removing it a second time.

Each time a person or role object is retrieved, a counter increases. When it reaches the limit 
defined in the AUP [23], the query execution is aborted and the connection is terminated, 
displaying an error message to the client (see “Access errors” in Appendix A1, "RIPE Database 
Query Server Response Codes and Messages". Also, a count of denials increases. Retrieving any 
other object type does not affect these counters.

Any role object used for abuse contacts with an “abuse-mailbox:” attribute is an exception to this 
rule. No accounting is done on these objects.

There is also a limit on the number of simultaneous connections from a host. When this limit is 
reached, further connections from the same host are refused.

If we block your access, you will not be able to query for any object types. We will not just block 
your access to contact date alone. 

2.12 Other Server Features

2.12.1 RIPE NCC Global Resource Service

The RIPE NCC mirrors several other databases, in near real time, that are considered to be of use 
to anyone who queries the RIPE Database. These include the other Regional Internet Registries 
[24]. This allows queries to the RIPE Database to retrieve information from one or more of the 
mirrored databases. A local copy is maintained of each mirrored database. Daily updates are 
obtained from the mirrored databases to keep the local copies up to date.



The mirrored databases are referenced by the source of the data. A list of currently available 
sources and the data they can provide can be obtained by using the “-q” query flag. This is 
described in Section 2.12.2.

All mirrored databases are made available by the RIPE NCC in RPSL syntax with the same 
RPSL extensions as the RIPE Database. If the mirrored data stream has some other syntax, it is 
converted into RIPE Database syntax before submission to the local database copy. This means 
that the data returned to a user who queries a RIPE NCC mirror may not be in the same format as 
data returned by querying the original database directly.

Users can query the RIPE NCC mirrored databases as if they were querying the RIPE Database 
by adding the “-s” or "-a” query flags. Bulk access to any of the mirrored databases is not 
possible. The Access Control mechanism described in Section 2.12 applies to all data returned, 
regardless of the source.

2.12.2 The “–q” Query Flag

The RIPE Database server supports the retrieval of certain information about itself and the data 
sets served, using a “-q” query flag. 

The “-q” query flag requests the server to reply with information about the system setup. It does 
not return any information extracted from any of the databases that it serves. This query flag 
takes a single argument which has three possible values: 

● Version (usage: -q version). This will display version information for the server software 

● Types (usage: -q types). This will list all the object types recognised by the RIPE 
Database 

● Sources (usage: -q sources). This will list all available sources. That is, the local RIPE 
Database and all the mirrored databases 

2.12.3. The “-t” (“--template”) Query Flag

This query flag returns to the user a brief description of the specified object type.

 

2.12.4. The “-v” (“--verbose”) Query Flag

This query flag returns to the user a verbose description of the specified object type. 

2.12.5. The “-F” (“--brief”) Query Flag

This query flag changes the format of the returned objects. The attribute names are represented in 
a short hand notation. For example, "person:" becomes "*pn:". Using the –F query flag includes 
the non-recursive action of the –r query flag. 

2.12.6. The “-K” (“--primary-keys”) Query Flag

This query flag returns only the primary keys of each object. 



There are some exceptions to this: 

● With set objects, the "members:" attributes will also be returned. 

● No information is returned for person, role or organisation objects. If a query would 
normally only return these types of objects, no data is returned. In this case you do not 
get the "ERROR:101: no entries found". The entries were found but filtered because of 
using the "-K" flag. 

2.12.7. The “-T” (“--select-types”) Query Flag

This query flag restricts the type of the objects returned. The query flag argument is a comma-
separated list of object types. 

2.12.8. The “-a” (“--all-sources”) Query Flag

This query flag requests that the server searches all the sources available to it. These are the 
sources listed by using the “–q sources” query. 

2.13 Tagging

The RIPE Database allows system tags to be added to any (group of) objects. This is meta data 
that gives some additional information or meaning to certain objects. For example, all resource 
objects maintained by the RIPE NCC are tagged with “RIPE-REGISTRY-RESOURCE”. Other 
resources created in the database by users that are more specific to objects tagged with “RIPE-
REGISTRY-RESOURCE” are tagged with “RIPE-USER-RESOURCE”.

Currently these tags are only generated by the database software and are re-generated nighty.



Tables of Query Types Supported by the RIPE Database
Table 2.1 Queries Using Primary and Lookup Keys

There are side effects to these types of queries. Other objects may be returned besides the ones 
that you are expecting. For example, if you enter a netname you may only expect to get back the 
inetnum and inet6num objects with this netname. You will also get any person, role or mntner 
objects back whose name matches the netname specified. The query is done as a text search on 
the primary and lookup keys. So any object with a matching string will be returned. The results 
can be limited by using the  “–T” option to specify the object types you are interested in. 

Lookup Key(s) Objects Returned

<ip-lookup> (IPv4 address 
prefix, range or single 
address) 

inetnum, route objects with exact match on the specified key. If 
the exact match does not exist, the objects with the smallest less 
specific match are returned. When you specify a single address, 
an inet-rtr object whose “ifaddr:” attribute matches the query 
argument is also returned. 

<ip-lookup> (IPv6 address 
prefix or single address) 

inet6num, route6 objects with exact match on a specified key. If 
the exact match does not exist, the objects with the smallest less 
specific match are returned. If you specify a single address, an 
inet-rtr object whose “interface:” attribute matches the query 
argument is also returned. 

<netname> inetnum and inet6num objects whose “netname:” attribute 
matches the query argument. 

<as-number> aut-num object whose “aut-num:” attribute matches the query 
argument and an as-block object with the range containing the 
aut-num object, if it exists. 

<as-number> - <as-number> 
(range of <as-number> 
separated by “-“) 

as-block object whose primary key defines a range that exactly 
matches or fully contains the range specified in the query 
argument. 

<reverse-domain> domain and inet-rtr objects whose primary keys match the query 
argument. 

<irt-name> irt object whose primary key matches the query argument. 

<Person-name> person and role objects whose “person:” or “role:” attributes 
contain the name specified in the query argument. 

<set-name> A set whose primary key matches the query argument. 

<nic-handle> person or role object whose “nic-hdl:” attribute matches the 
query argument. 

<mntner-name> mntner object whose primary key matches the query argument. 



<org-id> organisation object whose primary key matches the query 
argument. 

<key-cert-id> key-cert object whose primary key matches the query argument. 

<poem> poem object whose primary key matches the query argument. 

<poetic-form> poetic-form object whose primary key matches the query 
argument. 

Table 2.2 Queries For IP Networks

Flag Lookup Key(s) Objects Returned or Effect

-x

--exact

<ip-lookup> Only inetnum, inet6num, route, route6 or 
domain objects that exactly match the prefix. If no 
exact match is found, no objects are returned. 

-M

--all-more

<ip-lookup> All level more specific inetnum, inet6num, route, 
route6 or domain objects, excluding exact 
matches. 

-m

--one-more

<ip-lookup> First level more specific inetnum, inet6num, 
route or route6 objects, excluding exact matches. 

-L

--all-less

<ip-lookup> All level less specific inetnum, inet6num, route, 
route6 or domain objects, including exact 
matches. 

-l

--one-less

<ip-lookup> First level less specific inetnum, inet6num, route, 
route6 or domain objects, excluding exact 
matches. 

-d

--reverse-domain

<ip-lookup> When used with “-x”, “-M”, “-m”, “-L” and “-l” 
flags, both address and route object types and 
domain object types are returned. 

-c

--irt

<ip-lookup> The smallest, less specific inetnum or inet6num 
object found encompassing the range specified in 
the query argument.

Also any irt objects found referenced from the 
returned inetnum or inet6num, or referenced from 
the first less specific inetnum or inet6num to the 
returned object that has such a reference. 



-b

--abuse-contact

Provides a brief output of ranges with associated 
abuse contact information. 

Table 2.3 Query Flag Arguments to the “-”" Query Flag and the Corresponding 
Inverse Keys 

Flag Argument (Alternative 
Form)

Lookup Key(s) Objects Returned

am
(abuse-mailbox) 

<e-mail> Objects whose “abuse-mailbox:” attribute matches 
the query argument. 

ac
(admin-c) 

<nic-handle> or 
<person-name> 

Objects whose “admin-c:” attributes match the 
query argument. 

at
(auth) 

<key-cert-id> mntner objects whose “auth:” attribute matches the 
query argument. Please note that encrypted 
passwords cannot be inverse-searched, but only 
PGPKEY and X509 certificates. 

fp
(fingerprint) 

<fingerprint> key-cert objects whose “fingerpr:” attribute 
matches the query argument. 

pn
(person) 

<nic-handle> or 
<person-name> 

Objects whose “admin-c:”, “tech-c:”, “zone-c:” or 
“author:” attribute matches the query argument. 

iy
(irt-nfy) 

<e-mail> irt objects whose “irt-nfy:” attribute matches the 
query argument. 

la 
(local-as) 

<as-number> inet-rtr objects whose “local-as:” attribute matches 
the query argument. 

mi
(mnt-irt) 

<irt-name> inetnum and inet6num objects whose “mnt-irt:” 
attribute matches the query argument. 

mr 
(mbrs-by-ref) 

<mntner-name> Set objects (as-set, route-set and rtr-set) whose 
“mbrs-by-ref:” attribute matches the query 
argument. 

mo 
(member-of) 

<set-name> Objects whose “member-of:” attribute matches the 
query argument and their membership claim is 
validated by the “mbrs-by-ref:” attribute of the set. 
Absence of the “mbrs-by-ref:” attribute means that 
the membership is only defined by the “members:” 
attribute of the set. 



mb 
(mnt-by) 

<mntner-name> Objects whose “mnt-by:” attribute matches the 
query argument. 

md 
(mnt-domains) 

<mntner-name> Objects whose “mnt-domains:” attribute matches 
the query argument. 

ml 
(mnt-lower) 

<mntner-name> Objects whose “mnt-lower:” attribute matches the 
query argument. 

mn 
(mnt-nfy) 

<e-mail> mntner objects whose “mnt-nfy:” attribute matches 
the query argument. 

mu 
(mnt-routes) 

<mntner-name> aut-num, inetnum, route and route6 objects 
whose “mnt-routes:” attribute matches the query 
argument. 

mz 
(mnt-ref) 

<mntner-name> Returns all objects whose “mnt-ref:” attribute 
matches the query argument. 

ny 
(notify) 

<e-mail> Objects whose “notify:” attribute matches the query 
argument. 

ns 
(nserver) 

<domain-name> or 
<ip-lookup>

(IPv4/IPv6 address) 

domain objects whose “nserver:” attribute matches 
the query argument. 

or 
(origin) 

<as-name> route and route6 objects whose “origin:” attribute 
matches the query argument. 

org <org-id> Objects whose “organisation:” attribute matches the 
query argument. 

tc 
(tech-c) 

<nic-handle> or 
<person-name> 

Objects whose “tech-c:” attribute matches the query 
argument. 

dt 
(upd-to) 

<e-mail> mntner objects whose “upd-to:” attribute matches 
the query argument. 

zc 
(zone-c) 

<nic-handle> or 
<person-name> 

Objects whose “zone-c:” attribute matches the 
query argument. 

Table 2.4 Query Support For Tools

Flag Lookup Key(s) Effect

-F Produces output using shorthand notation for 



--brief attribute names. Produces slower responses. 

-K

--primary-keys

Requests that only the primary keys of an object be 
returned. The exceptions are set objects, where the 
“members:” attributes will also be returned. This 
flag does not apply to person and role objects. 

-k

--persistent-connection

(optional normal 
query) 

Requests a persistent connection. After returning the 
result, the connection will not be closed by the 
server and a client may issue multiple queries on the 
same connection. The server implements a “stop-
and-wait” protocol, whereby no next query can be 
sent before receiving a reply for the previous one. 
Use RIPE Whois client to be able to send queries in 
batch mode. Except the first “-k query”, “-k” 
without an argument closes the persistent 
connection. 

Table 2.5 Miscellaneous Queries

Flag Flag Argument Effect

-r

--no-referenced

Switches off lookups for referenced contact 
information after retrieving the objects that match 
the lookup key. 

-B

--no-filtering

Switches off default filtering of objects. 

-G

--no-grouping

Switches off grouping of associated objects. 

-T

--select-types

Comma separated 
list of object types, 
no white space is 
allowed. 

Restricts the types of primary objects to lookup in 
the query. 

-a

--all-sources

Specifies that the server should perform lookups in 
all available sources. See also “-q sources” query. 

-s

--sources

Comma separated 
list of sources, no 
white space is 
allowed. 

Specifies which sources are to be looked up when 
performing a query and in which order. 



--list-versions Shows a list of historical versions for the object. 
Can not be used on person or role objects.

--diff-versions <version-number: 
version-number> 

Indicates the difference between given historical 
versions of the object.

--show-version <version-number> Returns the historical version of the object with this 
index number. Must use --list-versions to get 
the index numbers.

--types Lists available RPSL object types.

--version Displays the current software version.

--list-sources Returns the current set of sources along with the 
information required for mirroring.

--resource Search all sources for the specified resource and 
returns the authoritative one. Placeholders 
are omitted.

--show-personal Include referenced person and role objects in 
results.

--no-personal Filter referenced person and role objects from 
results. A client can be blocked for excessive 
querying of these objects.

--show-tag-info Include tagging information for each object in the 
results.

--no-tag-info Do not include any tagging information in the 
results.

--filter-tag-include <tag> Return only objects with given tag in the results.

--filter-tag-exclude <tag> Filter out objects with given tag from the results.

Table 2.6 Informational Queries

The following notations are used in this table: 
<object-type> means full or abbreviated name;
<client-tag> is a string without a white space that usually bears the name of the client’s software.

Flag Flag Argument Effect

-q sources Returns the current set of sources along with the 



information required for mirroring. 

-q version Displays the current version of the server. 

-t

--template

<object-type> Requests a template for the specified object type. 

-v

--verbose 

<object-type> Requests a verbose template for the specified 
object type. 

-V

--client

<client-tag> Sends information about the client to the server. 



Appendices
 

A1. RIPE Database Query Server Response Codes and Messages 

If the server encounters a problem, an error message is returned as a query result. The format of 
an error message is as follows:

%ERROR:#:<message>, 

where # is the error or response code and <message> is a short description of the problem. There 
are no white spaces in this line, except in the <message> string. This may be followed by a more 
descriptive message, each line of which starts with % followed by a white space and some text.

Example: 
% This is the RIPE Database query server #1.
% The objects are in RPSL format. 
% The RIPE Database is subject to Terms and Conditions. 
% See http://www.ripe.net/db/support/db-terms-conditions.pdf
%ERROR:101: no entries found 
% 
% No entries found in the selected source(s).

A1.1 Query Errors 

%ERROR:101: no entries found 
No entries were found in the selected source(s).

%ERROR:102: unknown source 
Unknown source was supplied as argument to the “-s” query flag. Use “-q sources” for a list of 
available sources.

%ERROR:103: unknown object type 
Unknown object type is specified as an argument to the “-T” query flag.

%ERROR:104: unknown attribute 
Unknown argument is specified to the inverse query flag (“-I”). See Section 2.0 "Querying the 
RIPE Database" for more information.

%ERROR:105: attribute is not searchable 
The argument specified for the inverse query flag is not a searchable attribute. See Section 2.0 
"Querying the RIPE Database" for more information.

%ERROR:106: no query argument specified 
No query argument has been specified in the query.

%ERROR:107: input line too long 
Input exceeds the maximum line length.

%ERROR:108: bad character in input 
An invalid character was passed in the query. The only allowed characters are letters, numbers 
and -_:+=.,@/?'

%ERROR:109: invalid combination of flags passed 
The specified query flags cannot be included in the same query.



%ERROR:110: multiple use of flag

The same flag cannot be used multiple times.

%ERROR:111: invalid option supplied

Query flag that does not exist was given. Use the help query to see the valid options.

%ERROR:112: unsupported query

“-mM” query options are not allowed on very large ranges/prefixes.

%ERROR:114: unsupported query

Search key doesn't match any known query types.

%ERROR:115: invalid search key

Search key entered is not valid for the specified object type(s).

%ERROR:116: unsupported query

Versions are not supported for PERSON/ROLE objects.

%ERROR:117: version cannot exceed X for this object

Versions are numbers greater or equal to 1 but cannot exceed the object's current version number.

A1.2 Access Errors 
%ERROR:201: access denied 
Access from the host has been temporarily or permanently denied because of excessive querying. 
You should contact a customer service representative at ripe-dbm@ripe.net to discuss this 
problem.

%ERROR:202: access control limit reached 
Limit of returned objects has been reached. The connection is terminated. Continued attempts to 
excessively query the database will result in permanent denial of service. See Section 2.11, 
"Access Control for Queries" for more information.  

%ERROR:203: address passing not allowed 
The host is not registered as a proxy and is not allowed to pass addresses on the query line (“-V” 
flag). See Section 2.11, “Access Control for Queries” for more information. See Section 2.11, 
“Access Control for Queries” for more information.  

A1.3 Connection Errors 
%ERROR:301: connection has been closed 
The connection is administratively or abnormally closed.

%ERROR:302: referral timeout 
The connection was closed due to referral timeout.

%ERROR:303: no referral host 
Referral host cannot be found.

%ERROR:304: referral host not responding 
The connection to the referral host cannot be established. 

mailto:ripe-dbm@ripe.net


%ERROR:305: connection has been closed 
The connection to the server has been closed after a period of inactivity.

%ERROR:306: connections exceeded
Number of connections from a single IP address has exceeded the maximum number allowed.

A1.4 NRTM Errors 

%ERROR:401: invalid range: Not within <first>-<last> 
This happens when the requested range or part of it is outside the serial numbers available at the 
server. <first> is the lowest serial number available. <Last> is the most recent serial number 
available.

A1.5 Warnings 
%WARNING:901: duplicate IP flags passed 
More than one IP flag (-x, -M, -m, -L, -l, -c, or -b) was passed to the server. Only the last one in 
the list of query flags will be used for this query.

%WARNING:902: useless IP flag passed 
An IP flag (-x, -M, -m, -L, -l, -c, or -b) was passed to the server when query did not include an IP 
key as the argument.



A2. Copyright Information 

A2.1 RIPE Database Copyright 

The information in the RIPE Database is available to the public subject to the RIPE Database 
Terms and Conditions [22].

A2.2 RIPE NCC Copyright 

© RIPE NCC. All rights reserved.



Acknowledgements
The authors wish to acknowledge the work done by the original developers of version 3.0 of the 
RIPE Database software and infrastructure at the RIPE NCC: 

Andrei Robachevsky, Daniele Arena, Marek Bukowy, Engin Gunduz, Roman Karpiuk, Shane 
Kerr, Ambrose M.R. Magee, Chris Ottrey and Filippo Portera. 

Those who have continued its development include Denis Walker, Katie Petruska, Agoston 
Horvath, Can Bican, Tiago Anteo,

Jos I Boumans, Luis Motta Campos, Erik Broes and Menno Blom.

Edward Shryane, Angela Sjoholm

References
[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg and 
M. Terpstra, “Routing Policy Specification Language (RPSL)”, RFC 2622, June 1999

[2] C. Villamizar, C. Alaettinoglu, D. Meyer and S. Murphy, “Routing Policy System Security”, 
RFC 2725, December 1999

[3] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, “Using RPSL in Practice”, 
RFC 2650, August 1999

[4] T. Bates, E. Gerich, L. Joncheray, J.M. Jouanigot, D. Karrenberg, M. Terpstra and J. Yu, 
“Representation of IP Routing Policies in a Routing Registry”, ripe-181, October 1994. See 
http://www.ripe.net/docs/ripe-181.html

[5]  RIPE Database - Getting Started 

[6] IRRToolset. See http://www.isc.org/sw/IRRToolSet/

[7] P. Mockapetris, “Domain names - Concepts and Facilities”, RFC 1034, November 1987

[8] P. Resnick, ed., “Internet Message Format”, RFC 2822, April 2001

[9] J. Zsako, “PGP Authentication for RIPE Database Updates”, RFC 2726, December 1999

[10] N. Nimpuno, A.Robachevsky, “New Value of the “status:” Attribute for Inetnum Objects 
(LIR-PARTITIONED)”, ripe-239, June 2002

[11] A. Cormack, D. Stikvoort, W. Woeber, and A. Robachevsky, “IRT Object in the RIPE 
Database”, ripe-254, July 2002

[12] K. Harrenstien, M.K. Stahl, E.J. Feinler. “NICNAME/WHOIS”, RFC 954, October 1985

[13] J.S.L. Damas and L. Vegoda, “New Values of the “status:” Attribute for inet6num Objects”, 
ripe-243, August 2002

[14] L. Blunk, J. Damas, F. Parent and A. Robachevsky, Routing Policy Specification Language 
next generation (RPSLng), RFC 4012

[15] C. Bican, RIPE 43 presentation on Webupdates, December 2002, 
http://www.ripe.net/ripe/meetings/ripe-43/presentations/ripe43-database-syncupdates/index.html

[16] RIPE NCC service region http://www.ripe.net/membership/maps/index.html

http://www.ripe.net/membership/maps/index.html
http://www.ripe.net/ripe/meetings/ripe-43/presentations/ripe43-database-syncupdates/index.html
ftp://ftp.ripe.net/rfc/rfc4012.txt
http://www.ripe.net/ripe/docs/ripe-243.html
ftp://ftp.ripe.net/rfc/rfc954.txt
http://www.ripe.net/ripe/docs/ripe-254.html
http://www.ripe.net/ripe/docs/ripe-239.html
ftp://ftp.ripe.net/rfc/rfc2726.txt
ftp://ftp.ripe.net/rfc/rfc2822.txt
ftp://ftp.ripe.net/rfc/rfc1034.txt
http://www.isc.org/sw/IRRToolSet/%20
file:///h
http://www.ripe.net/docs/ripe-181.html
ftp://ftp.ripe.net/rfc/rfc2650.txt
ftp://ftp.ripe.net/rfc/rfc2725.txt
ftp://ftp.ripe.net/rfc/rfc2622.txt


[17] The IANA ccTLD Database contains a full list of the ccTLD administrators, 
http://www.iana.org/cctld/cctld-whois.htm

[18] RIPE Database Queries Reference Card 

[19] RIPE Database Update Reference Manual

[20] RIPE Database web query, http://www.ripe.net/whois

[21] Regional Internet Registries (RIR), http://www.ripe.net/info/resource-admin/index.html

[22] Ripe Database Terms and Conditions, http://www.ripe.net/db/support/db-terms-
conditions.pdf

[23] RIPE Database Acceptable Use Policy

http://www.ripe.net/data-tools/support/documentation/aup

[24] Regional Internet Registries - RIPE NCC, ARIN, APNIC, AFRINIC, LACNIC

http://www.ripe.net/data-tools/support/documentation/aup
http://www.ripe.net/db/support/db-terms-conditions.pdf
http://www.ripe.net/db/support/db-terms-conditions.pdf
http://www.ripe.net/info/resource-admin/index.html
http://www.ripe.net/whois
http://www.ripe.net/db/support/update-reference-manual.pdf
http://www.ripe.net/db/support/db-refcard.pdf
http://www.iana.org/cctld/cctld-whois.htm

	RIPE Database Query Reference Manual
	Abstract
	Intended Audience
	Conventions Used in This Document
	Table of Contents
	Introduction
	1.0 Database Objects and Attributes
	2.0 Querying the RIPE Database
	2.1 Queries Using Primary and Lookup Keys
	2.2 Queries for IP Networks
	2.2.1 Default Queries for IP Networks
	2.2.2 Exact Match Queries
	2.2.3 More and Less Specific Queries
	2.2.3.1 More Specific Queries
	2.2.3.2 Less Specific Queries
	2.2.4 Less Specific Queries Referencing irt Objects
	2.3 Queries for Autonomous Systems
	2.4 Inverse Queries
	2.5 Abuse Contacts
	2.6 Grouping the RIPE Database Output
	2.7 Filtering the RIPE Database Output
	2.8 Query Support for Tools
	2.8.1 IRRToolset Support
	2.8.2 Persistent Connections and Keeping State
	2.9 Getting All the Members of Set Objects
	2.10 More and Less Specific Lookups For Reverse Domains
	2.11 Access Control for Queries
	2.12 Other Server Features
	2.12.1 RIPE NCC Global Resource Service
	2.12.3. The “-t” (“--template”) Query Flag
	2.12.4. The “-v” (“--verbose”) Query Flag
	2.12.5. The “-F” (“--brief”) Query Flag
	2.12.6. The “-K” (“--primary-keys”) Query Flag
	2.12.8. The “-a” (“--all-sources”) Query Flag

	2.13 Tagging
	Table 2.1 Queries Using Primary and Lookup Keys
	Table 2.2 Queries For IP Networks
	Table 2.3 Query Flag Arguments to the “-”" Query Flag and the Corresponding Inverse Keys
	Table 2.4 Query Support For Tools
	Table 2.5 Miscellaneous Queries
	Shows a list of historical versions for the object. Can not be used on person or role objects.
	Indicates the difference between given historical versions of the object.
	Returns the historical version of the object with this index number. Must use --list-versions to get the index numbers.
	Lists available RPSL object types.
	Displays the current software version.
	Returns the current set of sources along with the information required for mirroring.
	Search all sources for the specified resource and returns the authoritative one. Placeholders are omitted.
	Include referenced person and role objects in results.
	Filter referenced person and role objects from results. A client can be blocked for excessive querying of these objects.
	Include tagging information for each object in the results.
	Do not include any tagging information in the results.
	Return only objects with given tag in the results.
	Filter out objects with given tag from the results.
	Table 2.6 Informational Queries

	Appendices
	A1. RIPE Database Query Server Response Codes and Messages
	A1.1 Query Errors
	A1.2 Access Errors
	A1.3 Connection Errors
	A1.4 NRTM Errors
	A1.5 Warnings
	A2.1 RIPE Database Copyright
	A2.2 RIPE NCC Copyright

	Acknowledgements
	References


